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Abstract

Technological breakthroughs allow us to collect data with increasing spatio-
temporal resolution from complex interaction systems. The combination of high-
resolution observations, expressive dynamic models, and efficient machine learning
algorithms can lead to crucial insights into complex interaction dynamics and the
functions of these systems. In this paper, we formulate the dynamics of a complex
interacting network as a stochastic process driven by a sequence of events, and
develop expectation propagation algorithms to make inferences from noisy obser-
vations. To avoid getting stuck at a local optimum, we formulate the problem of
minimizing Bethe free energy as a constrained primal problem and take advantage
of the concavity of dual problem in the feasible domain of dual variables guar-
anteed by duality theorem. Our expectation propagation algorithms demonstrate
better performance in inferring the interaction dynamics in complex transportation
networks than competing models such as particle filter, extended Kalman filter, and
deep neural networks.

1 Introduction

We live in a complex world, where many collective systems are difficult to interpret. In this paper,
we are interested in complex interaction systems, also called complex interaction networks, which
are large systems of simple units linked by a network of interactions. Many research topics exem-
plify complex interaction systems in specific domains, such as neural activities in our brain, the
movement of people in an urban system, epidemic and opinion dynamics in social networks, and so
on. Modeling and inference for dynamics on these systems has attracted considerable interest since
it potentially provides valuable new insights, for example about functional areas of the brain and
relevant diagnoses[7], about traffic congestion and more efficient use of roads [19], and about where,
when and to what extent people are infected in an epidemic crisis [23]. Agent-based modeling and
simulation [22] is a classical way to address complex systems with interacting components to explore
general collective rules and principles, especially in the field of systems biology. However, the actual
underlying dynamics of a specific real system are not in the scope. People are not satisfied with only
a macroscopic general description but aims to track down an evolving system.

Unprecedented opportunities for researchers in these fields have recently emerged due to the pros-
perous of social media and sensor tools. For instance, the functional magnetic resonance imaging
(fMRI) and the electroencephalogram (EEG) can directly measure brain activity, something never
possible before. Similarly, signal sensing technologies can now easily track people’s movement and
interactions [12, 24]. Researchers no longer need to worry about acquiring abundant observation
data, and instead are pursuing more powerful theoretical tools to grasp the opportunities afforded by
that data. We, in the machine learning community, are interested in the inference problem — that is
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recovering the hidden dynamics of a system given certain observations. However, challenges still
exist in these efforts, especially when facing systems with a large number of components.

Statistical inference on complex interaction systems has a close relationship with the statistical physics
of disordered ensembles, for instance, the established equivalence between loopy belief propagation
and the Bethe free energy formulation [25]. In the past, the main interaction between statistical physics
and statistical inference has focused on building stationary and equilibrium probability distributions
over the state of a system. However, temporal dynamics is omitted when only equilibrium state
is pursued. This leads not only to the loss of a significant amount of interesting information, but
possibly also to qualitatively wrong conclusions. In terms of learning dynamics, one approach is
to solve stochastic differential equations (SDE) [20]. In each SDE, at least one term belongs to a
stochastic process, of which the most common is the Wiener process. The drift and diffusion terms in
these SDEs are what we need to recover from multiple realizations (sample paths) of the stochastic
process. Typically, an assumption of constant diffusion and linear drift makes the problem tractable,
but realistic dynamics generally cannot be modeled by rigid SDEs with simple assumptions.

Inference on complex interaction systems naturally corresponds to inference on large graphical
models, which is a classical topic in machine learning. Exact filtering and smoothing algorithms
are impractical due to the exploding computational cost to make inferences about complex systems.
The hidden Markov model [17] faces an exponentially exploding size of the state transition kernel.
The Kalman filter [15] and its variants, such as the extended Kalman filter [14], solves the linear or
nonlinear estimation problem assuming that the latent and observed variables are jointly Gaussian
distributions. Its scalability versus the number of components is O(M3) due to the time cost in
matrix operations.

