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Abstract

In this paper, we study the support recovery guarantees of underdetermined sparse
regression using the `1-norm as a regularizer and a non-smooth loss function for
data fidelity. More precisely, we focus in detail on the cases of `1 and `∞ losses,
and contrast them with the usual `2 loss. While these losses are routinely used to
account for either sparse (`1 loss) or uniform (`∞ loss) noise models, a theoretical
analysis of their performance is still lacking. In this article, we extend the existing
theory from the smooth `2 case to these non-smooth cases. We derive a sharp
condition which ensures that the support of the vector to recover is stable to small
additive noise in the observations, as long as the loss constraint size is tuned
proportionally to the noise level. A distinctive feature of our theory is that it also
explains what happens when the support is unstable. While the support is not stable
anymore, we identify an “extended support” and show that this extended support
is stable to small additive noise. To exemplify the usefulness of our theory, we
give a detailed numerical analysis of the support stability/instability of compressed
sensing recovery with these different losses. This highlights different parameter
regimes, ranging from total support stability to progressively increasing support
instability.

1 Introduction
1.1 Sparse Regularization

This paper studies sparse linear regression problems of the form
y = Φx0 + w,

where x0 ∈ Rn is the unknown vector to estimate, supposed to be non-zero and sparse, w ∈ Rm
is some additive noise and the design matrix Φm×n is in general rank deficient corresponding to
a noisy underdetermined linear system of equations, i.e., typically in the high-dimensional regime
where m� n. This can also be understood as an inverse problem in imaging sciences, a particular
instance of which being the compressed sensing problem [3], where the matrix Φ is drawn from some
appropriate random matrix ensemble.

In order to recover a sparse vector x0, a popular regularization is the `1-norm, in which case we
consider the following constrained sparsity-promoting optimization problem

min
x∈Rn

{||x||1 s.t. ||Φx− y||α 6 τ} , (Pτα(y))
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where for α ∈ [1,+∞], ||u||α def.
= (
∑
i |ui|α)

1/α denotes the `α-norm, and the constraint size τ > 0
should be adapted to the noise level. To avoid trivialities, through the paper, we assume that
problem (Pτα(y)) is feasible, which is of course the case if τ > ||w||α. In the special situation where
there is no noise, i.e., w = 0, it makes sense to consider τ = 0 and solve the so-called Lasso [14] or
Basis-Pursuit problem [4], which is independent of α, and reads

min
x
{||x||1 s.t. Φx = Φx0} . (P0(Φx0))

The case α = 2 corresponds to the usual `2 loss function, which entails a smooth constraint set, and
has been studied in depth in the literature (see Section 1.6 for an overview). In contrast, the cases
α ∈ {1,+∞} correspond to very different setups, where the loss function || · ||α is polyhedral and
non-smooth. They are expected to lead to significantly different estimation results and require to
develop novel theoretical results, which is the focus of this paper. The case α = 1 corresponds to
a “robust” loss function, and is important to cope with impulse noise or outliers contaminating the
data (see for instance [11, 13, 9]). At the extreme opposite, the case α = +∞ is typically used to
handle uniform noise such as in quantization (see for instance [10]). This paper studies the stability
of the support supp(xτ ) of minimizers xτ of (Pτα(y)). In particular, we provide a sharp analysis
for the polyhedral cases α ∈ {1,+∞} that allows one to control the deviation of supp(xτ ) from
supp(x0) if ||w||α is not too large and τ is chosen proportionally to ||w||α. The general case is studied
numerically in a compressed sensing experiment where we compare supp(xτ ) and supp(x0) for
α ∈ [1,+∞].

1.2 Notations.

The support of x0 is noted I def.
= supp(x0) where supp(u)

def.
= {i | ui 6= 0}. The saturation support

of a vector is defined as sat(u)
def.
= {i | |ui| = ||u||∞ }. The sub-differential of a convex function f

is denoted ∂f . The subspace parallel to a nonempty convex set C is par(C) def.
= R(C − C). A∗ is the

transpose of a matrix A and A+ is the Moore-Penrose pseudo-inverse of A. Id is the identity matrix
and δi the canonical vector of index i. For a subspace V ⊂ Rn, PV is the orthogonal projector onto
V . For sets of indices S and I , we denote ΦS,I the submatrix of Φ restricted to the rows indexed
by S and the columns indexed by I . When all rows or all columns are kept, a dot replaces the
corresponding index set (e.g., Φ·,I ). We denote Φ∗S,I

def.
= (ΦS,I)

∗, i.e. the transposition is applied after
the restriction.

