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Abstract

Deep generative models (DGMs) are effective on learning multilayered represen-
tations of complex data and performing inference of input data by exploring the
generative ability. However, little work has been done on examining or empower-
ing the discriminative ability of DGMs on making accurate predictions. This pa-
per presents max-margin deep generative models (mmDGMs), which explore the
strongly discriminative principle of max-margin learning to improve the discrim-
inative power of DGMs, while retaining the generative capability. We develop an
efficient doubly stochastic subgradient algorithm for the piecewise linear objec-
tive. Empirical results on MNIST and SVHN datasets demonstrate that (1) max-
margin learning can significantly improve the prediction performance of DGMs
and meanwhile retain the generative ability; and (2) mmDGMs are competitive to
the state-of-the-art fully discriminative networks by employing deep convolutional
neural networks (CNNs) as both recognition and generative models.

1 Introduction

Max-margin learning has been effective on learning discriminative models, with many examples
such as univariate-output support vector machines (SVMs) [5] and multivariate-output max-margin
Markov networks (or structured SVMs) [30, 1, 31]. However, the ever-increasing size of complex
data makes it hard to construct such a fully discriminative model, which has only single layer of
adjustable weights, due to the facts that: (1) the manually constructed features may not well capture
the underlying high-order statistics; and (2) a fully discriminative approach cannot reconstruct the
input data when noise or missing values are present.

To address the first challenge, previous work has considered incorporating latent variables into
a max-margin model, including partially observed maximum entropy discrimination Markov net-
works [37], structured latent SVMs [32] and max-margin min-entropy models [20]. All this work
has primarily focused on a shallow structure of latent variables. To improve the flexibility, learn-
ing SVMs with a deep latent structure has been presented in [29]. However, these methods do not
address the second challenge, which requires a generative model to describe the inputs. The re-
cent work on learning max-margin generative models includes max-margin Harmoniums [4], max-
margin topic models [34, 35], and nonparametric Bayesian latent SVMs [36] which can infer the
dimension of latent features from data. However, these methods only consider the shallow structure
of latent variables, which may not be flexible enough to describe complex data.

Much work has been done on learning generative models with a deep structure of nonlinear hidden
variables, including deep belief networks [25, 16, 23], autoregressive models [13, 9], and stochastic
variations of neural networks [3]. For such models, inference is a challenging problem, but for-
tunately there exists much recent progress on stochastic variational inference algorithms [12, 24].
However, the primary focus of deep generative models (DGMs) has been on unsupervised learning,
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with the goals of learning latent representations and generating input samples. Though the latent
representations can be used with a downstream classifier to make predictions, it is often beneficial
to learn a joint model that considers both input and response variables. One recent attempt is the
conditional generative models [11], which treat labels as conditions of a DGM to describe input
data. This conditional DGM is learned in a semi-supervised setting, which is not exclusive to ours.

In this paper, we revisit the max-margin principle and present a max-margin deep generative model
(mmDGM), which learns multi-layer representations that are good for both classification and in-
put inference. Our mmDGM conjoins the flexibility of DGMs on describing input data and the
strong discriminative ability of max-margin learning on making accurate predictions. We formulate
mmDGM as solving a variational inference problem of a DGM regularized by a set of max-margin
posterior constraints, which bias the model to learn representations that are good for prediction. We
define the max-margin posterior constraints as a linear functional of the target variational distribu-
tion of the latent presentations. Then, we develop a doubly stochastic subgradient descent algorithm,
which generalizes the Pagesos algorithm [28] to consider nontrivial latent variables. For the varia-
tional distribution, we build a recognition model to capture the nonlinearity, similar as in [12, 24].

We consider two types of networks used as our recognition and generative models: multiple layer
perceptrons (MLPs) as in [12, 24] and convolutional neural networks (CNNs) [14]. Though CNNs
have shown promising results in various domains, especially for image classification, little work has
been done to take advantage of CNN to generate images. The recent work [6] presents a type of
CNN to map manual features including class labels to RBG chair images by applying unpooling,
convolution and rectification sequentially; but it is a deterministic mapping and there is no random
generation. Generative Adversarial Nets [7] employs a single such layer together with MLPs in a
minimax two-player game framework with primary goal of generating images. We propose to stack
this structure to form a highly non-trivial deep generative network to generate images from latent
variables learned automatically by a recognition model using standard CNN. We present the detailed
network structures in experiments part. Empirical results on MNIST [14] and SVHN [22] datasets
demonstrate that mmDGM can significantly improve the prediction performance, which is competi-
tive to the state-of-the-art methods [33, 17, 8, 15], while retaining the capability of generating input
samples and completing their missing values.

