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Abstract

We consider stochastic settings for clustering, and develop provably-good
(approximation) algorithms for a number of these notions. These algorithms
allow one to obtain better approximation ratios compared to the usual deterministic
clustering setting. Additionally, they offer a number of advantages including
providing fairer clustering and clustering which has better long-term behavior for
each user. In particular, they ensure that every user is guaranteed to get good
service (on average). We also complement some of these with impossibility results.
KEYWORDS: clustering, k-center, k-median, lottery, approximation algorithms

1 Introduction

Clustering is a fundamental problem in machine learning and data science. A general clustering
task is to partition the given data points into clusters such that the points inside the same cluster are
“similar” to each other. More formally, consider a set of datapoints C and a set of “potential cluster
centers” F , with a metric d on C ∪ F . We define n := |C ∪ F|. Given any set S ⊆ F , each j ∈ C is
associated with the key statistic d(j,S) = mini∈S d(i, j). The typical task in a clustering problem is
to select a set S ⊆ F , with a small size, in order to minimize the values of d(j,S). The size of the set
S is often fixed to a value k, and we typically “boil down” the large collection of values d(j,S) into
a single overall objective function. There are different clustering problems depending on the choice
of the objective function and the assumptions on sets C and F . The most popular problems include

• the k-center problem: minimize the maximum value maxj∈C d(j,S) given that F = C.
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• the k-supplier problem: minimize the maximum value maxj∈C d(j,S) (where F and C may
be unrelated);

• the k-median problem: minimize the summed value
∑
j∈C d(j,S); and

• the k-means problem: minimize the summed square value
∑
j∈C d(j,S)2.

An important special case is when C = F (e.g. the k-center problem); since this often occurs in the
context of data clustering, we refer to this case as the self-contained clustering (SCC) setting. In
the general case, C and F may be unrelated (intersect with each other arbitrarily).

These classic NP-hard problems have been studied intensively for the past few decades. There is
an alternative interpretation of these clustering problems from the viewpoint of operations research:
the sets F and C can be thought of as “facilities” and “clients”, respectively. We say that a i ∈ F
is open if i is placed into the solution set S. For a set S ⊆ F of open facilities, d(j,S) can then be
interpreted as the connection cost of client j. The above-mentioned problems try to optimize the cost
of serving all clients in different ways. This terminology has historically been used for k-center type
clustering problems, and so will adopt this throughout for consistency here. However, our focus is on
the case in which C and F are arbitrary given sets in the data-clustering setting.

Since these problems are NP-hard, much effort has been paid on algorithms with “small” provable
approximation ratios/guarantees: i.e., polynomial-time algorithms that produce solutions of cost
at most α times the optimal. The current best-known approximation ratio for k-median is 2.675 by
Byrka et. al. [6] and it is NP-hard to approximate this problem to within a factor of 1 + 2/e ≈ 1.735
[15]. The recent breakthrough by Ahmadian et. al. [1] gives a 6.357-approximation algorithm for
k-means, improving on the previous approximation guarantee of (9 + ε) based on local search [16].
Finally, the k-supplier problem is “easier” than both k-median and k-means in the sense that a simple
3-approximation algorithm [12] is known, as is a 2-approximation for k-center problem: we cannot
do better than these approximation ratios unless P = NP [12].

While optimal approximation algorithms for the center-type problems are well-known, all of the
current algorithms give deterministic solutions. One can easily demonstrate instances where such
algorithms return a worst-possible solution: (i) all clusters have the same worst-possible radius (2T
for k-center and 3T for k-supplier where T is the optimal radius) and (ii) almost all data points are
on the circumference of the resulting clusters. Although it is NP-hard to improve the approximation
ratios here, our new randomized algorithms provide significantly-improved “per-point” guarantees.
For example, we achieve a new “per-point” guarantee E[d(j,S)] ≤ (1 + 2/e)T ≈ 1.736T , while
respecting the usual guarantee d(j,S) ≤ 3T with probability one. Thus, while maintaining good
global quality with probability one, we also provide superior stochastic guarantees for each user.

