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Abstract

We consider the problem of maximizing a submodular function when given access
to its approximate version. Submodular functions are heavily studied in a wide
variety of disciplines since they are used to model many real world phenomena
and are amenable to optimization. There are many cases however in which the
phenomena we observe is only approximately submodular and the optimization
guarantees cease to hold. In this paper we describe a technique that yields strong
guarantees for maximization of monotone submodular functions from approximate
surrogates under cardinality and intersection of matroid constraints. In particular,
we show tight guarantees for maximization under a cardinality constraint and
1/(1 + P ) approximation under intersection of P matroids.

1 Introduction

In this paper we study maximization of approximately submodular functions. For nearly half a
century submodular functions have been extensively studied since they are amenable to optimization
and are recognized as an effective modeling instrument. In machine learning, submodular functions
capture a variety of objectives that include entropy, diversity, image segmentation, and clustering.

Although submodular functions are used to model real world phenomena, in many cases the functions
we encounter are only approximately submodular. This is either due to the fact that the objectives are
not exactly submodular, or alternatively they are, but we only observe their approximate version.

In the literature, approximate utility functions are modeled as surrogates of the original function that
have been corrupted by random variables drawn i.i.d from some distribution. Some examples include:

• Revealed preference theory. Luce’s famous model assumes that an agent’s revealed utility
˜f : 2

N ! R can be approximated by a well-behaved utility function f : 2

N ! R s.t.
˜f(S) = f(S) + ⇠S for every S ✓ N where ⇠S is drawn i.i.d from a distribution [CE16]. ˜f
is a utility function that approximates f , and multiple queries to ˜f return the same response;

• Statistics and learning theory. The assumption in learning is that the data we observe is
generated by ˜f(x) = f(x) + ⇠

x

where f is in some well-behaved hypothesis class and ⇠
x

is drawn i.i.d from some distribution. The use of ˜f is not to model corruption by noise but
rather the fact that data is not exactly manufactured by a function in the hypothesis class;

• Active learning. There is a long line of work on noise-robust learning where one has access
to a noisy membership oracle ˜f(x) = f(x) + ⇠

x

and for every x we have that ⇠
x

is drawn
i.i.d from a distribution [Ang88, GKS90, Jac94, SS95, BF02, Fel09]. In this model as well,
the oracle is consistent and multiple queries return the same response. For set functions,
one can consider active learning in experimental design applications where the objective
function is often submodular and the goal would be to optimize f : 2

N ! R given ˜f .
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Similar to the above examples, we say that a function ˜f : 2

N ! R
+

is approximately submodular
if there is a submodular function f : 2

N ! R
+

and a distribution D s.t. for each set S ✓ N we
have that ˜f(S) = ⇠Sf(S) where ⇠S is drawn i.i.d from D.1 The modeling assumption that ⇠S is not
adversarially chosen but drawn i.i.d is crucial. Without this assumption for ˜f(S) = ⇠Sf(S) where
⇠S 2 [1 � ✏, 1 + ✏] even for subconstant ✏ > 0 no algorithm can obtain an approximation strictly
better than n�1/2 to maximizing either ˜f or f under a cardinality constraint when n = |N | [HS17].
This hardness stems from the fact that approximate submodularity implies that the function is close
to submodular, but its marginals (or gradients) are not well approximated by those of the submodular
function. When given an ↵ approximation to the marginals, the greedy algorithm produces a 1�1/e↵

approximation. Furthermore, even for continuous submodular functions, a recent line of work
shows that gradient methods produce strong guarantees with approximate gradient information of the
function [HSK17, CHHK18, MHK18].

In contrast to the vast literature on submodular optimization, optimization of approximate sub-
modularity is nascent. For distributions bounded in [1 � ✏/k, 1 + ✏/k] the function is suffi-
ciently close to submodular for the approximation guarantees of the greedy algorithm to go
through [HS, LCSZ17, QSY+17]. Without this assumptions, the greedy algorithm performs ar-
bitrarily poorly. In [HS17] the authors give an algorithm that obtains an approximation arbitrarily
close to 1� 1/e under a cardinality constraint that is sufficiently large. For arbitrary cardinality and
general matroid constraints there are no known approximation guarantees.