Approximate algorithms to make inferences with complex interaction systems can be divided roughly
into sampling-based and optimization-based methods. Among sampling based methods, particle filter
and smoother [4, 18] use particles to represent the posterior distribution of a stochastic process given
noisy observations. However, particle based methods show weak scalability in a complex system: a
large number of particles is needed, even in moderate size complex systems where the number of
components becomes over thousands. A variety of Markov Chain Monte Carlo (MCMC) methods
have been proposed [6, 5], but these generally have issues with rapid convergence in high-dimension
systems. Among optimization based methods, expectation propagation (EP) [16, 13] refers to a
family of approximate inference algorithms with local marginal projection. These methods adopt an
iterative approach to approximate each factor of the target distribution into a tractable family. EP
methods have been shown to be relatively efficient, faster than sampling in many low-dimension
examples[16, 13]. The equivalence between the EP energy minimization and Bethe free energy
minimization is justified [16]. Researches propose “double loop” algorithm to minimize Bethe free
energy [13] in order to digest the non-convex term in the objective. They formulate a saddle point
problem where strictly speaking the inner loop should be converged before moving to the outer
loop. However, the stability of saddle points is an issue in general. There are also ad hoc energy
optimization methods for specific network structures, for instance [21] for binary networks, but the
generality of these methods is unknown.

In this paper, we present new formulation of EP and apply it to solve the inference problem in
general large complex interaction systems. This paper makes the following contributions. First, we
formulated expectation propagation as an optimization problem to maximize a concave dual function,
where its local maximum is also its global maximum and provides a solution for Bethe free energy
minimization problem. To this end, we transformed concave terms in the Bethe free energy into
its Legendre dual and added regularization constraint to the primal problem. Second, we designed
gradient ascent and fixed point algorithms to make inferences about complex interaction systems
with the stochastic kinetic model. In all the algorithms we make mean-field inferences about the
individual components from observations about them according to the average interactions of all other
components. Third, we conducted experiments on our transportation network data to demonstrate
the performance of our proposed algorithms over the state of the art algorithms in inferring complex
network dynamics from noisy observations.

The remainder of this paper is organized as follows. In Section 2, we briefly review some models
to specify complex system dynamics and the issues in minimizing Bethe free energy. In Section 3,
we formulate the problem of minimizing Bethe free energy as maximizing a concave dual function
satisfying dual feasible constraint, and develop gradient-based and fixed-point methods to make
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tractable inferences with the stochastic kinetic model. In Section 4, we detail empirical results from
applying the proposed algorithms to make inferences about transportation network dynamics. Section
5 concludes.

2 Background

In this section, we provide brief background about describing complex system dynamics and typical
issues in minimizing Bethe free energy.

2.1 Dynamic Bayesian Network and State-Space Model

A dynamic Bayesian network (DBN) captures the dynamics of a complex interaction system by
specifying how the values of state variables at the current time are probabilistically dependent on
the values at previous time. Let xt = (x

(1)
1 ,..., x(M)

t ) be the values and yt = (y
(1)
t , y

(2)
t , ..., y

(M)
t )

be the observations made at these M state variables at time t. The probability measure of sample
path with observations p(x1,...T , y1,...T ) can be written as p(x1,...T , y1,...T ) =

∏
t p(xt | xt−1)p(yt |

xt) =
∏
t p(xt | xt−1)

∏
m p(y

(m)
t | x(m)

t ), where p(xt | xt−1) is the state transition model and
p(yt | xt) is observation model. We can factorize state transition into miniature kernels involving
only variable x(m)

t and its parents Pa(x
(m)
t ). The DBN inference problem is to infer p(xt | y1,...T )

for given observations y1,...T .

State-space models (SSM) use state variables to describe a system by a set of first-order differential or
difference equations. For example, the state evolves as xt = Ftxt−1 + wt and we make observations
with yt = Htxt + vt. Typical filtering and smoothing algorithms estimate series of xt from time
series of yt.

Both DBM and SSM face difficulties in directly capturing the complex interactions, since these
interactions seldom obey simple rigid equations and are too complex to be expressed by a joint
transition kernel, even allowing time-variance of such kernel. The SKM model that follows uses a
sequence of events to capture such nonlinear and time-variant dynamics.