In this paper, we study generalized variants of the center-type problems where S is drawn from a
probability distribution over

(F
k

)
(where

(F
k

)
denotes the set of k-element subsets of F); we refer

to these as k-lotteries. We aim to construct a k-lottery Ω, which achieves certain guarantees on the
distributional properties or expected value of d(j,S). The k-center problem can be viewed as the
special case in which the distribution Ω in supported on a single point (we refer to this situation by
saying that Ω is deterministic). Our goal is to find an approximating distribution Ω̃ which matches
the target distribution Ω as closely as possible for each client j.

We have seen that stochastic solutions allows one to go beyond the approximation hardness of a
number of classical facility location problems. In addition to allowing higher-quality solutions, there
are a number of applications where clustering based on expected distances can be beneficial. We
summarize three here: smoothing the integrality constraints of clustering, solving repeated problem
instances, and achieving fair solutions.

Stochasticity as interpolation. For many problems in practice, robustness of the solution is often
more important than achieving the absolute optimal value for the objective function. Our stochastic
perspective is very useful here. One potential problem with the center measure is that it can be highly
non-robust; adding a single new point may drastically change the overall objective function. As an
extreme example, consider k-center with k points, each at distance 1 from each other. This clearly
has value 0 (choosing S = C). However, if a single new point at distance 1 to all other points is
added, then the solution jumps to 1. By choosing k facilities uniformly at random among the full set
of k + 1, we can ensure that E[d(j,S)] = 1

k+1 for every point j, a much smoother transition.
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Repeated clustering problems. Consider clustering problems where the choice of S can be changed
periodically: e.g., S could be the set of k locations in the cloud where a service-provider chooses to
provide services from. This set S can be shuffled periodically in a manner transparent to end-users.
For any user j ∈ C, the statistic d(j,S) represents the latency of the service j receives (from its
closest service-point in S). If we aim for a fair or minmax service allocation, then our k-center
stochastic approximation results ensure that for every client j, the long-term average service-time
– where the average is taken over the periodic re-provisioning of S – is at most around 1.736T
with high probability. (Furthermore, we have the risk-avoidance guarantee that in no individual
provisioning of S will any client have service-time greater than 3T .) We emphasize that this type of
guarantee pertains to multi-round clustering problems, and is not by itself stochastic. This is difficult
to achieve for the usual type of approximation algorithms and impossible for “stateless” deterministic
algorithms.

Fairness in clustering. The classical clustering problems combine the needs of many different points
(elements of C) into one metric. However, clustering (and indeed many other ML problems) are
increasingly driven by inputs from parties with diverse interests. Fairness in these contexts is a
challenging issue to address; this concern has taken on greater importance in our current world, where
decisions will increasingly be taken by algorithms and machine learning. Representative examples of
recent concerns include the accusations of, and fixes for, possible racial bias in Airbnb rentals [4] and
the finding that setting the gender to “female" in Google’s Ad Settings resulted in getting fewer ads
for high-paying jobs [8]. Starting with older work such as [21], there have been highly-publicized
works on bias in allocating scarce resources – e.g., racial discrimination in hiring applicants who have
very similar resumés [5]. Additional work discusses the possibility of bias in electronic marketplaces,
whether human-mediated or not [3, 4].

In such settings, a fair allocation should provide good service guarantees to each user individually. In
data clustering settings where a user corresponds to a datapoint, this means that every point j ∈ C
should be guaranteed a good value of d(j,S). This is essentially what k-center type problems are
aiming for, but the stochastic setting broadens the meaning of good per-user service.

Consider the following scenarios. Each user submits their data (corresponding to a point in C) – as
is increasingly common, explicitly or implicitly – to an aggregator such as an e-commerce or other
site. The cluster centers are “influencer” nodes that the aggregator tries to connect users with in some
way. Two examples that motivate the aggregator’s budget on k are: (i) the aggregator can give a free
product sample to each influencer to influence the whole population in aggregate, as in [17], and (ii)
in a resource-constrained setting, the aggregator forms a sparse “sketch” with k nodes (the cluster
centers), with each cluster center hopefully being similar to the nodes in its cluster so that the nodes
get relevant recommendations (in a recommender-like system). Each point j would like to be in a
cluster that is “high quality” from its perspective, with d(j,S) being a good proxy for such quality.
Indeed, there is increasing emphasis on the fact that organizations monetize their user data, and that
users need to be compensated for this (see, e.g., the well-known works of Lanier and others [19, 14]).
This is a transition from viewing data as capital to viewing data as labor. A concrete way for users
(i.e., the data points j ∈ C) to be compensated in our context is for each user to get a guarantee on
their solution quality: i.e., bounds on d(j,S).