1.1 Our Contribution

In this paper we consider the problem maxS2F f(S) when f : 2

N ! R is non-negative monotone
submodular defined of a ground set N of size n and the algorithm is only given access to an
approximate surrogate ˜f and F is a uniform matroid (cardinality) or intersection of matroids constraint.
We introduce a powerful technique which we call the sampled mean approximation and show:

• Optimal guarantees for maximization under a cardinality constraint. In [HS17] the re-
sult gives an approximation arbitrarily close to 1�1/e for k 2 ⌦(log log n). This is a funda-
mental limitation in their technique that initializes the solution with a set of size ⌦(log log n)
used for “smoothing” the approximately submodular function (see Appendix G.1 for more
details). The technique in this paper is novel and yields an approximation of 1� 1/e for any
k � 2, and 1/2 for k = 1, which is information theoretically tight, as we later show;

• 1/(1 + P ) approximation for intersection of P matroids. We utilize the sampled mean
approximation method to produce the first results for the more challenging case of maxi-
mization under general matroid constraints. Our approximation guarantees are comparable
with those achievable with a greedy algorithm for monotone submodular functions;

• Information theoretic lower bounds. We show that no randomized algorithm can obtain an
approximation strictly better than 1/2+O(n�1/2

) for maxa2N f(a) given an approximately
submodular oracle ˜f , and that no randomized algorithm can obtain an approximation strictly
better than (2k � 1)/2k +O(n�1/2

) for maximization under cardinality constraint k;
• Bounds in Extreme Value Theory. As we later discuss, some of our results may be of

independent interest to Extreme Value Theory (EVT) which studies the bounds on the
maximum sample (or the top samples) from some distribution. To achieve our main result
we prove subtle properties about extreme values of random variables where not all samples
are created equal and the distributions generalize those typically studied in EVT.

The results above are for the problem maxS2F f(S) when the algorithm is given access to ˜f . In
some applications, however, ˜f is the function that we actually wish to optimize, i.e. our goal is
to solve maxS2F ˜f(S). If ˜f(S) approximates f(S) well on all sets S, we can use the solution
for maxS2F f(S) as a solution for maxS2F ˜f(S). In general, however, a solution that is good for
maxS2F f(S) can be arbitrarily bad for maxS2F ˜f(S). In Appendix E we give a black-box reduction
showing that these problems are essentially equivalent. Specifically, we show that given a solution

1Describing f̃ as a multiplicative approximation of f is more convenient for analyzing multiplicative
approximation guarantees. This is w.l.o.g as all our results apply to additive approximations as well.
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to maxS2F f(S) one can produce a solution that is of arbitrarily close quality to maxS2F ˜f(S)
when F is any uniform matroid, an intersection of matroids of rank ⌦(log n), and an intersection of
matroids of any rank when the distribution D has bounded support.

1.2 Technical Overview

The approximately submodular functions we consider approximate a submodular function f using
samples from a distribution D of the class of generalized exponential tail distributions defined as:
Definition. A noise distribution D has a generalized exponential tail if there exists some x

0

such
that for x > x

0

the probability density function ⇢(x) = e�g(x), where g(x) =
P

i aix
↵i for some

(not necessarily integers) ↵
0

� ↵
1

� . . ., s.t. ↵
0

� 1. If D has bounded support we only require that
either it has an atom at its supremum, or that ⇢ is continuous and non-zero at the supremum.

This class of distributions is carefully defined. On the one hand it is general enough to contain
Gaussian and Exponential distributions, as well as any distribution with bounded support. On the
other hand it has enough structure one can leverage. Note that optimization in this setting always
requires that the support is independent of n and that n is sufficiently large 2. Throughout the paper
we assume that D has a generalized exponential tail and that n is sufficiently large.
Theorem. For any non-negative monotone submodular function there is a deterministic polynomial-
time algorithm which optimizes the function under a cardinality constraint k � 3 and obtains an
approximation ratio that is arbitrarily close to 1 � 1/e with probability 1 � o(1) using access to
an approximate oracle. For k � 2 there is a randomized algorithm whose approximation ratio is
arbitrarily close to 1� 1/e, in expectation over the randomization of the algorithm. For k = 1 the
algorithm achieves a 1/2 approximation in expectation, and no randomized algorithm can achieve
an approximation better than 1/2 + o(1), in expectation.