1.3 Dual Certificates

Before diving into our theoretical contributions, we first give important definitions. Let Dx0
be the

set of dual certificates (see, e.g., [17]) defined by

Dx0

def.
= {p ∈ Rm | Φ∗p ∈ ∂||x0||1 } =

{
p ∈ Rm

∣∣ Φ∗·,Ip = sign(x0,I), ||Φ∗p||∞ 6 1
}
. (1)

The first order optimality condition (see, e.g., [12]) states that x0 is a solution of (P0(Φx0)) if and
only if Dx0

6= ∅. Assuming this is the case, our main theoretical finding (Theorem 1) states that the
stability (and instability) of the support of x0 is characterized by the following specific subset of
certificates

pβ ∈ Argmin
p∈Dx0

||p||β where 1
α + 1

β = 1. (2)

We call such a certificate pβ a minimum norm certificate. Note that for 1 < α < +∞, this pβ is
actually unique but that for α ∈ {1,∞} it might not be the case.

Associated to such a minimal norm certificate, we define the extended support as

J
def.
= sat(Φ∗pβ) = {i ∈ {1, . . . , n} | |(Φ∗pβ)i| = 1} . (3)

When the certificate pβ from which J is computed is unclear from the context, we write it explicitly
as an index Jpβ . Note that, from the definition of Dx0 , one always has I ⊆ J . Intuitively, J indicates
the set of indexes that will be activated in the signal estimate when a small noise w is added to the
observation, and thus the situation when I = J corresponds to the case where the support of x0 is
stable.
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Fig. 1: Model tangent subspace Tβ in R2 for (α, β) = (∞, 1).

1.4 Lagrange multipliers and restricted injectivity conditions

In the case of noiseless observations (w = 0) and when τ > 0, the following general lemma
whose proof can be found in Section 2 associate to a given dual certificate pβ an explicit solution of
(Pτα(Φx0)). This formula depends on a so-called Lagrange multiplier vector vβ ∈ Rn, which will
be instrumental to state our main contribution (Theorem 1). Note that this lemma is valid for any
α ∈ [1,∞]. Even though this goes beyond the scope of our main result, one can use the same lemma
for an arbitrary `α-norm for α ∈ [1,∞] (see Section 3) or for even more general loss functions.
Lemma 1 (Noiseless solution). We assume that x0 is identifiable, i.e. it is a solution to (P0(Φx0)),
and consider τ > 0. Then there exists a vβ ∈ Rn supported on J such that

Φ·,Jvβ,J ∈ ∂||pβ ||β and − sign(vβ,J̃) = Φ∗·,J̃pβ

where we denoted J̃ def.
= J\I . If τ is such that 0 < τ < x

||vβ,I ||∞ , with x = mini∈I |x0,I |, then a
solution x̄τ of (Pτα(Φx0)) with support equal to J is given by

x̄τ,J = x0,J − τvβ,J .
Moreover, its entries have the same sign as those of x0 on its support I , i.e., sign(x̄τ,I) = sign(x0,I).

An important question that arises is whether vβ can be computed explicitly. For this, let us define the
model tangent subspace Tβ

def.
= par(∂||pβ ||β)⊥, i.e., Tβ is the orthogonal to the subspace parallel to

∂||pβ ||β , which uniquely defines the model vector, eβ
def.
= PTβ∂||pβ ||β , as shown on Figure 1 (see [17]

for details). Using this notation, vβ,J is uniquely defined and expressed in closed-form as
vβ,J = (PTβΦ·,J)+eβ (4)

if and only if the following restricted injectivity condition holds
Ker(PTβΦ·,J) = {0}. (INJα)

For the special case (α, β) = (∞, 1), the following lemma, proved in Section 2, gives easily verifiable
sufficient conditions, which ensure that (INJ∞) holds. The notation S def.