1.1 Our contributions and overview

In Section 2, we encounter the first type of approximation algorithm which we refer to as chance
k-coverage: namely, where every client j has a distance demand rj and probability demand pj ,
and we wish to find a distribution satisfying Pr[d(j,S) ≤ rj ] ≥ pj . We show how to obtain an
approximation algorithm to find an approximating distribution Ω̃ with2

Pr
S∼Ω̃

[d(j,S) ≤ 9rj ] ≥ pj .

In a number of special cases, such as when all the values of pj or rj are the same, the distance factor
9 can be improved to 3, which is optimal; it is an interesting question whether we can improve the
coefficient “9” to its best-possible value in the general case.

In Section 3, we consider a special case of chance k-coverage, in which pj = 1 for all clients j.
This is equivalent to the classical (deterministic) k-supplier problem. By allowing the approximating

2Notation such as “S ∼ Ω̃" indicates that the random set S is drawn from the distribution Ω̃.
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distribution Ω̃ to be stochastic, we are able to achieve significantly better distance guarantees than are
possible for k-supplier. For instance, we are able to approximate the k-center problem by finding an
approximating distribution Ω̃ with

ES∼Ω̃[d(j,S)] ≤ 1.592T and Pr[d(j,S) ≤ 3T ] = 1

where T is the optimal solution to the (deterministic) k-center problem. By contrast, deterministic
polynomial-time algorithms cannot guarantee d(j,S) < 2T for all j, unless P = NP [12].

In Section 4, we show a variety of lower bounds on the approximation factors achievable by efficient
algorithms (assuming that P 6= NP ). For instance, we show that our approximation algorithm
for homogeneous chance k-coverage has the optimal distance approximation factor 3, that our
approximation algorithm for k-supplier has optimal approximation factor 1 + 2/e, and that the
approximation factor 1.592 for k-center cannot be improved below 1 + 1/e.

1.2 Related work

While most analysis for facility location problems has focused on the static case, there have been other
works analyzing a similar lottery model for center-type problems. In [11, 10], Harris et. al. analyzed
models similar to chance k-coverage and minimization of E[d(j,S)], but applied to knapsack center
and matroid center problems; they also considered robust versions (in which a small subset of clients
may be denied service). While the overall model was similar to the ones we explore here, the
techniques are somewhat different. In particular, the works [11, 10] focus on approximately satisfying
the knapsack constraints; this is very different from the problem of opening exactly k cluster centers,
which we mostly cover here.

Similar types of stochastic approximation guarantees have appeared in the context of developing
approximation algorithms for static problems, particularly k-median problems. In [7], Charikar
& Li discussed a randomized procedure for converting a linear-programming relaxation in which
a client has fractional distance tj , into a distribution Ω satisfying ES∼Ω[d(j,S)] ≤ 3.25tj . This
property can be used, among other things, to achieve a 3.25-approximation for k-median. However,
many other randomized rounding algorithms for k-median only seek to preserve the aggregate value∑
j E[d(j,S)], without our type of per-point guarantee.

We also contrast our approach with a different stochastic k-center problem considered in works such
as [13, 2]. These consider a model with a fixed, deterministic set S of open facilities, while the client
set is determined stochastically; this model is almost precisely opposite to ours.

1.3 Notation

We will let [t] denote the set {1, 2, . . . , t}. We use the Iverson notation throughout, so that for any
Boolean predicate P we let [[P]] be equal to one if P is true and zero otherwise. For any vector
a = (a1, . . . , an) and a subset X ⊆ [n], we often write a(X) as shorthand for

∑
i∈X ai. Given any

j ∈ C and any real number r ≥ 0, we define the ball B(j, r) = {i ∈ F | d(i, j) ≤ r}. We let Vj
denote the facility closest to j. Note that Vj = j in the SCC setting.

1.4 Some useful subroutines

There are two basic subroutines that will be used repeatedly in our algorithms: dependent rounding
and greedy clustering.
Proposition 1.1 ([22]). There exists a randomized polynomial-time algorithm DEPROUND(y) which
takes as input a vector y ∈ [0, 1]n, and in polynomial time outputs a random set Y ⊆ [n] with the
following properties:

(P1) Pr[i ∈ Y ] = yi, for all i ∈ [n],

(P2) b
∑n
i=1 yic ≤ |Y | ≤ d

∑n
i=1 yie with probability one,

(P3) Pr[Y ∩ S = ∅] ≤
∏
i∈S(1− yi) for all S ⊆ [n].

