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Abstract

Neural Machine Translation (NMT) has achieved remarkable progress with the
quick evolvement of model structures. In this paper, we propose the concept of
layer-wise coordination for NMT, which explicitly coordinates the learning of
hidden representations of the encoder and decoder together layer by layer, grad-
ually from low level to high level. Specifically, we design a layer-wise attention
and mixed attention mechanism, and further share the parameters of each layer
between the encoder and decoder to regularize and coordinate the learning. Experi-
ments show that combined with the state-of-the-art Transformer model, layer-wise
coordination achieves improvements on three IWSLT and two WMT translation
tasks. More specifically, our method achieves 34.43 and 29.01 BLEU score on
WMT16 English-Romanian and WMT14 English-German tasks, outperforming
the Transformer baseline.

1 Introduction

Neural Machine Translation (NMT) is a challenging task that attracts a lot of attention in recent
years [5, 2, 18, 29, 7, 33, 28, 27, 35, 37, 9], and the structure of NMT models has evolved quickly.
The first design of NMT model is based on Recurrent Neural Networks (RNNs) [5]. Then the
attention mechanism [2] is introduced to better model the alignment between source and target tokens.
Deeper architectures are adopted later to increase the expressiveness of NMT models [36, 7, 33].
Recently, Convolutional Neural Network [7] and self-attention [33] based models are invented, which
achieve the state-of-the-art performance in many broadly adopted translation tasks.

While those models employ different basic building blocks (e.g., RNN, CNN, or self-attention),
they are all under the typical encoder-decoder framework: The encoder takes the source tokens as
inputs and generates a set of hidden representations for those tokens layer by layer, gradually from
∗The work was done when the first author was an intern at Microsoft Research Asia.
†The first and second author contribute equally to this work.
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low level to high level. Then the decoder takes the last-layer (the highest level) representations
from the encoder as inputs, generates hidden representations for each target position from low-level
layers to high-level ones, and finally generates a token based on the last-layer representations. We
can see that the generation of hidden representations for target tokens, no matter high level or low
level, are all based on the highest-level representations of the source sentence. Our case study and
attention visualization (Section 5.3) show that attending the low layer of the decoder to the high-level
representations of the encoder causes unfocused attention and harms translation quality.

Then questions come out naturally: Why should the low-level representation of a target token base
on the highest-level ones of source tokens? Why not attending each layer of the decoder to each
corresponding layer of the encoder? These questions exactly motivate our work.

In this paper, we propose to coordinate the learning of the encoder and decoder of an NMT model
layer by layer. The encoder and decoder of our model have the same number of layers, and the
i-th layer in the decoder is aligned and coordinated with the i-th layer of the encoder. The hidden
representation of a source token in the i-th layer is generated from the hidden representations of all
source tokens in the (i-1)-th layer using the self-attention mechanism, and that of a target token in
the i-th layer is generated from the hidden representations of all source tokens and preceding target
tokens in the (i-1)-th layer using a mixed attention mechanism. To further coordinate the learning
between the encoder and decoder, we share parameters of the encoder and decoder. This new model
has several advantages compared with existing models.

First, through layer-wise coordination, the information from the source and target sentence will
meet earlier, starting from the low-level representations. Consequently, the decoder can leverage
more fine-grained source information when generating target tokens, instead of only using high-level
representations outputted by the encoder in the previous model structure. Such an approach has been
shown to be effective for other NLP tasks such as text matching [16, 10, 19] or non-autoregressive
machine translation [8].

Second, through layer-wise coordination and parameter sharing, we ensure that the hidden represen-
tations in two corresponding layers of the encoder and decoder are in the same (or closely related)
semantic level. Note that even if existing models can have the same number of layers in their encoder
and decoder, there is no correspondence between an encoder layer and a decoder layer since their
parameters are freely learned. Furthermore, parameter sharing allows us to stack more layers under
the constraint of model size, without loss of model capacity but regularizing training process.