The main part of the proof involves analysis of the following greedy algorithm. The algorithm
iteratively chooses bundles of elements of size O(1/✏). In each iteration,the algorithm first identifies
a bundle x whose addition to the current solution approximately maximizes the approximate mean
value ˜F . Informally, ˜F (x) is the average value of ˜f evaluated on all bundles at Hamming distance
one from x. Then, the algorithm does not choose x but rather the bundle at Hamming distance one
from x whose addition to the current solution maximizes the approximate submodular value ˜f .

The major technical challenge is in analyzing the regime in which k 2 ⌦(1/✏2) \O(

p
log n). At

a high level, in this regime the analysis relies on showing that the marginal contribution of the
bundle of elements selected in every iteration is approximately largest. Doing so requires proving
subtle properties about extreme values of random variables drawn from the generalized exponential
tail distribution, and the analysis fully leverages the properties of the distribution and the fact that
k 2 O(

p
log n). This is of independent interest to Extreme Value Theory (EVT) which tries to bound

the maximum sample (or the top samples) from some distribution. If we would consider the constant
function f(S) = 1 for S 6= ;, and try to maximize an approximate version of f with respect to some
distribution, this would be a classical EVT setting. One can view the bounds we develop as bounds
on a generalization of EVT, where not all samples are created equal.

For general matroid constraints we apply the sampled-mean technique and obtain an approximation
comparable to that of applying the greedy algorithm on a monotone submodular function.
Theorem. For any non-negative monotone submodular function there is a deterministic polynomial-
time algorithm which optimizes the function under an intersection of P matroids constraint and
obtains an approximation ratio arbitrarily close to 1/(1 + P ) given an approximate oracle.

Paper organization. The main contribution of the paper is the definition of sampled mean ap-
proximation in Section 2 and the subsequent analysis of the algorithm for cardinality constraint in
Section 3 and matroid constraints in Section 4. The techniques are novel, and the major technical
crux of the paper is in analyzing the algorithm in Section 3. Optimization for small rank and lower
bounds are in Appendix B.1. In Appendix G we further discuss related work, and in Appendix F we
discuss extensions of the algorithms to related models.

2For example, if for every S the noise is s.t. ⇠S = 2100 w.p. 1/2100 and 0 otherwise, but n = 50, it is likely
that the oracle will always return 0, in which case we cannot do better than selecting an element at random.
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2 The Sampled Mean Approximation

We begin by defining the sampled mean approximation of a function. This approach considers
bundles x of size c 2 O(1/✏). We can then run a variant of a greedy algorithm which adds a bundle
of size c in every iteration. For a given bundle x and set S, we define a ball to be all bundles obtained
by swapping a single element from x with another not in S [ x. We denote xij = (x \ {xi})[ {xj}.
Definition. For S ⇢ N and bundle x ⇢ N , the ball around x is BS(x) := {xij : i 2 x, j /2 S [ x}.

We illustrate a ball in Figure 1. Notice that as long as |S|  (1 � �)|N | for some fixed � > 0, we
have that |BS(x)| 2 ⌦(n). This will allow us to derive weak (but sufficient) concentration bounds.
Definition. Let f : 2

N ! R. For a set S ✓ N and bundle x ✓ N , the mean value, noisy mean

value, and mean marginal contribution of x given S are, respectively:

(1) F (S [ x) := E
z⇠BS(x)

⇥
f(S [ z)

⇤

(2)

˜F (S [ x) := E
z⇠BS(x)

⇥
˜f(S [ z)

⇤

(3) FS(x) := E
z⇠BS(x)

⇥
fS(z)

⇤

The following lemma implies that under the right conditions, the bundle that maximizes the noisy
mean value is a good approximation of the bundle whose (non-noisy) mean value is largest.

Lemma 2.1. Let x 2 argmax

z:|z|=c
˜F (S [ z) where c = 2/✏. Then, w.p. � 1� exp

�
�⌦

�
n1/4

��
:

FS(x) � (1� ✏) max

z:|z|=c
FS(z).