2 Basics of Deep Generative Models
We start from a general setting, where we have N i.i.d. data X = {xn}Nn=1. A deep generative
model (DGM) assumes that each xn ∈ RD is generated from a vector of latent variables zn ∈ RK ,
which itself follows some distribution. The joint probability of a DGM is as follows:

p(X,Z|α,β) =

N∏
n=1

p(zn|α)p(xn|zn,β), (1)

where p(zn|α) is the prior of the latent variables and p(xn|zn,β) is the likelihood model for gen-
erating observations. For notation simplicity, we define θ = (α,β). Depending on the structure
of z, various DGMs have been developed, such as the deep belief networks [25, 16], deep sigmoid
networks [21], deep latent Gaussian models [24], and deep autoregressive models [9]. In this paper,
we focus on the directed DGMs, which can be easily sampled from via an ancestral sampler.

However, in most cases learning DGMs is challenging due to the intractability of posterior inference.
The state-of-the-art methods resort to stochastic variational methods under the maximum likelihood
estimation (MLE) framework, θ̂ = argmaxθ log p(X|θ). Specifically, let q(Z) be the variational
distribution that approximates the true posterior p(Z|X,θ). A variational upper bound of the per
sample negative log-likelihood (NLL) − log p(xn|α,β) is:

L(θ, q(zn);xn) , KL(q(zn)||p(zn|α))− Eq(zn)[log p(xn|zn,β)], (2)

where KL(q||p) is the Kullback-Leibler (KL) divergence between distributions q and p. Then,
L(θ, q(Z);X),

∑
nL(θ, q(zn);xn) upper bounds the full negative log-likelihood − log p(X|θ).

It is important to notice that if we do not make restricting assumption on the variational distribution
q, the lower bound is tight by simply setting q(Z) = p(Z|X,θ). That is, the MLE is equivalent to
solving the variational problem: minθ,q(Z) L(θ, q(Z);X). However, since the true posterior is in-
tractable except a handful of special cases, we must resort to approximation methods. One common
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assumption is that the variational distribution is of some parametric form, qφ(Z), and then we opti-
mize the variational bound w.r.t the variational parameters φ. For DGMs, another challenge arises
that the variational bound is often intractable to compute analytically. To address this challenge, the
early work further bounds the intractable parts with tractable ones by introducing more variational
parameters [26]. However, this technique increases the gap between the bound being optimized and
the log-likelihood, potentially resulting in poorer estimates. Much recent progress [12, 24, 21] has
been made on hybrid Monte Carlo and variational methods, which approximates the intractable ex-
pectations and their gradients over the parameters (θ,φ) via some unbiased Monte Carlo estimates.
Furthermore, to handle large-scale datasets, stochastic optimization of the variational objective can
be used with a suitable learning rate annealing scheme. It is important to notice that variance reduc-
tion is a key part of these methods in order to have fast and stable convergence.

Most work on directed DGMs has been focusing on the generative capability on inferring the obser-
vations, such as filling in missing values [12, 24, 21], while little work has been done on investigating
the predictive power, except the semi-supervised DGMs [11] which builds a DGM conditioned on
the class labels and learns the parameters via MLE. Below, we present max-margin deep generative
models, which explore the discriminative max-margin principle to improve the predictive ability of
the latent representations, while retaining the generative capability.