The idea of layer-wise coordination can be applied to most existing model architectures, including
RNN [5, 2, 18, 29], CNN [7] and Transformer [33]. In this work we apply layer-wise coordination to
Transformer, considering its super accuracy on several benchmark tasks. Experiments show that our
method outperforms strong baselines on three IWSLT tasks and two WMT tasks. In particular, we
achieve 34.43 and 29.01 BLEU score on WMT16 English-Romanian and WMT14 English-German
tasks.

2 Background

2.1 Encoder-Decoder Framework

Given a bilingual sentence pair (x, y), an NMT model learns its parameter θ by maximizing the
log-likelihood P (y|x; θ), which is usually decomposed into the product of the conditional probability
of each target word: P (y|x; θ) =

∏m
t=1 P (yt|y<t, x; θ), where m is the length of sentence y, y<t are

the target tokens before position t.

An encoder-decoder framework [5, 2, 18, 29, 7, 33] is usually adopted to model the conditional
probability P (y|x; θ). The encoder maps the input sentence x into a set of hidden representations
h, and the decoder generates the target token yt at position t using the previously generated target
tokens y<t and the source representations h. Both the encoder and decoder can be implemented
by different structure of neural models, such as RNN (LSTM/GRU) [5, 2, 18, 29], CNN [7] and
self-attention [33]. Besides the basic component of the encoder and decoder, a source-target attention
mechanism [2] is usually adopted to selectively focus on the source representations when generating
a target token.
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Different from the typical encoder-decoder framework, our layer-wise coordination allows each layer
of the decoder to directly leverage the hidden representations from the corresponding layer (instead
of the last layer) of the encoder.

2.2 Self-attention based Network

Self-attention has been used in many previous works [4, 21, 22, 33, 15]. [33] first introduces self-
attention into Neural Machine Translation. For a single self-attention layer, it utilizes a cross-position
self-attention to extract information from the tokens in the whole sentence, and then a position-wise
feed-forward network to increase the non-linearity. The self-attention is formulated as:

Attention(Q,K, V ) = softmax(
QKT

√
dmodel

)V, (1)

where dmodel is the dimension of hidden representations. The embedding size, the input and output
size of self-attention are all set as dmodel. For the self-attention inside the encoder layer, Q,K, V ∈
Rn∗dmodel , while for the self-attention inside the decoder layer, Q,K, V ∈ Rm∗dmodel , where n and m
is the length of source and target sentence. For the attention cross the encoder and decoder from
the source to the target (i.e., source-target attention), Q ∈ Rm∗d, K,V ∈ Rn∗dmodel . All the Q,K, V
come from the hidden representations of the corresponding encoder/decoder layer, but projected by
different parameter matrices: WQ, WK and WV . The position-wise feed-forward network consists
of a two-layer linear transformation with ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2. (2)

The feed-forward network is applied on every layer of both the source and target sentence.

3 Layer-wise Coordination

In this section, we present the idea of layer-wise coordination. In principle, layer-wise coordination
can be applied to any encoder-decoder based models, including RNN, CNN and Transformer. In this
work, we directly focus on Transformer considering that it achieves very good accuracy on multiple
translation tasks.

Layer-wise coordination modifies the structure of Transformer from two aspects: First, each layer
in the decoder attends to the corresponding layer in the encoder. That is, the encoder and decoder
have the same number of layers and layer i in the decoder can extract information directly from
layer i in the encoder, instead of the last layer of the encoder like Transformer. While the decoder of
Transformer uses a separate encoder-decoder attention module to extract information from the source
sentence and a self-attention module to extract information from previous target tokens, we merge
the two attentions into one, which is called as mixed attention, to coordinate the learning between
source and target. Second, we share the parameters of attention and feed-forward layer between the
encoder and decoder, in order to ensure the outputs of the corresponding layers of the encoder and
decoder are in the same (or closely related) semantic level, and thus enhance layer-wise coordination.

The overall structure of our model with layer-wise coordination is shown in Figure 1. The source
and target sentences are concatenated and processed by the model layer by layer coordinately. We
stack N layers and N can be varied according to different sizes of datasets. We introduce the key
components of the model as follows.