The above lemma gives us a weak concentration bound in the following sense. While it is generally
not true that ˜F (S [z) ⇡ F (S [z), we can upper bound ˜F (S [z) in a meaningful way and show that
˜F (S [ x

?
) ⇡ F (S [ x

?
) for x? 2 argmax

z

fS(z) by using submodularity. This allows us to show
that the mean marginal contribution of x that maximizes the noisy mean value is an ✏-approximation
to the maximal (non-noisy) mean marginal contribution. Details and proofs are in Appendix A.

In addition to approximating the mean marginal contribution given a noisy oracle, an important
property of the sampled-mean approach is that it well-approximates its true marginal contribution.
Lemma 2.2. For any ✏ > 0 and any set S ⇢ N , let x be a bundle of size 1/✏, then:

FS(x) � (1� ✏)fS(x),

The proof is in Appendix A and exploits a natural property of submodular functions: the removal of a
random element from a sufficiently large set does not significantly affect its value, in expectation.

Let x? 2 argmax

b:|b|=c fS(b). Lemma 2.1 and Lemma 2.2 together imply the following corollary:

Corollary 2.3. For a fixed ✏ > 0 let c = 3/✏, and x 2 argmax

b:|b|=c
˜F (S [ b). Then, w.p. at least

1� exp(�⌦(n1/4
)) we have that: FS(x) � (1� ✏)fS(x?

).

At a first glance, it may seem as if running the greedy algorithm with F instead of f suffices. The
problem, however, is that the mean marginal contribution FS may be an unbounded overestimate
of the true marginal contribution fS . Consider for example an instance where S = ; and there is
a bundle x of size c s.t. for every ; 6= z ✓ x we have f(z) = � for some arbitrarily small �, while
every other subset T ✓ N \ x is complementary to x and has some arbitrarily large value M . In this
case, x = argmax

z:|z|=c F (z) and F (x) = M + � while f(x) = �.

3 The Sampled Mean Greedy for Cardinality Constraints

The SM-GREEDY begins with the empty set S and at every iteration considers all bundles (sets) of
size c 2 O(1/✏) to add to S. At every iteration, the algorithm first identifies the bundle x which
maximizes the noisy mean value. After identifying x, it then considers all possible bundles z 2 BS(x)

and takes the one whose noisy value is largest. We include a formal description below.
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x = {x1, x2}

x 1,3 = {x2, x3}

x 2,3 = {x1, x3}

Figure 1: Illustration of a ball around x = {x1, x2} where N = {x1, x2, x3}, and S = ;. We think of x as a
point in [0, 1]3 and BS(x) = {x12,x23} = {{x2, x3}, {x1, x3}} = {(0, 1, 1), (1, 0, 1)}.

Algorithm 1 SM-GREEDY

Input: budget k, precision ✏ > 0, c 56

✏
1: S  ;
2: while |S| < c ·

⌅
k
c

⇧
do

3: x argmaxb:|b|=c
˜F (S [ b)

4: ˆ

x argmax

z2B(x)

˜f(S [ z)

5: S  S [ ˆ

x

6: end while
7: return S

A key step in analyzing greedy algorithms like the one above is showing that in every iteration the
marginal contribution of the element selected by the algorithm is arbitrarily close to maximal. This
can then be used in a standard inductive argument to show that the algorithm obtains an approximation
arbitrarily close to 1� 1/e. The main crux of the analysis is showing that this property indeed holds
in SM-GREEDY w.h.p. when k 2 ⌦(1/✏2) \ O(

p
log n). For k >

p
log n the analysis become

substantially simpler since it suffices to argue that the algorithm chooses an element whose marginal
contribution is approximately optimal in expectation (details are in the proof of Theorem 3.5).

3.1 Analysis for k 2 ⌦(1/✏2) \O(

p
log n)

Throughout the rest of this section we will analyze a single iteration of SM-GREEDY in which a set
S ⇢ N was selected in previous iterations and the algorithm adds a bundle ˆ

x of size c. Specifically,
ˆ

x 2 argmax

z2BS(x)

˜f(S [ z) where x 2 argmax

b:|b|=c
˜F (S [ b).

As discussed above, for x? 2 argmax

b:|b|=c fS(b) we want to show that when c 2 O(1/✏):

fS(ˆx) � (1� ✏)fS(x
?
).