= supp(p1) is used.
Lemma 2 (Restricted injectivity for α =∞). Assume x0 is identifiable and ΦS,J has full rank. If

sJ /∈ Im(Φ∗S′,J) ∀S′ ⊆ {1, . . . ,m}, |S′| < |J | and

qS /∈ Im(ΦS,J ′) ∀J ′ ⊆ {1, . . . , n}, |J ′| < |S|,
where sJ = Φ∗·,Jp1 ∈ {−1, 1}|J|, and qS = sign(p1,S) ∈ {−1, 1}|S|, then, |S| = |J | and ΦS,J is
invertible, i.e., since PT1

Φ·,J = Id·,SΦS,J , (INJ∞) holds.
Remark 1. If Φ is randomly drawn from a continuous distribution with i.i.d. entries, e.g., Gaussian,
then as soon as x0 is identifiable, the conditions of Lemma 2 hold with probability 1 over the
distribution of Φ.
For (α, β) = (1,∞), we define Z def.

= sat(p∞),

Θ
def.
=

[
IdZc,·

sign(p∗∞,Z)IdZ,·

]
and Φ̃

def.
= ΘΦ·,J .

Following similar reasoning as in Lemma 2 and Remark 1, we can reasonably assume that |Zc|+ 1 =

|J | and Φ̃ is invertible. In that case, (INJ1) holds as Ker(PT∞Φ·,J) = Ker(Φ̃). Table 1 summarizes
for the three specific cases α ∈ {1, 2,+∞} the quantities introduced here.

Table 1: Model tangent subspace, restricted injectivity condition and Lagrange multipliers.
α Tβ (INJα) (PTβΦ·,J)+ vβ,J

2 Rm Ker(Φ·,J) = {0} Φ+
·,J Φ+

·,J
p2
||p2||2

∞ {u | supp(u) = S } Ker(ΦS,J) = {0} Φ−1
S,J IdS,· Φ−1

S,J sign(p1,S)

1 {u | uZ = ρ sign(p∞,Z), ρ ∈ R} Ker(Φ̃) = {0} Φ̃−1Θ Φ̃−1δ|J|
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Fig. 2: (best observed in color) Simulated compressed sensing example showing xτ (above) for
increasing values of τ and random noise w respecting the hypothesis of Theorem 1 and Φ∗pβ (bellow)
which predicts the support of xτ when τ > 0.

1.5 Main result

Our main contribution is Theorem 1 below. A similar result is known to hold in the case of the smooth
`2 loss (α = 2, see Section 1.6). Our paper extends it to the more challenging case of non-smooth
losses α ∈ {1,+∞}. The proof for α = +∞ is detailed in Section 2. It is important to emphasize
that the proof strategy is significantly different from the classical approach developed for α = 2,
mainly because of the lack of smoothness of the loss function. The proof for α = 1 follows a similar
structure, and due to space limitation, it can be found in the supplementary material.
Theorem 1. Let α ∈ {1, 2,+∞}. Suppose that x0 is identifiable, and let pβ be a minimal norm
certificate (see (2)) with associated extended support J (see (3)). Suppose that the restricted injectivity
condition (INJα) is satisfied so that vβ,J can be explicitly computed (see (4)). Then there exist
constants c1, c2 > 0 depending only on Φ and pβ such that, for any (w, τ) satisfying

||w||α < c1τ and τ 6 c2x where x
def.
= min

i∈I
|x0,I |, (5)

a solution xτ of (Pτα(Φx0 + w)) with support equal to J is given by

xτ,J
def.
= x0,J + (PTβΦ·,J)+w − τvβ,J . (6)

This theorem shows that if the signal-to-noise ratio is large enough and τ is chosen in proportion
to the noise level ||w||α , then there is a solution supported exactly in the extended support J . Note
in particular that this solution (6) has the correct sign pattern sign(xτ,I) = sign(x0,I), but might
exhibit outliers if J̃ def.

= J\I 6= ∅. The special case I = J characterizes the exact support stability
(“sparsistency”), and in the case α = 2, the assumptions involving the dual certificate correspond to a
condition often referred to as “irrepresentable condition” in the literature (see Section 1.6).