We adopt the following additional convention: suppose (y1, . . . , yn) ∈ [0, 1]n and S ⊆ [n]; we then
define DEPROUND(y, S) ⊆ S to be DEPROUND(x), for the vector x defined by xi = yi[[i ∈ S]].
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The greedy clustering procedure takes an input a set of weights wj and sets Fj ⊆ F for every client
j ∈ C, and executes the following procedure:

Algorithm 1 GREEDYCLUSTER(F,w)

1: Sort C as C = {j1, j2, . . . , j`} where wj1 ≤ wj2 ≤ · · · ≤ wj` .
2: Initialize C ′ ← ∅
3: for t = 1, . . . , ` do
4: if Fjt ∩ Fj′ = ∅ for all j′ ∈ C ′ then update C ′ ← C ′ ∪ {jt}
5: Return C ′

Observation 1.2. If C ′ = GREEDYCLUSTER(F,w) then for any j ∈ C there is z ∈ C ′ with
wz ≤ wj and Fz ∩ Fj 6= ∅.

2 The chance k-coverage Problem

In this section, we consider a scenario we refer to as the chance k-coverage problem, wherein every
point j ∈ C has demand parameters pj , rj , and we wish to find a k-lottery Ω such that

Pr
S∼Ω

[d(j,S) ≤ rj ] ≥ pj . (1)

If a set of demand parameters has a k-lottery satisfying (1), we say that they are feasible. We refer to
the special cases wherein every client j has a common value pj = p, or every client j has a common
value rj = r (or both), as homogeneous. This often arises in the context of fair allocations, for
example, k-supplier is a special case of the homogeneous chance k-coverage problem, in which
pj = 1 and rj is equal to the optimal k-supplier radius.

As we discuss in Section 4, any approximation algorithm must either significantly give up a guarantee
on the distance, or probability (or both). Our approximation algorithms for chance k-coverage will
be based on the following linear programming (LP) relaxation, which we refer to as the chance LP.
We consider the following polytope P over variables bi, where i ranges over F (bi represents the
probability of opening facility i):

(B1)
∑
i∈B(j,rj) bi ≥ pj for all j ∈ C,

(B2) b(F) = k,
(B3) bi ∈ [0, 1] for all i ∈ F .

For the remainder of this section, we assume we have found a vector b ∈ P . By a standard center-
splitting step, we also generate, for every point j ∈ C, a center set Fj ⊆ B(j, rj) with b(Fj) = pj .
Theorem 2.1. If p, r is feasible then one may efficiently construct a k-lottery Ω satisfying
PrS∼Ω[d(j,S) ≤ rj ] ≥ (1− 1/e)pj .

2.1 Distance approximation for chance k-coverage

We next will show how to satisfy the probability constraint exactly, with a constant-factor loss in the
distance guarantee. This algorithm will be based on iterated randomized rounding of the vector b.
This is similar to a method of [18], which also uses iterative rounding for a (deterministic) k-median
and k-means approximations.

We will maintain a vector b ∈ [0, 1]F and maintain two sets of points Ctight and Cslack, with the
following properties:

(C1) Ctight ∩ Cslack = ∅.
(C2) For all j, j′ ∈ Ctight, we have Fj ∩ Fj′ = ∅
(C3) Every j ∈ Ctight has b(Fj) = 1,
(C4) Every j ∈ Cslack has b(Fj) ≤ 1.
(C5) We have b(

⋃
j∈Ctight∪Cslack

Fj) ≤ k
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Given our initial LP solution b, setting Ctight = ∅, Cslack = C will satisfy criteria (C1)–(C5); note that
(C4) holds as b(Fj) = pj ≤ 1 for all j ∈ C.

Proposition 2.2. Given any vector b ∈ [0, 1]F satisfying constraints (C1)—(C5) with Cslack 6= ∅, it
is possible to generate a random vector b′ ∈ [0, 1]F such that E[b′] = b, and with probability one b′
satisfies constraints (C1) — (C5) as well as having some j ∈ Cslack with b′(Fj) ∈ {0, 1}.