3 Max-margin Deep Generative Models

We consider supervised learning, where the training data is a pair (x, y) with input features x ∈ RD
and the ground truth label y. Without loss of generality, we consider the multi-class classification,
where y ∈ C = {1, . . . ,M}. A max-margin deep generative model (mmDGM) consists of two
components: (1) a deep generative model to describe input features; and (2) a max-margin classifier
to consider supervision. For the generative model, we can in theory adopt any DGM that defines a
joint distribution over (X,Z) as in Eq. (1). For the max-margin classifier, instead of fitting the input
features into a conventional SVM, we define the linear classifier on the latent representations, whose
learning will be regularized by the supervision signal as we shall see. Specifically, if the latent
representation z is given, we define the latent discriminant function F (y, z,η;x) = η>f(y, z),
where f(y, z) is an MK-dimensional vector that concatenates M subvectors, with the yth being z
and all others being zero, and η is the corresponding weight vector.

We consider the case that η is a random vector, following some prior distribution p0(η). Then
our goal is to infer the posterior distribution p(η,Z|X,Y), which is typically approximated by a
variational distribution q(η,Z) for computational tractability. Notice that this posterior is different
from the one in the vanilla DGM. We expect that the supervision information will bias the learned
representations to be more powerful on predicting the labels at testing. To account for the uncertainty
of (η,Z), we take the expectation and define the discriminant function F (y;x) = Eq

[
η>f(y, z)

]
,

and the final prediction rule that maps inputs to outputs is:

ŷ = argmax
y∈C

F (y;x). (3)

Note that different from the conditional DGM [11], which puts the class labels upstream, the above
classifier is a downstream model, in the sense that the supervision signal is determined by condi-
tioning on the latent representations.

3.1 The Learning Problem

We want to jointly learn the parameters θ and infer the posterior distribution q(η,Z). Based on the
equivalent variational formulation of MLE, we define the joint learning problem as solving:

min
θ,q(η,Z),ξ

L(θ, q(η,Z);X) + C

N∑
n=1

ξn (4)

∀n, y ∈ C, s.t. :
{
Eq[η>∆fn(y)] ≥ ∆ln(y)− ξn
ξn ≥ 0,

where ∆fn(y) = f(yn, zn) − f(y, zn) is the difference of the feature vectors; ∆ln(y) is the loss
function that measures the cost to predict y if the true label is yn; and C is a nonnegative regular-
ization parameter balancing the two components. In the objective, the variational bound is defined
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as L(θ, q(η,Z);X) = KL(q(η,Z)||p0(η,Z|α))− Eq [log p(X|Z,β)], and the margin constraints
are from the classifier (3). If we ignore the constraints (e.g., setting C at 0), the solution of q(η,Z)
will be exactly the Bayesian posterior, and the problem is equivalent to do MLE for θ.

By absorbing the slack variables, we can rewrite the problem in an unconstrained form:

min
θ,q(η,Z)

L(θ, q(η,Z);X) + CR(q(η,Z;X)), (5)

where the hinge loss is: R(q(η,Z);X) =
∑N
n=1 maxy∈C(∆ln(y) − Eq[η>∆fn(y)]). Due to the

convexity of max function, it is easy to verify that the hinge loss is an upper bound of the training er-
ror of classifier (3), that is,R(q(η,Z);X) ≥

∑
n ∆ln(ŷn). Furthermore, the hinge loss is a convex

functional over the variational distribution because of the linearity of the expectation operator. These
properties render the hinge loss as a good surrogate to optimize over. Previous work has explored
this idea to learn discriminative topic models [34], but with a restriction on the shallow structure of
hidden variables. Our work presents a significant extension to learn deep generative models, which
pose new challenges on the learning and inference.

3.2 The Doubly Stochastic Subgradient Algorithm

The variational formulation of problem (5) naturally suggests that we can develop a variational
algorithm to address the intractability of the true posterior. We now present a new algorithm to
solve problem (5). Our method is a doubly stochastic generalization of the Pegasos (i.e., Primal
Estimated sub-GrAdient SOlver for SVM) algorithm [28] for the classic SVMs with fully observed
input features, with the new extension of dealing with a highly nontrivial structure of latent variables.

First, we make the structured mean-field (SMF) assumption that q(η,Z) = q(η)qφ(Z). Under the
assumption, we have the discriminant function as Eq[η>∆fn(y)] = Eq(η)[η>]Eqφ(z(n))[∆fn(y)].