2.2 Stochastic Kinetic Model

The stochastic kinetic model (SKM) [9, 23] has been successfully applied in many fields, especially
chemistry and system biology [1, 22, 8]. It describes the dynamics with chemical reactions occurring
stochastically at an adaptive rate. By analogy with a chemical reaction system, we consider a complex
interaction system involving M system components (species) and V types of events (reactions).
Generally, the system forms a Markov jump process [9] with a finite set of discrete events. Each
event v can be characterized by a “chemical equation”:

r(1)
v X(1) + ...+ r(M)

v X(M) → p(1)
v X(1) + ...+ p(M)

v X(M) (1)

where X(m) denotes the m-th component, r(m)
v and p(m)

v count the (relative) quantities of reactants
and products. Let x(m)

t be the population count (or continuous number as concentration) of m
species at time t, an event will change populations (x

(1)
t , x

(2)
t , ..., x

(M)
t ) by ∆v = (p

(1)
v − r(1)

v , p
(2)
v −

r
(2)
v , ..., p

(M)
v − r

(M)
v ). Events occur mutually independently of each other and each event rate

hv(xt, cv) is a function of the current state:

hv(xt, cv) = cv

(M)∏
m=1

g(m)
v (x

(m)
t ) = cv

(M)∏
m=1

(
x

(m)
t

r
(m)
v

)
(2)

where cv denotes the rate constant and
∏(M)
m=1

(x(m)
t

r
(m)
v

)
counts the number of different ways for the

components to meet and trigger an event. When we consider time steps 1, 2, ., t, ..T with sufficiently
small time interval τ , the probability of two or more events happening in the interval is negligible
[11]. Consider a sample path p(x1,...T , v2,...T , y1,...T ) of the system with the sequence of states
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x1, . . . , xT , happened events v2, . . . , vT and observations y1, . . . , yT . We can express the event-
based state transition kernel P (xt, vt|xt−1) in terms of event rate hv(xt, cv):

P (xt, vt|xt−1) = I (xt = xt−1 + ∆vtand xt ∈ (xmin, xmax)) · P (vt|xt−1)

= I (xt = xt−1 + ∆vtand xt ∈ (xmin, xmax)) ·
{
τhv(xt−1, cv) if vt = v

1−
∑
v τhv(xt−1, cv) if vt = ∅ (3)

where ∅ represents a null event that none of those V events happens and states don’t change; I(·)
is the indicator function; xmin, xmax are respectively lower bound and upper bound vectors, which
prohibit “ghost” transitions between out-of-scope xt−1 and xt. For instance, we generally need
to bound xt be non-negative in realistic complex systems. This natural constraint on xt leads to a
linearly truncated state space that realistic events lie.

Instead of state transitions possibly from any state to any other in DBN and state updates with a linear
(or nonlinear) transformation, state in the SKM evolves according to finite number of events between
time steps. The transition kernel is dependent on underlying system state and so is adaptive for
capturing the underlying system dynamics. We can now consider the inference problem of complex
interaction systems in the context of general DBN, with a specific event-based transition kernel from
SKM.

2.3 Bethe Free Energy

In general DBN, the expectation propagation algorithm to make inference aims to minimize Bethe
free energy FBethe [16, 25, 13], subject to moment matching constraints. We have a non-convex prime
objective and its trivial dual function with dual variables in the full space is not concave. We take
the general notation that potential function is ψ(xt−1,t) = P (xt, yt | xt−1) and our optimization
problem becomes the following

minimize FBethe =
∑
t

∫
dxt−1,tp̂t(xt−1,t) log

p̂t(xt−1,t)

ψ(xt−1,t)
−
∑
t

∫
dxtqt(xt) log qt(xt)

subject to : 〈f(xt)〉p̂t(xt−1,t)
= 〈f(xt)〉qt(xt)

= 〈f(xt)〉p̂t+1(xt,t+1)

maximize FDual = −
∑

t log
∫
dxt−1,t exp(α>t−1f(xt−1))ψ(xt−1,t) exp(β>t f(xt))+log

∫
dxt exp((αt+βt)

>f(xt))