We can now describe our iterative rounding algorithm, Algorithm 2.

Algorithm 2 Iterative rounding algorithm for chance k-coverage
1: Let b be a fractional LP solution and form the corresponding sets Fj .
2: Initialize Ctight = ∅, Cslack = C
3: while Cslack 6= ∅ do
4: Draw a fractional solution b′ with E[b′] = b according to Proposition 2.2.
5: Select some w ∈ Cslack with b′(Fw) ∈ {0, 1}.
6: Update Cslack ← Cslack − {w}
7: if b′(Fw) = 1 then
8: Update Ctight ← Ctight ∪ {w}
9: if there is any z ∈ Ctight ∪ Cslack such that rz ≥ rw/2 and Fz ∩ Fw 6= ∅ then

10: Update Ctight ← Ctight − {z}, Cslack ← Cslack − {z}
11: Update b← b′.
12: For each j ∈ Ctight, open an arbitrary center in Fj .

Theorem 2.3. Every j ∈ C has Pr[d(j,S) ≤ 9rj ] ≥ pj .

2.2 Approximation algorithm for uniform p or r

The distance guarantee can be significantly improved in two natural cases: when all the values of pj
are the same, or when all the values of rj are the same.

We use a similar algorithm for both these cases. The main idea is to first select a set C ′ according to
some greedy order, such that the cluster sets {Fj′ | j′ ∈ C ′} intersect all the cluster Fj . We then open
a single item from each cluster. The only difference between the two cases is the choice of weighting
function wj for the greedy cluster selection. We can summarize these algorithms as follows:

Algorithm 3 Rounding algorithm for k-coverage for uniform p or uniform r.
1: Set C ′ = GREEDYCLUSTER(Fj , wj)
2: Set Y = DEPROUND(p, C ′)
3: Form solution set S = {Vj | j ∈ Y }.

Proposition 2.4. Algorithm 3 opens at most k facilities.

Proof. The dependent rounding step ensures that
∑
j∈Y pj ≤ d

∑
j∈C′ pje = d

∑
j∈C′ b(Fj)e ≤

d
∑
i∈F bie ≤ k.

Proposition 2.5. Suppose that pj is the same for every j ∈ C. Then using the weighting function
wj = rj ensures that every j ∈ C it satisfies Pr[d(j,S) ≤ 3rj ] ≥ pj . Furthermore, in the SCC
setting, it satisfies Pr[d(j,S) ≤ 2rj ] ≥ pj .
Proposition 2.6. Suppose rj is the same for every j ∈ C. Then using the weighting function
wj = 1 − pj ensures that every j ∈ C satisfies Pr[d(j,S) ≤ 3rj ] ≥ pj . Furthermore, in the SCC
setting, it satisfies Pr[d(j,S) ≤ 2rj ] ≥ pj .

3 Chance k-coverage: the deterministic case

An important special case of the k-coverage problem is the one where pj = 1 for all j ∈ C. In this
case, the target distribution Ω is just a single set S satisfying d(j,S) ≤ rj . In the homogeneous
setting (where all the rj are equal to the same value), this is specifically the k-center or k-supplier
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problem. The typical approach to approximate this is to have the approximation distribution Ω̃ also
be a single set S ′; in such a case the best guarantee available is d(j,S) ≤ 3rj .

We improve the distance guarantee by allowing Ω̃ to be a distribution. Specifically, we construct
a k-lottery Ω̃ such that d(j,S) ≤ 3rj with probability one, and ES∼Ω̃[d(j,S)] ≤ crj , where the
constant c satisfies the following bounds:

1. In the general case, c = 1 + 2/e ≈ 1.73576;

2. In the SCC setting, c = 1.60793;

3. In the homogeneous SCC setting, c = 1.592.

By a reduction to set cover, we will show that the constant value 1 + 2/e is optimal for the general
case (even when all the rj are equal), and for the third case the constant c cannot be made lower than
1 + 1/e ≈ 1.367.

We also remark that this type of stochastic guarantee allows us to efficiently construct publicly-
verifiable lotteries. This means that the server locations are not only fair, but they are also transparent
and seen to be fair.