Mixed Attention In order to coordinate the learning of source and target tokens in each layer, the
decoder of our model uses a mixed attention for a target token to extract cross-position information
from both the source and preceding target tokens. The attention mechanism is shown as the “Mixed
Attention” in Figure 1.

To enable the above attention mechanism, we add an extra mask on the dot product of Q and K based
on Equation 1 to prevent attending to the illegal positions (i.e., future target tokens):

Mixed_Attention(Q,K, V ) = softmax(
QKT

√
dmodel

+M)V,

M(i, j) =

{
0, j < n ∨ j ≤ i+ n

−∞, otherwise
,

(3)
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Figure 1: Our proposed layer-wise coordination model for neural machine translation.

where Q ∈ Rm∗dmodel , K,V ∈ R(n+m)∗dmodel , and M ∈ Rm∗(n+m) is a mask matrix, with n and m
being the length of source and target sentence. When M(i, j) equals to −∞, the corresponding
position in softmax output will approach zero, which prevents position i from attending to position j.

Position Embedding Since self-attention has no recurrent operation like RNN or convolution like
CNN, we need explicitly inject some information to indicate the absolute or relative position of a word
to the model. In order to keep the original order of the concatenated sentence, we use the resettable
position embedding. The position of source tokens starts with zero, and for the target tokens, instead
of increasing the position upon the end of source sentence, we reset the position from zero again. As
the position embedding function, we follow [8, 33] and use the sine and cosine functions to format
the embedding vectors: p(pos, k) = sin(pos/10000k/dmodel) (if k is even) or cos(pos/10000k/dmodel)
(if k is odd), where pos is the position and k is the index of the hidden dimension.

Source/Target Embedding Since the source and target tokens share the same model parameters,
we need to give the model a sense of which language a token comes from it is receiving. The
resettable position embedding alone cannot identify the language of a word token. We introduce
two embeddings which represent the source and target language respectively. Every position of the
source and target tokens is added with the corresponding source/target embedding, which are learned
end-to-end during the model training process. The source/target embeddings are demonstrated to be
extremely important to train the model in our experiments.

4 Experimental Setup

4.1 Datasets

We evaluate our model on several widely used translation tasks, including IWSLT14 German-English
(briefly, De-En), IWSLT14 Romanian-English (briefly, Ro-En), IWSLT14 Spanish-English (briefly,
Es-En), WMT16 English-Romanian (briefly, En-Ro) and WMT14 English-German (briefly, En-De).

IWSLT14 German/Romanian/Spanish-English (De-En/Ro-En/Es-En) We use the datasets ex-
tracted from IWSLT 2014 evaluation campaign [3] 3, which consist of 153K/182K/181K training

3https://wit3.fbk.eu/mt.php?release=2014-01
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sentence pairs for De-En/Ro-En/Es-En. For Ro-En/Es-En, we concatenate dev2010, tst2010, tst2011
and tst2012 as the validation set and use tst2014 as the test set. For De-En, we use 7K data split
from the training set as the validation set and use the concatenation of dev2010, tst2010, tst2011
and tst2012 as the test set, which is widely used in prior works [23, 1, 11]. We also lowercase 4 the
sentences of De-En following the common practice. Sentences are encoded using sub-word types
based on byte-pair-encoding (BPE) [25] 5, which has a shared vocabulary of about 31K/39K/34K
sub-word tokens for De-En/Ro-En/Es-En.

WMT16 English-Romanian (En-Ro) We use the same dataset and pre-processing techniques
as [24], which result in 2.8M sentence pairs for training. We use the concatenation of newstest2013
and newstest2014 as the validation set and newstest2016 as the test set [24]. Sentences are also
encoded using BPE with a shared vocabulary of 36K sub-word tokens.

WMT14 English-German (En-De) We use the same dataset as [17], which comprises 4.5M
sentence pairs for training. We use the concatenation of newstest2012 and newstest2013 as the
validation set and newstest2014 as the test set 6. Sentences are also encoded using BPE with a shared
vocabulary of 40K sub-word tokens.