In Section 3, we propose numerical simulations to illustrate our theoretical findings on a compressed
sensing (CS) scenario. Using Theorem 1, we are able to numerically assess the degree of support
instability of CS recovery using `α fidelity. As a prelude to shed light on this result, we show on
Figure 2, a smaller simulated CS example for (α, β) = (∞, 1). The parameters are n = 20, m = 10
and |I| = 4 and x0 and Φ are generated as in the experiment of Section 3 and we use CVX/MOSEK
[8, 7] at best precision to solve the optimization programs. First, we observe that x0 is indeed
identifiable by solving (P0(Φx0)). Then we solve (2) to compute pβ and predict the extended support
J . Finally, we add uniformly distributed noise w with wi ∼i.i.d. U(−δ, δ) and δ chosen appropriately
to ensure that the hypotheses hold and we solve (Pτα(y)). Observe that as we increase τ , new non-zero
entries appear in xτ but because w and τ are small enough, as predicted, we have supp(xτ ) = J .

Let us now comment on the limitations of our analysis. First, this result does not trivially extend to
the general case α ∈ [1,+∞] as there is, in general, no simple closed form for xτ . A generalization
would require more material and is out of the scope of this paper. Nevertheless, our simulations in
Section 3 stand for arbitrary α ∈ [1,+∞] which is why the general formulation was presented.

Second, larger noise regime, though interesting, is also out of the scope. Let us note that no other
results in the literature (even for `2) provide any insight about sparsistency in the large noise regime.
In that case, we are only able to provide bounds on the distance between x0 and the recovered vector
but this is the subject of a forthcoming paper.

Finally our work is agnostic with respect to the noise models. Being able to distinguish between
different noise models would require further analysis of the constant involved and some additional
constraint on Φ. However, our result is a big step towards the understanding of the solutions behavior
and can be used in this analysis.
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1.6 Relation to Prior Works

To the best of our knowledge, Theorem 1 is the first to study the support stability guarantees by
minimizing the `1-norm with non-smooth loss function, and in particular here the `1 and `∞ losses.
The smooth case α = 2 is however much more studied, and in particular, the associated support
stability results we state here are now well understood. Note that most of the corresponding literature
studies in general the penalized form, i.e., minx

1
2 ||Φx − y||2 + λ||x||1 instead of our constrained

formulation (Pτα(y)). In the case α = 2, since the loss is smooth, this distinction is minor and the
proof is almost the same for both settings. However, for α ∈ {1,+∞}, it is crucial to study the
constrained problems to be able to state our results. The support stability (also called “sparsistency”,
corresponding to the special case I = J of our result) of (Pτα(y)) in the case α = 2 has been proved
by several authors in slightly different setups. In the signal processing literature, this result can be
traced back to the early work of J-J. Fuchs [6] who showed Theorem 1 when α = 2 and I = J . In
the statistics literature, sparsistency is also proved in [19] in the case where Φ is random, the result of
support stability being then claimed with high probability. The condition that I = J , i.e., that the
minimal norm certificate pβ (for α = β = 2) is saturating only on the support, is often coined the
“irrepresentable condition” in the statistics and machine learning literature. These results have been
extended recently in [5] to the case where the support I is not stable, i.e. I ( J . One could also cite
[15], whose results are somewhat connected but are restricted to the `2 loss and do not hold in our
case. Note that “sparsistency”-like results have been proved for many “low-complexity” regularizers
beyond the `1-norm. Let us quote among others: the group-lasso [1], the nuclear norm [2], the total
variation [16] and a very general class of “partly-smooth” regularizers [17]. Let us also point out
that one of the main sources of application of these results is the analysis of the performance of
compressed sensing problems, where the randomness of Φ allows to derive sharp sample complexity
bounds as a function of the sparsity of x0 and n, see for instance [18]. Let us also stress that these
support recovery results are different from those obtained using tools such as the Restricted Isometry
Property and alike (see for instance [3]) in many respects. For instance, the guarantees they provide
are uniform (i.e., they hold for any sparse enough vector x0), though they usually lead to quite
pessimistic worst-case bounds, and the stability is measured in `2 sense.

2 Proof of Theorem 1

In this section, we prove the main result of this paper. For the sake of brevity, when part of the proof
will become specific to a particular choice of α, we will only write the details for α =∞. The details
of the proof for α = 1 can be found in the supplementary material.