To do so, we will define two kinds of bundles in BS(x), called good and bad. A good bundle is a
bundle z for which fS(z) � (1� 2

3

✏)fS(x?
) and a bad bundle z is one s.t. fS(z)  (1� ✏)fS(x?

).
Our goal is to prove that the bundle ˆ

x added by the algorithm is w.h.p. not bad. Since according to the
definition of good and bad the true marginal contribution of good bundles has a fixed advantage over
the true marginal contribution of bad bundles, and ˆ

x is the bundle with largest noisy value, essentially
what we need to show is that the largest noise multiplier of a good bundle is sufficiently close to the
largest noise multiplier of a bad bundle, with sufficiently high probability.

As a first step we quantify the fraction of good bundles in a ball, which will then allow us to bound
the values of the noise multipliers of good and bad bundles. The following claim implies at least half
of the bundles in BS(x) are good and at most half are bad (the proof is in Appendix B).
Claim 3.1. Suppose FS(x) �

�
1� ✏

3

�
fS(x?

). Then at least half of the bundles in BS(x) are good.

We next define two thresholds ⇠
inf

and ⇠
sup

. The threshold ⇠
inf

is used as a lower bound on the
largest value obtained when sampling at least |BS(x)|

2

random variables from the noise distribution.
Since at least half of the bundles in the ball are good, ⇠

inf

is a lower bound on the largest noise
multiplier of a good bundle. The threshold ⇠

sup

is used as an upper bound on the largest value
obtained when sampling at most |BS(x)|

2

random variables from the noise distribution. Since at most
half of the bundles in the ball are bad, ⇠

sup

upper bounds the value of a noise multiplier of a bad
bundle. Throughout the rest of this section D will denote a generalized exponential tail distribution.

5



Definition. Let m =

|BS(x)|
2

. For probability density function ⇢(x) of D we define:

• ⇠
sup

is the value for which:
R1
⇠sup

⇢(x)dx =

2

m logn ;

• ⇠
inf

is the value for which:
R1
⇠inf

⇢(x)dx =

2 logn
m .

Claim 3.2. Let m =

|BS(x)|
2

, ⇠
1

, . . . , ⇠m be i.i.d samples of D and ⇠? = max{⇠
1

, . . . , ⇠m}. Then:

Pr

h
⇠
inf

 ⇠?  ⇠
sup

i
� 1� 3

log n

The proof is in Appendix B. Since at least half of the bundles in the ball are good and at most half are
bad, the above claim implies that with probability 1� 3/ log n the maximal value of noise multipliers
of good and bad bundles fall within the range [⇠

inf

, ⇠
sup

]. Since this holds in every iteration, when
k 2 O(

p
log n) by a union bound we get that this holds in all iterations w.p. 1� o(1).

At this point, our lower bound on the largest noisy value of a good bundle is:

max

z2good
˜f(S [ z) � ⇠

inf

⇥
✓
f(S) +

✓
1� 2

3

✏

◆
fS(x

?
)

◆

and the upper bound on the noisy value of any bad bundle is:

max

z2bad
˜f(S [ z)  ⇠

sup

⇥ (f(S) + (1� ✏) fS(x
?
)) .

Let ˆx = argmax

z2BS(x)

˜f(S [ z). We show that given the right bound on ⇠
inf

against ⇠
sup

, then ˆ

x

is not a bad bundle (it does not have to be a good bundle). Lemma 3.3 below gives us such a bound.
Lemma 3.3. For any generalized exponential tail distribution, fixed � > 0 and sufficiently large n:

⇠
inf

�
✓
1� �p

log n

◆
⇠
sup

The proof is quite technical and the fully leverages the fact that k 2 O(

p
log n) and the properties of

generalized exponential tail distributions. The main challenge is that the tail of the distribution is not
necessarily monotone (see Appendix B for further discussion). We defer the proof to Appendix B.

Proving the Main Lemma. We can now prove our main lemma which shows that for any k 2
!(1/✏) \ O(

p
log n) taking a bundle according to the sample mean approach is guaranteed to be

close to the optimal bundle. We state it for a cardinality constraint, but this fact holds more generally
for any matroid of rank k. We include a short proof sketch and defer the full proof to Appendix B.