In the above, p̂t(xt−1,t) ≈ p(xt−1,t|y1,··· ,T ) are approximate two-slice probabilities, qt(xt) ≈
p(xt|y1,··· ,T ) are approximate one-slice probabilities. The vector-valued function f(xt) maps a
random variable xt to its statistics. Integrals 〈f(xt)〉p̂t(xt−1,t)

=
∫
dxtf(xt)

∫
dxt−1p̂t(xt−1,t) and

so on are the mean parameters to be matched in the optimization. FBethe is the relative entropy
(or K-L divergence) between the approximate distribution

∏
t
p̂t(xt−1,t)
qt(xt)

and the true distribution
p(x1,··· ,T |y1,··· ,T ) =

∏
t ψ(xt−1,t) to be minimized. With the method of Lagrange multipliers, one

can find that p̂t(xt−1,t) and qt(xt) are distributions in the exponential family parameterized either by
the mean parameters 〈f(xt)〉p̂t(xt−1,t)

and 〈f(xt)〉qt(xt)
or by the natural parameters αt−1 and βt,

and the trivial dual target FDual is the negative log partition of the dynamic Bayesian network.

The problem with minimizing FBethe or maximizing FDual is that both have multiple local op-
tima and there is no guarantee how closely a local optimal solution approximates the true pos-
terior probability of the latent state. In FBethe,

∫
dxt−1,tp̂t(xt−1,t) log

p̂t(xt−1,t)
ψ(xt−1,t)

is a convex term,
−
∑
t

∫
dxtqt(xt) log qt(xt) is concave, and the sum is not guaranteed to be convex. Similarly in

FDual, the minus log partition function of p̂t (first term) is concave, the log partition function of qt is
convex, and the sum is not guaranteed to be concave.

Another difficulty with expectation propagation is that the approximate probability distribution often
needs to satisfy some inequality constraints. For example, when approximating a target probability
distribution with the product of normal distributions in Gaussian expectation propagation, we require
that all factor normal distributions have positive variance. So far, the common heuristic is to set the
variances to very large numbers once they fall below zero.
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3 Methodology

As noted in Subsection 2.3, the difficulty in minimizing Bethe free energy is that both the FPrimal
and FDual have many local optima in the full space. Our formulation starts with transforming the
concave term to its Legendre dual and taking dual variables as additional variables. Thereafter we
drop the dependence over qt(xt) by utilizing the moment matching constraints, formulate EP as
a constrained minimization problem and derive its dual optimization problem (which is concave
under a dual feasible constraint). Our formulation also provides theoretical insights to avoid negative
variance in Gaussian expectation propagation.

We start by minimizing the Bethe free energy over the two-slice probabilities p̂t and the one-slice
probabilities qt:

minimize over p̂t(xt−1,t), qt(xt) :

FBethe =
∑
t

∫
dxt−1,tp̂t(xt−1,t) log

p̂t(xt−1,t)

ψ(xt−1,t)
−
∑
t

∫
dxtqt(xt) log qt(xt)

subject to : 〈f(xt)〉p̂t(xt−1,t)
= 〈f(xt)〉qt(xt)

= 〈f(xt)〉p̂t+1(xt,t+1) ,∫
dxtqt(x) = 1 =

∫
dxt−1,tp̂t(xt−1,t). (4)

We introduce the Legendre dual−
∫
dxtqt log qt= minγt

{
−γ>t · 〈f(xt)〉qt + log

∫
dxt exp(γ>t · f(xt))

}
and replace 〈f(xt)〉q(xt)

in the target with 〈f(xt)〉p̂t(xt−1,t)
by utilizing the constraint

〈f(xt)〉p̂t(xt−1,t)
= 〈f(xt)〉qt(xt)

. Instead of searching γt over the over-complete full space,
we add a regularization constraint to bound it:

minimize over p̂t(xt−1,t), γt :

FPrimal =
∑
t

∫
dxt−1,tp̂t log

p̂t(xt−1,t)

ψ(xt−1,t)
−
∑
t

γ>t · 〈f(xt)〉p̂t +
∑
t

log

∫
dxt exp(γ>t · f(xt))

subject to : 〈f(xt)〉p̂t(xt−1,t)
= 〈f(xt)〉p̂t+1(xt,t+1) ,

∫
dxt−1,tp̂t(xt−1,t) = 1, γ>t γt ≤ ηt. (5)

In the primal problem, γt is the natural parameter of a probability in the exponential family: q(x; γt) =
exp(γ>t f(xt))/

∫
dxt exp(γ>t · f(xt)). The primal problem (5) is equivalent with Bethe energy

minimization problem.