Moreover, we can solve for the optimal solution of q(η) in some analytical form. In fact,
by the calculus of variations, we can show that given the other parts the solution is q(η) ∝
p0(η) exp

(
η>∑

n,y ω
y
nEqφ [∆fn(y)]

)
, where ω are the Lagrange multipliers (See [34] for de-

tails). If the prior is normal, p0(η) = N (0, σ2I), we have the normal posterior: q(η) =
N (λ, σ2I), where λ = σ2

∑
n,y ω

y
nEqφ [∆fn(y)]. Therefore, even though we did not make a para-

metric form assumption of q(η), the above results show that the optimal posterior distribution of η
is Gaussian. Since we only use the expectation in the optimization problem and in prediction, we
can directly solve for the mean parameter λ instead of q(η). Further, in this case we can verify that
KL(q(η)||p0(η)) = ||λ||2

2σ2 and then the equivalent objective function in terms of λ can be written
as:

min
θ,φ,λ

L(θ,φ;X) +
||λ||2

2σ2
+ CR(λ,φ;X), (6)

where R(λ,φ;X) =
∑N
n=1 `(λ,φ;xn) is the total hinge loss, and the per-sample hinge-loss is

`(λ,φ;xn) = maxy∈C(∆ln(y)−λ>Eqφ [∆fn(y)]). Below, we present a doubly stochastic subgra-
dient descent algorithm to solve this problem.

The first stochasticity arises from a stochastic estimate of the objective by random mini-batches.
Specifically, the batch learning needs to scan the full dataset to compute subgradients, which is
often too expensive to deal with large-scale datasets. One effective technique is to do stochastic
subgradient descent [28], where at each iteration we randomly draw a mini-batch of the training
data and then do the variational updates over the small mini-batch. Formally, given a mini batch of
size m, we get an unbiased estimate of the objective:

L̃m :=
N

m

m∑
n=1

L(θ,φ;xn) +
||λ||2

2σ2
+
NC

m

m∑
n=1

`(λ,φ;xn).

The second stochasticity arises from a stochastic estimate of the per-sample variational bound
and its subgradient, whose intractability calls for another Monte Carlo estimator. Formally, let
zln ∼ qφ(z|xn, yn) be a set of samples from the variational distribution, where we explicitly put the
conditions. Then, an estimate of the per-sample variational bound and the per-sample hinge-loss is

L̃(θ,φ;xn)=
1

L

∑
l

log p(xn, z
l
n|β)−log qφ(zln); ˜̀(λ,φ;xn)=max

y

(
∆ln(y)−1

L

∑
l

λ>∆fn(y, zln)
)
,
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where ∆fn(y, zln) = f(yn, z
l
n) − f(y, zln). Note that L̃ is an unbiased estimate of L, while ˜̀ is a

biased estimate of `. Nevertheless, we can still show that ˜̀ is an upper bound estimate of ` under
expectation. Furthermore, this biasedness does not affect our estimate of the gradient. In fact,
by using the equality ∇φqφ(z) = qφ(z)∇φ log qφ(z), we can construct an unbiased Monte Carlo
estimate of∇φ(L(θ,φ;xn) + `(λ,φ;xn)) as:

gφ =
1

L

L∑
l=1

(
log p(zln,xn)− log qφ(zln) + Cλ>∆fn(ỹn, z

l
n)
)
∇φ log qφ(zln), (7)

where the last term roots from the hinge loss with the loss-augmented prediction ỹn =
argmaxy(∆ln(y) + 1

L

∑
l λ

>f(y, zln)). For θ and λ, the estimates of the gradient ∇θL(θ,φ;xn)
and the subgradient∇λ`(λ,φ;xn) are easier, which are:

gθ =
1

L

∑
l

∇θ log p(xn, z
l
n|θ), gλ =

1

L

∑
l

(
f(ỹn, z

l
n)− f(yn, z

l
n)
)
.

Notice that the sampling and the gradient∇φ log qφ(zln) only depend on the variational distribution,
not the underlying model.