Lemma 3.4. Let ✏ > 0, and assume that k 2 !(1/✏) \ O(

p
log n) and that fS(x?

) 2 ⌦

⇣
f(S)

k

⌘
.

Then, in every iteration of SM-GREEDY we have that with probability at least 1� 4

logn :

fS(ˆx) � (1� ✏)fS(x
?
).

Proof Sketch. From Corollary 2.3 we know that in every iteration with overwhelming high probabil-
ity FS(x) � (1� �)f(x?

) for � = ✏/3. Since Lemma 3.3 applies for any fixed � > 0 we know that
for sufficiently large n we can lower bound the value of the maximal good bundle in the ball:

max

z2good
˜f(S [ z) �

✓
1� �2

3

p
log n

◆
⇠
sup

⇥[f(S) + (1� 2�)fS(x
?
)]

Let b be the bad bundle with the maximal noisy value for fS . To bound this:
˜f(S [ b) = max

z2bad
⇠S[z

f(S [ z)  ⇠
sup

⇥[f(S) + (1� 3�)fS(x
?
)]

The difference between the two bounds is positive, implying that a bad bundle is not selected.

Theorem 3.5. For any fixed ✏ > 0 and k � 4/✏2 SM-GREEDY returns a set S s.t. w.p. 1� o(1):

f(S) � (1� 1/e� ✏)OPT.
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Proof. Let  = bkc c and use O to denote the set of  bundles of size c whose total value is
largest. To simplify notation we will treat sets of bundles as sets of elements. We will show that
f(S) � (1 � 1/e � �)f(O) where � = ✏/2. Notice that this implies f(S) � (1 � 1/e � ✏) since
 > k

c � c and by submodularity f(O) � (1� �)OPT when k � 1

�2 =

4

✏2 .

We introduce some notation: we use ˆ

xi to denote the bundle selected at iteration i 2 [], Si = [jiˆxj ,
xi 2 argmax

z

˜F (Si-1 [ z), x?
i 2 argmax

z

fSi-1(z), and O is the set of  bundles with maximal
value. Define �i = f(O)� f(Si-1), and S

0

= ;. From submodularity and monotonicity:

fSi-1(x
?
i ) �

1


�i

Consider now a set of bundles {z
1

, . . . , z} where for every i 2 [] we have that zi is drawn u.a.r.
from BSi-1(xi). For each such bundle we can assign a random variable ⇣i for which fSi-1(zi) =

⇣ifSi-1(x
?
i ). Since in every iteration i 2 [] we choose the set whose value is maximal in BSi-1(xi),

by stochastic dominance we know that fSi-1( ˆxi) � f(zi) and therefore:

f(Si)� f(Si-1) = fSi-1( ˆxi) � ⇣ifSi-1(x
?
i ) �

⇣i

�i

We will now show by induction that for all i 2 [] we have that �i 
Qi

j=1

⇣
1� ⇣j



⌘
f(O). This is

clearly the case for i = 1 when S
0

= ; and in general applying the inductive hypothesis we get:

�i+1

= f(O)� f(Si) = �i � (f(Si)� f(Si�1

))  �i

✓
1� ⇣i+1



◆


i+1Y

j=1

✓
1� ⇣j



◆
f(O)

We therefore have that:

� 
Y

j=1

✓
1� ⇣j



◆
f(O)  e�

1


P
j=1 ⇣jf(O)

Observe that the solution of the algorithm S respects f(S) = f(S) = f(O)��, thus:

f(S) �
⇣
1� e�

1


P
j=1 ⇣j

⌘
f(O) (1)

From Lemma 3.4, when k 
p
log n for every i 2 [� 1] we have that w.p. 1� 4/ log(n): 3

fSi-1( ˆxi) � (1� �)fSi-1(x
?
i )

Therefore by a union bound, with probability 1� o(1), we have that ⇣i � (1� �) for all i 2 []. In
particular, 1



P
j=1

⇣j � (1� �). Otherwise, when k >
p
log n from Lemma 2.1:

E
z⇠B(xi)

[fSi-1(z)] = FSi-1(xi) �
✓
1� �

2

◆
fSi-1(x

?
i )

Thus, E[⇣i+1

] � (1� �/2), and by Chernoff when  >
p
log n we get 1



P
i=1

⇣i � (1� �) w.p. at
least 1� exp(��2/8). Therefore, in both cases, when k 

p
log n and when k �

p
log n we have

that 1



P
j=1

⇣j � (1� �) w.p. 1� o(1). With 1 this implies f(S) � (1� 1/e� �)f(O).