It can be shown that the Fenchel-Rockafellar dual problem to (Pτα(y)) is [12]

min
p∈Rm

{−〈y, p〉+ τ ||p||β s.t. ||Φ∗p||∞ 6 1} . (Dτβ(y))

From the corresponding (primal-dual) extremality relations, one can deduce that (x̂, p̂) is an optimal
primal-dual Kuhn-Tucker pair if, and only if,

Φ∗·,Î p̂ = sign(x̂Î) and ||Φ∗p̂||∞ 6 1. (7)
where Î = supp(x̂), and y − Φx̂

τ
∈ ∂||p̂||β . (8)

The first relationship comes from the sub-differential of the `1 regularization term while the second is
specific to a particular choice of α for the `α-norm data fidelity constraint. We start by proving the
Lemma 1 and Lemma 2.

Proof of Lemma 1 Let us rewrite the problem (2) by introducing the auxiliary variable η = Φ∗p
as

min
p,η
{||p||β + ιB∞(η) | η = Φ∗p, ηI = sign(x0,I)} , (9)

where ιB∞ is the indicator function of the unit `∞ ball. Define the Lagrange multipliers v and zI and
the associated Lagrangian function

L(p, η, v, zI) = ||p||β + ιB∞(η) + 〈v, η − Φ∗p〉+ 〈zI , ηI − sign(x0,I)〉.
Defining zIc = 0, the first order optimality conditions (generalized KKT conditions) for p and η read

Φv ∈ ∂||p||β and − v − z ∈ ∂ιB∞(η),

5



From the normal cone of the B∞ at η on its boundary, the second condition is

−v − z ∈ {u | uJc = 0, sign(uJ) = ηJ } ,
where J = sat(η) = sat(Φ∗p). Since I ⊆ J , v is supported on J . Moreover, on J̃ = J\I , we
have − sign(vJ̃) = ηJ̃ . As pβ is a solution to (9), we can define a corresponding vector of Lagrange
multipliers vβ supported on J such that − sign(vβ,J̃) = Φ∗·,J̃pβ and Φ·,Jvβ,J ∈ ∂||pβ ||β .

To prove the lemma, it remains to show that x̄τ is indeed a solution to (Pτα(y)), i.e., it obeys (7) and
(8) for some dual variable p̂. We will show that this is the case with p̂ = pβ . Observe that pβ 6= 0 as
otherwise, it would mean that x0 = 0, which contradicts our initial assumption of non-zero x0. We
can then directly see that (8) is satisfied. Indeed, noting y0

def.
= Φx0, we can write

y0 − Φ·,J x̄τ,J = τΦ·,Jvβ,J ∈ τ∂||pβ ||β .
By definition of pβ , we have ||Φ∗pβ ||∞ 6 1. In addition, it must satisfy Φ∗·,Jpβ = sign(x̄τ,J).Outside
I , the condition is always satisfied since − sign(vβ,J̃) = Φ∗·,J̃pβ . On I , we know that Φ∗·,Ipβ =

sign(x0,I). The condition on τ is thus |x0,i| > τ |vβ,i| ,∀i ∈ I , or equivalently, τ < x
||vβ,I ||∞ .

Proof of Lemma 2 As established by Lemma 1, the existence of p1 and of v1 are implied by the
identifiability of x0. We have the following,

∃p1 ⇒ ∃pS ,Φ∗S,JpS = sJ ⇔ Φ∗S,J is surjective⇔ |S| > |J |
∃v1 ⇒ ∃vJ ,ΦS,JvJ = qS ⇔ ΦS,J is surjective⇔ |J | > |S|,

To clarify, we detail the first line. Since Φ∗S,J is full rank, |S| > |J | is equivalent to surjectivity.
Assume Φ∗S,J is not surjective so that |S| < |J |, then sJ /∈ Im(Φ∗S,J) and the over-determined system
Φ∗S,JpS = sJ has no solution in pS , which contradicts the existence of p1. Now assume Φ∗S,J is
surjective, then we can take pS = Φ∗,†S,JsJ as a solution where Φ∗,†S,J is any right-inverse of Φ∗S,J . This
proves that ΦS,J is invertible.

We are now ready to prove the main result in the particular case α =∞.