Algorithm 1 Doubly Stochastic Subgradient Algorithm
Initialize θ, λ, and φ
repeat

draw a random mini-batch of m data points
draw random samples from noise distribution p(ε)
compute subgradient g = ∇θ,λ,φL̃(θ,λ,φ;Xm, ε)
update parameters (θ,λ,φ) using subgradient g.

until Converge
return θ, λ, and φ

The above estimates consider the gen-
eral case where the variational bound is
intractable. In some cases, we can com-
pute the KL-divergence term analyti-
cally, e.g., when the prior and the vari-
ational distribution are both Gaussian.
In such cases, we only need to estimate
the rest intractable part by sampling,
which often reduces the variance [12].
Similarly, we could use the expectation
of the features directly, if it can be computed analytically, in the computation of subgradients (e.g.,
gθ and gλ) instead of sampling, which again can lead to variance reduction.

With the above estimates of subgradients, we can use stochastic optimization methods such as
SGD [28] and AdaM [10] to update the parameters, as outlined in Alg. 1. Overall, our algorithm is
a doubly stochastic generalization of Pegasos to deal with the highly nontrivial latent variables.

Now, the remaining question is how to define an appropriate variational distribution qφ(z) to obtain
a robust estimate of the subgradients as well as the objective. Two types of methods have been devel-
oped for unsupervised DGMs, namely, variance reduction [21] and auto-encoding variational Bayes
(AVB) [12]. Though both methods can be used for our models, we focus on the AVB approach. For
continuous variables Z, under certain mild conditions we can reparameterize the variational distri-
bution qφ(z) using some simple variables ε. Specifically, we can draw samples ε from some simple
distribution p(ε) and do the transformation z = gφ(ε,x, y) to get the sample of the distribution
q(z|x, y). We refer the readers to [12] for more details. In our experiments, we consider the special
Gaussian case, where we assume that the variational distribution is a multivariate Gaussian with a
diagonal covariance matrix:

qφ(z|x, y) = N (µ(x, y;φ),σ2(x, y;φ)), (8)

whose mean and variance are functions of the input data. This defines our recognition model. Then,
the reparameterization trick is as follows: we first draw standard normal variables εl ∼ N (0, I) and
then do the transformation zln = µ(xn, yn;φ) + σ(xn, yn;φ)� εl to get a sample. For simplicity,
we assume that both the mean and variance are function of x only. However, it is worth to emphasize
that although the recognition model is unsupervised, the parameters φ are learned in a supervised
manner because the subgradient (7) depends on the hinge loss. Further details of the experimental
settings are presented in Sec. 4.1.

4 Experiments
We now present experimental results on the widely adopted MNIST [14] and SVHN [22] datasets.
Though mmDGMs are applicable to any DGMs that define a joint distribution of X and Z, we
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concentrate on the Variational Auto-encoder (VA) [12], which is unsupervised. We denote our
mmDGM with VA by MMVA. In our experiments, we consider two types of recognition models:
multiple layer perceptrons (MLPs) and convolutional neural networks (CNNs). We implement all
experiments based on Theano [2]. 1

4.1 Architectures and Settings

In the MLP case, we follow the settings in [11] to compare both generative and discriminative
capacity of VA and MMVA. In the CNN case, we use standard convolutional nets [14] with convo-
lution and max-pooling operation as the recognition model to obtain more competitive classification
results. For the generative model, we use unconvnets [6] with a “symmetric” structure as the recog-
nition model, to reconstruct the input images approximately. More specifically, the top-down gen-
erative model has the same structure as the bottom-up recognition model but replacing max-pooling
with unpooling operation [6] and applies unpooling, convolution and rectification in order. The total
number of parameters in the convolutional network is comparable with previous work [8, 17, 15].
For simplicity, we do not involve mlpconv layers [17, 15] and contrast normalization layers in our
recognition model, but they are not exclusive to our model. We illustrate details of the network
architectures in appendix A.

In both settings, the mean and variance of the latent z are transformed from the last layer of the
recognition model through a linear operation. It should be noticed that we could use not only the
expectation of z but also the activation of any layer in the recognition model as features. The only
theoretical difference is from where we add a hinge loss regularization to the gradient and back-
propagate it to previous layers. In all of the experiments, the mean of z has the same nonlinearity
but typically much lower dimension than the activation of the last layer in the recognition model,
and hence often leads to a worse performance. In the MLP case, we concatenate the activations of
2 layers as the features used in the supervised tasks. In the CNN case, we use the activations of the
last layer as the features. We use AdaM [10] to optimize parameters in all of the models. Although it
is an adaptive gradient-based optimization method, we decay the global learning rate by factor three
periodically after sufficient number of epochs to ensure a stable convergence.