4.2 Model Configurations

For small datasets De-En/Ro-En/Es-En, we choose the small configuration with the model hidden
size dmodel = 256 and feed-forward hidden size dff = 1024. For relative larger datasets En-Ro and
En-De, we choose the big configuration with dmodel = 1024 and dff = 2048. We used the same
number of heads as Transformer (4/8/16 for small/base/big configuration). For fair comparison with
Transformer, we perform our experiments under the constraint that the number of parameters is
similar with Transformer. Since our model structure shares the parameters between the encoder and
decoder, we can stack more layers under the same parameter constraint. We stack 14 layers for both
small and big configurations, which have roughly the same number of parameters with the 6-layer
transformer_small and transformer_big counterparts [32].

4.3 Training and Inference

During training, we concatenate the source and target sentence together and batch the concatenated
sentences with approximate sentence lengths with zero padded at the end of each sentence to ensure
exactly the same length in one mini-batch. Each mini-batch on one GPU contains roughly 4096
tokens. We train our models for En-Ro and En-De with 8 NVIDIA Tesla M40 GPUs on one machine.
We only use one M40 GPU to train the model for De-En/Ro-En/Es-En tasks as it is of both small
model size and data size. The validation sets in all the datasets are used for hyper-parameter tuning
and early stopping. We choose the Adam optimizer [13] with β1 = 0.9, β2 = 0.98, ε = 10−9 and
use the learning rate schedule in [33].

During inference, we generate the target token autoregressively, regarding the source tokens as the
previously generated tokens. We append the source tokens with the end-of-sentence (EOS) token,
and then with the start-of-sentence (SOS) token, and feed them into the model to generate the first
target token. We decode with beam search and set beam width beam = 6 and length penalty α = 1.1
on all datasets except for En-De, where we use beam = 4 and α = 0.6 to be consistent with [33].
We evaluate the translation quality by tokenized case-sensitive BLEU [20] with multi-bleu.pl7, except
for De-En where we use case-insensitive BLEU to follow the common practice and En-Ro where
we use detokenized BLEU to be consistent with [24, 7] for comparison. Larger BLEU means better
translation quality.

4https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/lowercase.perl
5https://github.com/rsennrich/subword-nmt
6http://nlp.stanford.edu/projects/nmt
7https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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5 Results

5.1 Compared with Previous NMT Models

We evaluate our proposed model on the five translation tasks and compare with the previous models
that are under the typical encoder-decoder framework. First, we compare with the Transformer
baseline, which is trained with the tensor2tensor codes [32]. We adopt the small configuration for
our model on IWSLT14 De-En/Ro-En/Es-En tasks, and big configuration on WMT16 En-Ro and
WMT14 En-De tasks. On WMT14 En-De task, we also run an extra base configuration for our model
to be comparable with the transformer_base model available in the Transformer paper, where the
dmodel and dff are set to 512 and 2048. On this task, we reproduce the BLEU score in the Transformer
paper [33] on transformer_big and transformer_base configurations8 and therefore we just list the
original number in the paper. Second, we also compare with the results of other RNN/CNN-based
models reported in the previous works. The BLEU scores are listed in Table 1 and 2.

On IWSLT14 De-En task, our method achieves 35.07 in terms of BLEU score, with 2.21 points
improvement over the Transformer baseline. We also compare with some RNN-based models and
our model achieves great improvements. On IWSLT14 Ro-En/Es-En task, we also surpass the
Transformer baseline for 1.08/1.93 BLEU score.

On WMT16 En-Ro task, our model achieves 1.73 BLEU score improvements over the Transformer
baseline. Compared with the RNN-based [24] and CNN-based [7] encoder-decoder models, our
method also outperforms both of these models.

On WMT14 En-De task, we compare with Transformer in both the base and big model configurations.
We achieve 1.03 BLEU score improvement over the transformer_base model and advance the
transformer_big model with a new state-of-the-art BLEU score of 29.01. Again, we outperform all
the RNN/CNN-based encoder-decoder framework in terms of BLEU score.