Proof of Theorem 1 (α =∞) Our proof consists in constructing a vector supported on J , obeying
the implicit relationship (6) and which is indeed a solution to (Pτ∞(Φx0 + w)) for an appropriate
regime of the parameters (τ, ||w||α). Note that we assume that the hypothesis of Lemma 2 on Φ holds
and in particular, ΦS,J is invertible. When (α, β) = (∞, 1), the first order condition (8), which holds
for any optimal primal-dual pair (x, p), reads, with Sp

def.
= supp(p),

ySp − ΦSp,·x = τ sign(pSp) and ||y − Φx||∞ 6 τ. (10)

One should then look for a candidate primal-dual pair (x̂, p̂) such that supp(x̂) = J and satisfying
ySp̂ − ΦSp̂,J x̂J = τ sign(p̂Sp̂). (11)

We now need to show that the first order conditions (7) and (10) hold for some p = p̂ solution of
the “perturbed” dual problem (Dτ1 (Φx0 + w)) with x = x̂. Actually, we will show that under the
conditions of the theorem, this holds for p̂ = p1, i.e., p1 is solution of (Dτ1 (Φx0 + w)) so that

x̂J = Φ−1S,JyS − τΦ−1S,J sign(p1,S) = x0,J + Φ−1S,JwS − τv1,J .
Let us start by proving the equality part of (7), Φ∗S,J p̂S = sign(x̂J). Since ΦS,J is invertible, we have
p̂S = p1,S if and only if sign(x̂J) = Φ∗S,Jp1,S . Noting IdI,J the restriction from J to I , we have

sign
(
x0,I + IdI,JΦ−1S,JwS − τv1,I

)
= sign (x0,I)

as soon as ∣∣∣(Φ−1S,JwS

)
i
− τv1,i

∣∣∣ < |x0,I | ∀i ∈ I.
It is sufficient to require

||IdI,JΦ−1S,JwS − τv1,I ||∞ < x

||Φ−1S,J ||∞,∞||w||∞ + τ ||v1,I ||∞ < x,

with x = mini∈I |x0,I |. Injecting the fact that ||w||∞ < c1τ (the value of c1 will be derived later), we
get the condition

6



τ (bc1 + ν) 6 x,

with b = ||Φ−1S,J ||∞,∞ and ν = ||v1||∞ 6 b. Rearranging the terms, we obtain

τ 6 x

bc1 + ν
= c2x,

which guarantees sign(x̂I) = sign(x0,I). Outside I , defining IdJ̃,J as the restriction from J to J̃ ,
we must have

Φ∗
S,J̃
p1,S = sign

(
IdJ̃,JΦ−1S,JwS − τv1,J̃

)
.

From Lemma 1, we know that − sign(v1,J̃) = Φ∗
S,J̃
p1,S , so that the condition is satisfied as soon as∣∣∣∣(Φ−1S,JwS

)
j

∣∣∣∣ < τ |v1,j | ∀j ∈ J̃ .

Noting v = minj∈J̃ |v1,j |, we get the sufficient condition for (7),

||Φ−1S,JwS ||∞ < τv,

||w||∞ < τ
v

b
. (c1a)

We can now verify (10). From (11) we see that the equality part is satisfied on S. Outside S, we have

ySc − ΦSc,·x̂ = wSc − ΦSc,JΦ−1S,JwS + τΦSc,Jv1,J ,

which must be smaller than τ , i.e.,
||wSc − ΦSc,JΦ−1S,JwS + τΦSc,Jv1,J ||∞ 6 τ.

It is thus sufficient to have
(1 + ||ΦSc,JΦ−1S,J ||∞,∞)||w||∞ + τµ 6 τ,

with µ def.
= ||ΦSc,Jv1,J ||∞. Noting a = ||ΦSc,JΦ−1S,J ||∞,∞, we get

||w||∞ 6 1− µ
1 + a

τ. (c1b)

(c1a) and (c1b) together give the value of c1. This ensures that the inequality part of (10) is satisfied
for x̂ and with that, that x̂ is solution to (Pτ∞(Φx0 + w)) and p1 solution to (Dτ1 (Φx0 + w)), which
concludes the proof.
Remark 2. From Lemma 1, we know that in all generality µ 6 1. If the inequality was saturated, it
would mean that c1 = 0 and no noise would be allowed. Fortunately, it is easy to prove that under a
mild assumption on Φ, similar to the one of Lemma 2 (which holds with probability 1 for Gaussian
matrices), the inequality is strict, i.e., µ < 1.