We solve the primal problem with the Lagrange duality theorem [3]. First, we define the La-
grangian function L by introducing the Lagrange multipliers αt, λt and ξt to incorporate the con-
straints. Second, we set the derivative over prime variables to zero. Third, we plug the optimum
point back into the Lagrangian. The Lagrange duality theorem implies that FDual(αt, λt, ξt) =
infp̂t(xt−1,t),γtL(p̂t(xt−1,t), γt, αt, λt, ξt). Thus the dual problem is as follows

maximize over αt, λt ≥ 0 for all t :

FDual = −
∑
t

logZt−1,t +
∑
t

log
∫
dxt exp(γ>t f(xt)) +

∑
t

λt
2

(
γ>t γt − ηt

)
(6)

where − 〈f(xt)〉p̂t + 〈f(xt)〉γt + λtγt = 0 (7)

p̂t(xt−1,t) =
1

Zt−1,t
exp(α>t−1 · f(xt−1))ψ(xt−1,t) exp((γ>t − α>t ) · f(xt)) (8)

In the dual problem, we drop the dual variable ξt since it takes value to normalize p̂t(xt−1,t) as a
valid primal probability. For any dual variable αt, λt, we map primal variables p̂t(xt−1,t) and γt
as implicit functions defined by the extreme point conditions Eq. (7),(8). We have the following
theoretic guarantee with proofs in the supplementary material. We name covγt (f(xt), f(xt)) +
λtI −

〈
f(xt) · f(xt)

>〉
p̂t(xt−1,t)

� 0 as the dual feasible constraint.
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Proposition 1: The Lagrangian function has positive definite Hessian matrix under the dual
feasible constraint.

Proposition 1 ensures that the dual function is infimum of Lagrangian function, the point wise
infimum of a family of affine functions of αt, λt, ξt, thus is concave. Instead of a full space of dual
variables αt, λt, we only consider the domain constrained by the dual feasible constraint.

Proposition 2: Eq. (7) and (8) have an unique solution under the dual feasible constraint.

The Lagrange dual problem is a maximization problem with a bounded domain, which can be reduced
to an unconstrained problem through barrier method or through penalizing constraint violation, and
be solved with a gradient ascent algorithm or a fixed point algorithm. The partial derivatives of the
dual function over dual variables are the following:

∂FDual

∂αt
= −〈f(xt)〉p̂t+1(xt,t+1) + 〈f(xt)〉p̂t(xt−1,t)

,
∂FDual

∂λt
=

1

2

(
γ>t γt − ηt

)
(9)

where p̂t(xt−1,t) and γt are implicit functions defined by Eq. (7),(8). We can get a fixed point
iteration through setting the first derivatives to zero 1. Here γ(·) converts mean parameters to natural
parameters.

∂FDual

∂αt

set
= 0⇒forward:α(new)

t = α
(old)
t + γ

(
〈f(xt)〉p̂t

)
− γ(old)

t

backward:γ(new)
t = γ

(
〈f(xt)〉p̂t+1

)
In terms of Gaussian EP, the prime variables p̂t(xt−1,t), γt correspond to multivariate Gaussian
distributions, which pose implicit constraints on the primal and dual domains. Let

∑
p̂t

,
∑
γt

be the
covariance matrix associated with p̂t(xt−1,t), γt and it requires

∑
p̂t
� 0,

∑
γt
� 0. The domain of

dual variables is defined by the following constraints:

λt ≥ 0,
∑
p̂t

� 0,
∑
γt

� 0, covγt (f(xt), f(xt)) + λtI −
〈
f(xt) · f(xt)

>〉
p̂t(xt−1,t)

� 0

where − 〈f(xt)〉p̂t + 〈f(xt)〉γt + λtγt = 0

p̂t(xt−1,t) =
1

Zt−1,t
exp(α>t−1 · f(xt−1))P (xt, yt|xt−1) exp((γ>t − α>t ) · f(xt))

In this case, it is nontrivial to find a starting point of αt, λt. We develop a phase I stage to find a
strictly feasible starting point [3]. For convenience, we note αt, λt as x, rewrite above constraints
as inequality constraints gi(x) ≤ 0 and equality constraints gj(x) = 0. Start from a valid x0, s that
gi(x0) ≤ s,gj(x0) = 0 and then solve the optimization problem

minimize s subject to gj(x0) = 0, gi(x0) ≤ s

over the variable s and x. The strict feasible point of x will be found when we arrive s < 0.