We denote our mmDGM with MLPs by MMVA. To perform classification using VA, we first learn
the feature representations by VA, and then build a linear SVM classifier on these features using the
Pegasos stochastic subgradient algorithm [28]. This baseline will be denoted by VA+Pegasos. The
corresponding models with CNNs are denoted by CMMVA and CVA+Pegasos respectively.

4.2 Results on the MNIST dataset

We present both the prediction performance and the results on generating samples of MMVA and
VA+Pegasos with both kinds of recognition models on the MNIST [14] dataset, which consists of
images of 10 different classes (0 to 9) of size 28×28 with 50,000 training samples, 10,000 validating
samples and 10,000 testing samples.

4.2.1 Predictive Performance
Table 1: Error rates (%) on MNIST dataset.

MODEL ERROR RATE
VA+Pegasos 1.04
VA+Class-conditionVA 0.96
MMVA 0.90
CVA+Pegasos 1.35
CMMVA 0.45
Stochastic Pooling [33] 0.47
Network in Network [17] 0.47
Maxout Network [8] 0.45
DSN [15] 0.39

In the MLP case, we only use 50,000 train-
ing data, and the parameters for classification are
optimized according to the validation set. We
choose C = 15 for MMVA and initialize it with
an unsupervised pre-training procedure in classi-
fication. First three rows in Table 1 compare
VA+Pegasos, VA+Class-condtionVA and MMVA,
where VA+Class-condtionVA refers to the best fully
supervised model in [11]. Our model outperforms the baseline significantly. We further use the
t-SNE algorithm [19] to embed the features learned by VA and MMVA on 2D plane, which again
demonstrates the stronger discriminative ability of MMVA (See Appendix B for details).

In the CNN case, we use 60,000 training data. Table 2 shows the effect of C on classification error
rate and variational lower bound. Typically, as C gets lager, CMMVA learns more discriminative
features and leads to a worse estimation of data likelihood. However, if C is too small, the super-
vision is not enough to lead to predictive features. Nevertheless, C = 103 is quite a good trade-off

1The source code is available at https://github.com/zhenxuan00/mmdgm.
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(a) VA (b) MMVA (c) CVA (d) CMMVA
Figure 1: (a-b): randomly generated images by VA and MMVA, 3000 epochs; (c-d): randomly
generated images by CVA and CMMVA, 600 epochs.

between the classification performance and generative performance and this is the default setting
of CMMVA on MNIST throughout this paper. In this setting, the classification performance of our
CMMVA model is comparable to the recent state-of-the-art fully discriminative networks (without
data augmentation), shown in the last four rows of Table 1.

4.2.2 Generative Performance Table 2: Effects of C on MNIST dataset
with a CNN recognition model.
C ERROR RATE (%) LOWER BOUND
0 1.35 -93.17
1 1.86 -95.86
10 0.88 -95.90
102 0.54 -96.35
103 0.45 -99.62
104 0.43 -112.12

We further investigate the generative capability of MMVA
on generating samples. Fig. 1 illustrates the images ran-
domly sampled from VA and MMVA models where we
output the expectation of the gray value at each pixel to
get a smooth visualization. We do not pre-train our model
in all settings when generating data to prove that MMVA
(CMMVA) remains the generative capability of DGMs.

4.3 Results on the SVHN (Street View House Numbers) dataset

SVHN [22] is a large dataset consisting of color images of size 32 × 32. The task is to recognize
center digits in natural scene images, which is significantly harder than classification of hand-written
digits. We follow the work [27, 8] to split the dataset into 598,388 training data, 6000 validating
data and 26, 032 testing data and preprocess the data by Local Contrast Normalization (LCN).

We only consider the CNN recognition model here. The network structure is similar to that in
MNIST. We set C = 104 for our CMMVA model on SVHN by default.