3 Numerical experiments

In order to illustrate support stability in Lemma 1 and Theorem 1, we address numerically the
problem of comparing supp(xτ ) and supp(x0) in a compressed sensing setting. Theorem 1 shows
that supp(xτ ) does not depend on w (as long as it is small enough); simulations thus do not involve
noise. All computations are done in Matlab, using CVX [8, 7], with the MOSEK solver at “best”
precision setting to solve the convex problems. We set n = 1000, m = 900 and generate 200 times a
random sensing matrix Φ ∈ Rm×n with Φij ∼i.i.d N (0, 1). For each sensing matrix, we generate
60 different k-sparse vectors x0 with support I where k def.

= |I| varies from 10 to 600. The non-zero
entries of x0 are randomly picked in {±1} with equal probability. Note that this choice does not
impact the result because the definition of Jpβ only depends on sign(x0) (see (1)). It will only affect
the bounds in (5). For each case, we verify that x0 is identifiable and for α ∈ {1, 2,∞} (which
correspond to β ∈ {∞, 2, 1}), we compute the minimum `β-norm certificate pβ , solution to (2) and
in particular, the support excess J̃pβ

def.
= sat(Φ∗pβ)\I . It is important to emphasize that there is no

noise in these simulations. As long as the hypotheses of the theorem are satisfied, we can predict that
supp(xτ ) = Jpβ ⊂ I without actually computing xτ , or choosing τ , or generating w.
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Fig. 3: (best observed in color) Sweep over se ∈ {0, 10, ...} of the empirical probability as a function
of the sparsity k that x0 is identifiable and |J̃p∞ | 6 se (left), |J̃p2 | 6 se (middle) or |J̃p1 | 6 se
(right). The bluest corresponds to se = 0 and the redest to the maximal empirical value of |J̃pβ |.
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Fig. 4: (best observed in color) Sweep over 1
α ∈ [0, 1] of the empirical probability as a function of k

that x0 is identifiable and |J̃pβ | 6 se for three values of se. The dotted red line indicates α = 2.

We define a support excess threshold se ∈ N varying from 0 to∞. On Figure 3 we plot the probability
that x0 is identifiable and |J̃pβ |, the cardinality of the predicted support excess, is smaller or equal
to se. It is interesting to note that the probability that |J̃p1 | = 0 (the bluest horizontal curve on the
right plot) is 0, which means that even for extreme sparsity (k = 10) and a relatively high m/n
rate of 0.9, the support is never predicted as perfectly stable for α =∞ in this experiment. We can
observe as a rule of thumb, that a support excess of |J̃p1 | ≈ k is much more likely. In comparison, `2
recovery provides a much more likely perfect support stability for k not too large and the expected
size of J̃p2 increases slower with k. Finally, we can comment that the support stability with `1 data
fidelity is in between. It is possible to recover the support perfectly but the requirement on k is a bit
more restrictive than with `2 fidelity.

As previously noted, Lemma 1 and its proof remain valid for smooth loss functions such as the
`α-norm when α ∈ (1,∞). Therefore, it makes sense to compare the results with the ones obtained
for α ∈ (1,∞) . On Figure 4 we display the result of the same experiment but with 1/α as the
vertical axis. To realize the figure, we compute pβ and J̃pβ for β corresponding to 41 equispaced
values of 1/α ∈ [0, 1]. The probability that |J̃pβ | 6 se is represented by the color intensity. The three
different plots correspond to three different values for se. On this figure, the yellow to blue transition
can be interpreted as the maximal k to ensure, with high probability, that |J̃pβ | does not exceeds se. It
is always (for all se) further to the right at α = 2. It means that the `2 data fidelity constraint provides
the highest support stability. Interestingly, we can observe that this maximal k decreases gracefully
as α moves away from 2 in one way or the other. Finally, as already observed on Figure 3, we see
that, especially when se is small, the `1 loss function has a small advantage over the `∞ loss.

4 Conclusion
In this paper, we provided sharp theoretical guarantees for stable support recovery under small enough
noise by `1 minimization with non-smooth loss functions. Unlike the classical setting where the data
loss is smooth, our analysis reveals the difficulties arising from non-smoothness, which necessitated a
novel proof strategy. Though we focused here on the case of `α data loss functions, for α ∈ {1, 2,∞},
our analysis can be extended to more general non-smooth losses, including coercive gauges. This
will be our next milestone.
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