Task Method BLEU

De-En

MIXER [23] 21.83
AC+LL [1] 28.53
NPMT [11] 28.96
Dual Transfer Learning [34] 32.35
Transformer (small) 32.86

Our method (small) 35.07

Ro-En Transformer(small) 29.64

Our method (small) 30.72

Es-En
UEDIN[3] 37.29
Transformer(small) 38.57

Our method (small) 40.50

Table 1: BLEU scores on IWSLT 2014 trans-
lation tasks compared with transformer base-
line and other RNN/CNN-based models.

Task Method BLEU

En-Ro

GRU[24] 28.10
ConvS2S[7] 30.02
Transformer (big) 32.70

Our method (big) 34.43

En-De

ByteNet [12] 23.75
GNMT+RL [36] 24.60
ConvS2S [7] 25.16
MoE [26] 26.03
Transformer (base) [33] 27.30
Transformer (big) [33] 28.40

Our method (base) 28.33
Our method (big) 29.01

Table 2: BLEU scores on WMT translation
tasks compared with transformer baseline and
other RNN/CNN-based models.

5.2 Model Variations

Ablation Study To evaluate the importance of different components of layer-wise coordination
model, we mask each component of our model and test the performance changes on De-En task. We
follow the same decoding strategy as described in Section 4.3 and compare the BLEU scores changes
on the test set, as listed in Table 3.

The first row in Table 3 is the basic parameter setting for our model. First, we do not use weight
sharing in the second row, but for fair comparison we reduce half of the model layers to ensure
the same amount of model parameters. We can see sharing weight indeed outperforms the non-

8For transformer_base/transformer_big configuration, our reproduce score is 27.35/28.24 while the score in
the paper is 27.30/28.40.
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#parameter BLEU ∆
Our model 19.07M 35.07
Our model w/o weight sharing 19.07M 33.96 1.11 ↓
Our model w/o mixed attention 19.07M 33.77 1.30 ↓
Our model w/o source/target embedding 19.07M 32.80 2.27 ↓
Our model w/o position embedding 19.07M 18.46 16.61 ↓

Table 3: Ablation study on our proposed model on De-En task.

#layer 10 14 18 22 #layer 4 6 8 10
Our method 34.32 35.07 35.31 35.05 Baseline 32.78 32.86 32.72 32.67

Table 4: The BLEU scores under different number of layers for our method and the baseline on
De-En task.

Source (De) zwei minuten später passierten drei dinge gleichzeitig.
Reference (En) two minutes later, three things happened at the same time.
Transformer two minutes later, three things happened.
Our model two minutes later, three things happened at the same time.
Source (De) mit 17 wurde sie die zweite frau eines mandarin, dessen mutter sie schlug.
Reference (En) at 17 she became the second wife of a mandarin whose mother beat her.
Transformer at the age of 17, she turned into a mandarin second woman whose mother beat her.
Our model at 17, she became the second woman of a mandarin whose mother beat her.
Source (De) und ich erwiderte: "wie kommuniziert ihr denn nun?"
Reference (En) and i said, "well, how do you actually communicate?"
Transformer and i said, "how does you communicates?"
Our model and i said, "how do you communicate?"

Table 5: Translation examples on De-En dataset from our model and the Transformer baseline.

sharing counterpart. Second, if we separate the mixed attention into self-attention and source-target
attention as usual, the BLEU score also drops. Third, removing position embedding and source/target
embedding both hurt the model performance, especially for removing position embedding. The
aforementioned results demonstrate the importance of each component of our model.

Varying the Number of Layers We vary different number of layers to investigate how our model
performs. Table 4 shows the BLEU score on De-En task with 10/14/18/22 layers. For a fair
comparison, we also vary the number of layers of baseline model with 4/6/8/10 to ensure the similar
number of parameters between two models (i.e., our model with 10 layers has similar number of
the baseline model with 4 layers). We can observe that the BLEU scores do not nearly change or
even drop when increasing the number of layer for baseline model, may due to overfitting. However,
our layer-wise coordination can build a deep model up to 18 layers on this task, achieving a record-
breaking 35.31 BLEU score. When increasing to 22 layers, which is an extremely deep configuration
for NMT, our model also drops to 35.05. We will investigate deeper model training through our
layer-wise coordination for future work.