Table 3: Error rates (%) on SVHN dataset.
MODEL ERROR RATE
CVA+Pegasos 25.3
CMMVA 3.09
CNN [27] 4.9
Stochastic Pooling [33] 2.80
Maxout Network [8] 2.47
Network in Network [17] 2.35
DSN [15] 1.92

Table 3 shows the predictive performance. In
this more challenging problem, we observe a
larger improvement by CMMVA as compared to
CVA+Pegasos, suggesting that DGMs benefit a lot
from max-margin learning on image classification.
We also compare CMMVA with state-of-the-art re-
sults. To the best of our knowledge, there is no com-
petitive generative models to classify digits on SVHN
dataset with full labels.

We further compare the generative capability of CMMVA and CVA to examine the benefits from
jointly training of DGMs and max-margin classifiers. Though CVA gives a tighter lower bound
of data likelihood and reconstructs data more elaborately, it fails to learn the pattern of digits in a
complex scenario and could not generate meaningful images. Visualization of random samples from
CVA and CMMVA is shown in Fig. 2. In this scenario, the hinge loss regularization on recognition
model is useful for generating main objects to be classified in images.

4.4 Missing Data Imputation and Classification

Finally, we test all models on the task of missing data imputation. For MNIST, we consider two types
of missing values [18]: (1) Rand-Drop: each pixel is missing randomly with a pre-fixed probability;
and (2) Rect: a rectangle located at the center of the image is missing. Given the perturbed images,
we uniformly initialize the missing values between 0 and 1, and then iteratively do the following
steps: (1) using the recognition model to sample the hidden variables; (2) predicting the missing
values to generate images; and (3) using the refined images as the input of the next round. For
SVHN, we do the same procedure as in MNIST but initialize the missing values with Guassian
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(a) Training data (b) CVA (c) CMMVA (C = 103) (d) CMMVA (C = 104)
Figure 2: (a): training data after LCN preprocessing; (b): random samples from CVA; (c-d):
random samples from CMMVA when C = 103 and C = 104 respectively.

random variables as the input distribution changes. Visualization results on MNIST and SVHN are
presented in Appendix C and Appendix D respectively.

Table 4: MSE on MNIST data with missing values in
the testing procedure.
NOISE TYPE VA MMVA CVA CMMVA
RAND-DROP (0.2) 0.0109 0.0110 0.0111 0.0147
RAND-DROP (0.4) 0.0127 0.0127 0.0127 0.0161
RAND-DROP (0.6) 0.0168 0.0165 0.0175 0.0203
RAND-DROP (0.8) 0.0379 0.0358 0.0453 0.0449
RECT (6 × 6) 0.0637 0.0645 0.0585 0.0597
RECT (8 × 8) 0.0850 0.0841 0.0754 0.0724
RECT (10 × 10) 0.1100 0.1079 0.0978 0.0884
RECT (12 × 12) 0.1450 0.1342 0.1299 0.1090

Intuitively, generative models with CNNs
could be more powerful on learning pat-
terns and high-level structures, while
generative models with MLPs lean more
to reconstruct the pixels in detail. This
conforms to the MSE results shown in
Table 4: CVA and CMMVA outperform
VA and MMVA with a missing rectan-
gle, while VA and MMVA outperform
CVA and CMMVA with random miss-
ing values. Compared with the baseline,
mmDGMs also make more accurate com-
pletion when large patches are missing. All of the models infer missing values for 100 iterations.

We also compare the classification performance of CVA, CNN and CMMVA with Rect missing
values in testing procedure in Appendix E. CMMVA outperforms both CVA and CNN.

Overall, mmDGMs have comparable capability of inferring missing values and prefer to learn high-
level patterns instead of local details.

5 Conclusions
We propose max-margin deep generative models (mmDGMs), which conjoin the predictive power
of max-margin principle and the generative ability of deep generative models. We develop a doubly
stochastic subgradient algorithm to learn all parameters jointly and consider two types of recognition
models with MLPs and CNNs respectively. In both cases, we present extensive results to demon-
strate that mmDGMs can significantly improve the prediction performance of deep generative mod-
els, while retaining the strong generative ability on generating input samples as well as completing
missing values. In fact, by employing CNNs in both recognition and generative models, we achieve
low error rates on MNIST and SVHN datasets, which are competitive to the state-of-the-art fully
discriminative networks.
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