Proposition 3.1. Let ε > 0. Suppose that there is an efficiently-samplable k-lottery Ω with
PrS∼Ω[d(j,S) ≤ c1rj ] = 1 and ES∼Ω[d(j,S)] ≤ c2rj , for constants c2 ≤ c1. Then there is an
expected polynomial time procedure to construct an explicitly-enumerated k-lottery Ω′, with support
size |Ω′| = O( logn

ε2 ), such that PrS∼Ω′ [d(j,S) ≤ c1rj ] = 1 and ES∼Ω′ [d(j,S)] ≤ (c2 + ε)rj .

3.1 Randomized rounding via clusters

We use a similar type of algorithm to that considered in Section 2.2: we choose a covering set of
clusters C ′, and we open exactly one item from each cluster. The main difference is that instead of
opening the nearest item Vj for each j ∈ C ′, we instead open a cluster according to the LP solution
bi.

Algorithm 4 Rounding algorithm for k-supplier
1: Set C ′ = GREEDYCLUSTER(Fj , rj).
2: Set F0 = F −

⋃
j∈C′ Fj

3: for j ∈ C ′ do
4: Randomly select Wj ∈ Fj according to the distribution Pr[Wj = i] = bi
5: Let S0 ← DEPROUND(b, F0)
6: Return S = S0 ∪ {Wj | j ∈ C ′}

Theorem 3.2. For any w ∈ C, the solution set S of Algorithm 4 satisfies d(w,S) ≤ 3rw with
probability one and E[d(w,S)] ≤ (1 + 2/e)rw.

In the SCC setting, we may improve the approximation ratio using the following Algorithm 5; it is
the same as Algorithm 4, except that we have moved some values of b to the cluster centers.

Algorithm 5 Rounding algorithm for k-center
1: Set C ′ = GREEDYCLUSTER(Fj , rj).
2: Set F0 = F −

⋃
j∈C′ Fj

3: for j ∈ C ′ do
4: Randomly select Wj ∈ Fj according to the distribution Pr[Wj = i] = (1− q)bi + q[[i = j]]
5: Let S0 ← DEPROUND(b, F0)
6: Return S = S0 ∪ {Wj | j ∈ C ′}

Theorem 3.3. Let w ∈ C. After running Algorithm 5 with q = 0.464587 we have d(w,S) ≤ 3rw
with probability one and E[d(w,S)] ≤ 1.60793rw.
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3.2 The homogeneous SCC setting

The SCC setting, in which all the values of rj are equal, is equivalent to the classical k-center
problem. We will improve on Theorem 3.3 through a more complicated rounding process based on
greedily-chosen partial clusters. Specifically, we select cluster centers π(1), . . . π(n), wherein π(i) is
chosen to maximize b(Fπ(i) − Fπ(1) − · · · − Fπ(i−1)). By renumbering C, we may assume without
loss of generality that the resulting permutation π is the identity; therefore, we assume throughout
this section that C = F = [n] and for all i, j ∈ [n] we have

b(Fi − F1 − · · · − Fi−1) ≥ b(Fj − F1 − · · · − Fi−1)

For each j ∈ [n], we let Gj = Fj − F1 − · · · − Fj−1; we refer to Gj as a cluster and we let
zj = b(Gj). We say that Gj is a full cluster if zj = 1 and a partial cluster otherwise.

We use the following randomized rounding strategy to select the centers. We begin by choosing
two real numbers Qf, Qp (short for full and partial); these are drawn according to a joint probability
distribution which we discuss later. Recall our notational convention that q = 1− q; this notation
will be used extensively in this section to simplify the formulas.

We then use Algorithm 7:

Algorithm 7 Partial-cluster based algorithm for k-center
1: Z ← DEPROUND(z)
2: for j ∈ Z do
3: if zj = 1 then
4: Randomly select a point Wj ∈ Gj according to the distribution

Pr[Wj = i] = (1−Qf)yi +Qf[[i = j]]

5: else
6: Randomly select a point Wj ∈ Gj according to the distribution

Pr[Wj = i] =
(
(1−Qp)yi +Qp[[i = j]]

)
/zj

7: Return S = {Wj | j ∈ Z}

Let us give some intuitive motivation for Algorithm 7. Consider some j ∈ C. It may be beneficial to
open the center of some cluster near j as this will ensures d(j,S) ≤ 2. However, there is no benefit
to opening the centers of multiple clusters. So, we would like to ensure that there is a significant
negative correlation between opening the centers of distinct clusters near j. Unfortunately, there
does not seem to be any way to achieve this with respect to full clusters — as all full clusters “look
alike,” we cannot enforce any significant negative correlation among the indicator random variables
for opening their centers. By taking advantage of partial clusters, we are able to break this symmetry.
Theorem 3.4. Suppose that Qf, Qp has the following distribution:

(Qf, Qp) =

{
(0.4525, 0) with prob p = 0.773

(0.0480, 0.3950) with prob 1− p .