5.3 Case Study

Case Analysis Table 5 shows several translation examples produced by our model compared with
Transformer baseline. We can see that our layer-wise coordination model generates more adequate,
fluent and accurate sentences. For the first case, the Transformer suffers from the adequacy problem
that misses the information “at the same time” while our model catches this information accurately.
In the second case, although Transformer nearly translates the meaning of the source sentence
adequately, the result suffers from fluency compared to our model. In the third case, Transformer
generates the sentence mistakenly with third-person singular while our model handles this case well.

Attention Visualization In order to give a deep understanding why our model works better, we
visualize the attention weights of our model and Transformer for the first case from Table 5. In
this case, we analyze why Transformer misses the information “at the same time” while our model
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translates it successfully. We investigate what information the model attends on when generating
the next token after “happened”. The attention weights are from the first layer of the decoder for
both models. Transformer, as the typical encoder-decoder framework, uses two attentions to extract
information from source and target separately and it extracts the source information from the last
layer of hidden representations of the encoder, and thus the low layer of the decoder may not extract
this high-level representation precisely. As shown in Figure 2, when generating the next token of
“happened”, it attends to diverse tokens, such as “passierten”, “gleichzeitig”,“.” and “EOS”, which
cause the generation of “.” and finish the translation earlier. The target self-attention in Figure 3 alone
cannot provide much information for the correct prediction. However, in our mixed attention as shown
in Figure 4, we can observe that the attention weights mostly focus on the source token “gleichzeitig”
that means “simultaneously” in English, previous generated token “happened” as well as the current
position, which can precisely help the model generate the next token “at” for a beginning of the phrase
“at the same time”. More cases can be found in the supplementary materials (part A). This kind of
cases show the advantages of our layer-wise coordination learning over the typical encoder-decoder
based models.

Figure 2: Source to target attention in Trans-
former.

Figure 3: Target self-attention in Transformer. Figure 4: Mixed attention in our model.

5.4 Discussions on Mixed Attention

In NMT, the generation of the target word depends on both source and target contexts, where source
contexts affect the adequacy of the generated sentence while target contexts have impact on the
fluency [6, 14, 30, 31]. Our mixed attention is designed to better coordinate the learning of encoder
and decoder by extracting cross-position information from both the source and preceding target tokens
in one and the same attention function. In this way, the model automatically learns the preference on
the source or target contexts when generating the target token, which will be beneficial when tackling
with the adequacy and fluency problem, as a by-product of our model design.

[30] also developed a context gate on RNN-based model to trade off the context information from
source and target. Here we compare our proposed model with [30] on De-En task by implementing it
with Transformer, since it is originally implemented for RNN-based NMT model. The implementation
details can be found in the supplementary materials (part B). For fair comparison, we just use layer-
wise coordination without weight sharing between the encoder and decoder (the corresponding BLEU
score is 33.96 and parameter size is 19.07M as shown in Table 3). Our implemented Transformer
version of [30] has a 6-layer encoder and decoder with parameter size of 19.08M. The BLEU score is
33.02, with 0.94 point lower than our method.
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We also show more visualization cases on our mixed attention in the supplementary materials (part
C).

6 Conclusion

In this work, we improved existing NMT models through layer-wise coordination of the encoder
and decoder. Our method aligns the i-th layer of the encoder to the i-th layer of the decoder and
coordinates the learning of the hidden representations of source and target sentences layer by layer, by
sharing the parameters of the aligned layers. Experiments on several translation tasks demonstrated
our proposed model outperforms the Transformer baseline as well as other RNN/CNN-based encoder-
decoder models.

For future works, we will apply the idea of layer-wise coordination to other sequence to sequence
tasks, such as question answering and image captioning. We will also investigate better ways to
coordinate the learning and interaction between the source and target. Furthermore, we will study
how to leverage layer-wise coordination to train deeper NMT models.
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