With the duality framework and SKM, we can solve the dual optimization problem to make inferences
about complex system dynamics from imperfect observations. The latent states (the populations in
SKM) can be formulated as either categorical or Gaussian random variables. In categorical case, the
statistics are f(xt) = (I(x

(1)
t = 1), · · · , I(x

(1)
t = x

(1)
max), I(x

(2)
t = 1), · · · , I(x

(2)
t = x

(2)
max), · · · ),

where x(1)
max, · · · , x(M)

max are the maximum populations and I is the indicator function. In the Gaussian
case, the statistics are f(xt) = (x

(1)
t , x

(1) 2
t , x

(2)
t , x

(2) 2
t , · · · ) and we force the natural parameters

to satisfy the constraint that minus half of precision is negative. The potential ψ(xt−1,t) in the

1Empirically, the fixed point iteration converges even without the dual feasible constraint (λt = 0); In
general, λt is bounded by the dual feasible constraint and the derivative over λt is not zero.
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distribution p̂t+1(xt,t+1) (Eq. (8)) has specific form
∑
vt
P (xt, vt|xt−1)P (yt|xt) as Eq. (3), which

facilitates a mean filed approximation to evaluate 〈f(xt)〉p̂(m)
t+1(x

(m)
t,t+1)

≈ 〈f(xt)〉p̂t+1(xt,t+1) and

〈f(xt)〉p̂(m)
t (x

(m)
t−1,t)

≈ 〈f(xt)〉p̂t(xt−1,t) for each speciesm, where p̂(m)
t+1(x

(m)
t,t+1) and p̂(m)

t (x
(m)
t−1,t) are

the marginal two-slice distributions for m and derived explicitly in the supplementary material. As
such, we establish linear complexity over number of species m and tractable inference in general
complex system dynamics.

To summarize, Algorithm 1 gives the mean-field forward-backward algorithm and the gradient
ascent algorithm for making inferences with a stochastic kinetic model from noisy observations that
minimize Bethe free energy.

Algorithm 1 Make inference of a stochastic kinetic model with expectation propagation.
Input: Discrete time SKM model (Eqs. (1),(2),(3)); Observation probabilities P (yt|xt) and initial
values of αt, γt, λt for all populations m and time t.
Expectation Propagation fixed point: Alternate between forward and backward iterations until
convergence.

• For t = 1, · · · , T , α(new)
t = α

(old)
t + γ

(
〈f(xt)〉p̂t(xt−1,t)

)
− γ(old)

t .

• For t = T, · · · , 1, γ(new)
t = γ

(
〈f(xt)〉p̂t+1(xt,t+1)

)
.

Gradient ascent: Execute the following updates in alternating forward and backward sweeps, where
the gradients are defined in Eq. (9), under the dual feasible constraints.

• α(new)
t ← αt + ε∂Fdual

∂αt
, λ(new)

t ← λt + ε∂FDual
∂λt

.

Output: Optimum p̂t(xt−1,t), 〈f(xt)〉p̂t as Eq. (7), (8) for all populations m and time t.

4 Experiments on Transportation Dynamics

In this section, we evaluate and benchmark the performance of our proposed algorithms (Algorithm 1)
against mainstream state-of-the-art approaches. We have the flexibility to specify species, states, and
events with different granularities in SKM, at either macroscopic or microscopic level. Consequently,
different levels of inference can be made by feeding in corresponding observations and model
specifications. For example, to track epidemics in a social network we can define each person as a
species and their health state as a hidden state, with infection and recovery as events. Using real-world
datasets about epidemic diffusion in a college campus, we efficiently inferred students’ health states
compared with ground truth from surveys [23]. In this section, we demonstrate population level
inference in the context of transportation dynamics2.