Then for all i ∈ F we have d(i,S) ≤ 3ri with probability one, and E[d(i,S)] ≤ 1.592ri.

4 Lower bounds on approximation ratios

We next show lower bounds corresponding to optimization problem for chance k-coverage analyzed
in Sections 2, and 3. These constructions are adapted from similar lower bounds for approximability
of k-median [9], which in turn are based on the hardness of set cover. In a set cover instance, we have
a ground set [n], as well as a collection of sets B = {S1, . . . , Sm} ⊆ 2[n]. The goal is to select a
collection X ⊆ [m] such that the sets ∪i∈XSi = [n], and such that |X| is minimized. The minimum
value of |X| thus obtained is denoted by OPT.

We quote a result of Moshovitz [20] on the inapproximability of set cover.
Theorem 4.1 ([20]). Assuming P 6= NP , there is no algorithm running in polynomial time which
guarantees a set-cover solution X with SX = [n] and |X| ≤ (1− ε) lnn×OPT, where ε > 0 is any
constant.
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For the remainder of this section, we assume that P 6= NP . We will need a simple corollary of
Theorem 4.1, which is a (slight reformulation) of the hardness of approximating max-coverage.

Corollary 4.2. Assuming P 6= NP , there is no polynomial-time algorithm which guarantees a
set-cover solution X with |X| ≤ OPT and

∣∣SX ∣∣ ≥ cn for any constant c > 1− 1/e.

We can encode facility location problems as special cases of max-coverage. Let us sketch how this
works in the non-SCC setting.

Consider a set cover instance B = {S1, . . . , Sm} on ground set [n]. We begin by guessing the value
OPT (there are at most m possibilities, so this can be done in polynomial time). We define a k-center
instance with k = OPT. We define disjoint client and facility sets, where F is identified with [m] and
C is identified with [n]. The distance is defined by d(i, j) = 1 if j ∈ Si and d(i, j) = 3 otherwise.

Now note that if X is an optimal solution to B then d(j,X) ≤ 1 for all points j ∈ C. So there exists a
(deterministic) distribution achieving rj = 1. On the other hand, suppose that A generates a solution
X ∈

(F
k

)
where E[d(j,X)] ≤ crj ; the set X can also be regarded as a solution to the set cover

instance.

Thus, if a polynomial-time algorithm A generates a distribution Ω which ensures that E[d(j,X)] ≤
crj , it also generates a solution a fraction (3− c)/2 of the sets in B. By Corollary 4.2, this means
that we must have (3− c)/2 ≥ 1− 1/e, i.e. c ≥ 1 + 2/e.

The construction for SCC instances and for chance k-coverage problems is similar, with a few more
technical details.

Theorem 4.3. Assuming P 6= NP , no polynomial-time algorithm can guarantee E[d(j,S)] ≤ crj
for c < 1 + 2/e, even if all rj are equal to each other. Thus, the approximation constant in
Theorem 3.2 cannot be improved.

Theorem 4.4. Assuming P 6= NP , no polynomial-time algorithm can guarantee E[d(j,S)] ≤ crj
for c < 1 + 1/e, even if all rj are equal to each other and C = F . Thus, the approximation factor
1.592 in Theorem 3.4 cannot be improved below 1 + 1/e.

Proposition 4.5. Assuming P 6= NP , no polynomial-time algorithm can take as input a feasible
vector r, p for the chance k-coverage problem and generate a k-lottery Ω guaranteeing either
PrS∼Ω[d(j,S) < rj ] ≥ (1 − 1/e − ε)pj , or PrS∼Ω[d(j,S) < 3rj ] ≥ pj , for any constant ε > 0.
This holds even when restricted to homogeneous problem instances. Likewise, in the homogeneous
SCC setting, we cannot ensure that PrS∼Ω[d(j,S) < 2rj ] ≥ pj ,
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