Transportation Dynamics A transportation system consists of residents and a network of locations.
The macroscopic description is the number of vehicles indexed by location and time, while the
microscopic description is the location of each vehicle at each time. Our goal is to infer the
macroscopic populations from noisy sensor network observations made at several selected roads.
Such inference problems in complex interaction networks are not trivial, for several reasons: the
system can be very large and contain large number of components (residents and locations) and
therefore many approaches fail due to resource costs; the interaction between components (i.e. the
mobility of residents) is by nature uncertain and time variant, and multiple variables (populations at
different locations) correlate together.

To model transportation dynamics, we classify people at the same location as one species. Let
l ∈ L index the locations and x(l)

t be the number of vehicles at location l at time t, which are
the latent states we want to identify. The events v that change system states can be generally
expressed as reaction li → lj , which represents one vehicle moving from location li to location
lj . It decrease x(li)

t by 1, increase x(lj)
t by 1 and keep other x(l)

t the same. The event rate reads
hv(xt, cv) = cv

∏(L)
l=1 g

(l)
v (x

(l)
t ) = cvx

(li)
t , as there are x(li)

t different possible vehicles to transit at li.
2Source code and a general function interface for other domains at both levels are here online

7

https://github.com/lefangcs/Expectation-Propagation-with-Stochastic-Kinetic-Model-in-Complex-Interaction-Systems


Experiment Setup: We select a certain proportion, e.g . 20%, of vehicles as probe vehicles to build
the observation model, assuming that the probe vehicles are uniformly sampled from the system.
Let xttl be the total number of vehicles in the system, xp the total number of probe vehicles, x(l)

t

the number of vehicles at location l, y(l)
t the number of probe vehicles observed at l. A rough point

estimation of x(l)
t is x(l)

t = xttly
(l)
t /xp. More strictly, the likelihood of observing y(l)

t probe vehicles

among x(l)
t vehicles at l is p(y(l)

t | x
(l)
t ) =

(x(l)t

y
(l)
t

)
·
(xttl−x(l)t

xp−y
(l)
t

)/(xttl
y
(l)
t

)
. Our hidden state x(l)

t can be

represented as either a discrete variable or a univariate gaussian.

Dataset Description: We implement and benchmark algorithms on two representative datasets. In
the SynthTown dataset, we synthesize a mini road network (Fig. 1(a)). Virtual residents go to work in
the morning and back home in the evening. We synthesize their itineraries from MATSIM, a common
Multi-agent transportation simulator[2]. The number of residents and locations are respectively 2,000
and 25. In the Berlin dataset, we have a larger real world road network with 1,539 locations derived
from Open Street Map and 9,178 people’s itineraries synthesized from MATSIM. Both two datasets
span a whole day, from midnight to midnight.

Evaluation Metrics: To evaluate the accuracy of the model, we need compare the series of inferred
populations against the series of ground truths. We choose three appropriate metrics: the “coefficient
of determination” (R2), the mean percentage error (MPE) and mean squared error (MSE). In statistics,
the R2 tells the goodness of fit of a model and is calculated as 1 −

∑
i(yi−fi)

2∑
i(yi−ȳ)2 , where yi are the

ground truth values, ȳ their mean and fi the inferred values. Typically, R2ranges from 0 and 1: the
closer it is to 1, the better the inference is. The MPE computes average of percentage errors by which
fi differ from yi and is calculated as 100%

n

∑
i
yi−fi
yi

. MPE can be either positive or negative and the
closer it is to 0, the better. The MSE is calculated as 1

n

∑
i(yi− fi)2 to measure the average deviation

between y and f . The lower the MSE, the better the inference. We also consider the runtime as an
important metric to research scalability of different approaches.

Approaches for Benchmark: We implement three algorithms to instantiate the procedures in
Algorithm 1: the fixed point algorithm with discrete latent state (DFP) or gaussian latent state (GFP)
and the gradient ascent algorithm with discrete latent state (DG). The pseudo codes are included in
the supplementary material. We also implement several other mainstream state-of-the-art approaches.
Particle Filter (PF): We implement a sampling importance resampling (SIR) [10] algorithm that
recursively approximates the posterior with a weighted set of particles, updates these particles and
resamples to cope with degeneracy problem. Performance is dependent on the number of particles
with a certain number is needed to achieve a good result. We selected the number of particles
empirically by increasing the number until no obvious accuracy improvement could be detected,
and ended up with thousands to tens of thousands of particles. Extended Kalman Filter (EKF):
We implement the standard EKF procedure with an alternating prediction step and update step.
Feedforward Neural Network (FNN): The FNN builds only a non-parametric model between input
nodes and output nodes, without “actually” learning the dynamics of the system. We implement
a five-layer FNN: one input layer accepting the inference time point and observations in certain
previous period (e.g. one hour), three hidden layers and one output layer from which we directly
read the inference populations. The FNN and afterwards RNN are both trained by feeding ground
truth populations about each road into the network structures. We tune meta-parameters and train the
network with 30 days synthesized mobility data from MATSIM until obtaining optimum performance.
Recurrent Neural Network (RNN): The RNN is capable of exploiting previous inferred hidden states
recursively to improve current estimation. We implement a typical RNN, such that in each RNN
cell we take both the current observations and inferred population from a previous cell as input,
traverse one hidden layer, and then output the inferred populations. We train the RNN with 30 days
of synthesized mobility data from MATSIM until obtaining optimum performance.

Inference Performance and Scalability: Figure 1 plots the inferred population at several represen-
tative locations in Fig. 1(a). The lines above the shaded areas are the ground truths, and we plot the
error (i.e., inferred populations minus ground truth) with different scales. For GFP, the inference
within µ ± 3σ confidence intervals is shown in the colored “belt”. We can see that our proposed
algorithms generally deviate less from the ground truth than other approaches do.
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Table 1: Performance and time scalability of all algorithms

Dataset SynthTown Berlin
Metrics R2 MPE MSE Time R2 MPE MSE Time

DFP 0.85 -3% 181 47 sec 0.66 3% 20 29 min
GFP 0.85 -8% 161 42 sec 0.62 2.5% 27 21 min
DG 0.87 -5% 104 157 sec 0.61 2.8% 26 56 min
PF 0.50 -21% 663 15 sec 0.50 -6% 678 71min

EKF 0.51 -19% 679 2 sec 0.45 -40% 1046 14 hour
FNN 0.73 11% 526 1 h training 0.31 -14% 540 11 h training
RNN 0.72 -14% 407 8 h training 0.51 -9% 800 28 h training

(a) Road Network (b) Inference results

Figure 1: Road network and inference results with the SynthTown Dataset

Table 1 summarizes the performances in different metrics (mean values). There is both a training
phase and a running phase in making inferences with neural networks, with the training phase taking
longer. The neural network training time shown in the table ranges from several hours to around one
day, and is quadratic in the number of system components per batch per epoch. The neural network
running times in our experiments are comparable with EP running times. Theoretically, neural
network running times are quadratic in the number of system components to make one prediction, and
EP running times are linear in the number of system components to propagate marginal probabilities
from one time step to the next (EP algorithms empirically converge within a few iterations), while PF
scales quadratically and EKF cubically with the number of locations.

Summary: Generally, our proposed algorithms have higher R2, “narrower” MPE and lower MSE,
followed by neural networks, PF and EKF. The neural networks sometimes provide comparable
performance. Our proposed algorithms, especially the DFP and GFP, experience lower time explosion
in bigger datasets. Overall, our algorithms generally outperform PF, EKF, FNN and RNN in terms of
accuracy metrics and scalability to a larger dataset.

5 Discussion

In this paper, we have introduced the stochastic kinetic model and developed expectation propagation
algorithms to make inferences about the dynamics of complex interacting systems from noisy
observations. To avoid getting stuck at a local optimum, we formulate the problem of minimizing
Bethe free energy as a maximization problem over a concave dual function in the feasible domain
of dual variables guaranteed by duality theorem. Our experiments show superior performance over
competing models such as particle filter, extended Kalman filter, and deep neural networks.
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