Constant k and information theoretic lower bounds. For any constant, a single iteration of a
minor modification of SM-GREEDY suffices. In Appendix B.1 we show an approximation arbitrarily
close to 1� 1/k w.h.p. and 1� 1/(k+1) in expectation. For k = 1 this is arbitrarily close to 1/2. In
Appendix D we show nearly matching lower bounds, and in particular that no randomized algorithm
can obtain an approximation ratio better than 1/2 + o(1) when k = 1, and that it is impossible to
obtain an approximation better than (2k � 1)/2k +O(1/

p
n) for the optimal set of size k.

Theorem 3.6. For any non-negative monotone submodular function there is a deterministic
polynomial-time algorithm which optimizes the function under a cardinality constraint k � 3

and obtains an approximation ratio that is arbitrarily close to 1�1/e with probability 1� o(1) using
access to an approximate oracle. For k � 2 there is a randomized algorithm whose approximation
ratio is arbitrarily close to 1 � 1/e, in expectation over the randomization of the algorithm. For
k = 1 the algorithm achieves a 1/2 approximation in expectation, and no randomized algorithm can
achieve an approximation better than 1/2 + o(1), in expectation.

3W.l.o.g we assume that in every iteration fSi-1(x
?
i ) 2 ⌦( f(Si-1)

k ) to apply Lemma 3.4. Since  2 ⌦(1/✏),
k 2 ⌦(1/✏2), and f(S)  OPT, ignoring iterations where this does not hold costs �✏OPT for a small fixed �.
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4 Approximation Algorithm for Matroids

For intersection of matroids F the algorithm from the Section 3 is generalized as described below.

Algorithm 2 SM-MATROID-GREEDY

Input: intersection of matroids F , precision ✏ > 0, c 56

✏
1: S  ;, X  N
2: while X 6= S do
3: X  X \ {x : S [ x /2 F}
4: x argmax

b:|b|=c
˜F (S [ b)

5: ˆ

x argmax

z2B(x)

˜f(S [ z)

6: S  S [ ˆ

x

7: end while
8: return S

The analysis of the algorithm uses the lemma below, which is a generalization of the classic result
of [NWF78a]. The proof can be found in the Appendix.
Lemma 4.1. Let O be the optimal solution, k = |O|, and for every iteration i of SM-MATROID-
GREEDY let Si be the set of elements selected and x

?
i 2 argmax|z|=c fSi-1(z). Then:

f(O)  (P + 1)

k
cX

i=1

fSi(x
?
i )

Theorem 4.2. Let F denote the intersection of P � 1 matroids on the ground set N , and f : 2

N ! R
be a non-negative monotone submodular function. Then with probability 1� o(1) the SM-MATROID-
GREEDY algorithm returns a set S 2 F s.t.:

f(S) � 1� ✏

P + 1

OPT

Proof Sketch. If the rank of the matroid is O(1/✏2) we can simply apply the case of small k as in the
previous section. Otherwise, assume the rank is at least ⌦(1/✏2) Let  =

k
c , Si = {ˆx

1

, . . . , ˆxi} be
current solutions of bundles of size c at iteration i 2 [] of the algorithm, and let x?

i be the optimal
bundle at iteration i, i.e. x?

i = argmax

b:|b|c fSi�1(b) . In every iteration i 2 [], similar to the
proof of Theorem 3.5, since we choose the set whose value is maximal in BSi-1(xi) we have:

fSi-1( ˆxi) � ⇣ifSi-1(x
?
i )

where ⇣i is a random variable with mean (1� �
2

). Therefore:

f(S) =
X

i=1

fi-1( ˆxi) �
X

i=1

⇣ifSi-1(x
?
i )

From Lemma 3.4, when k 
p
log n for every i 2 [� 1] we have that w.p. 1� 4/ log(n):

fSi-1( ˆxi) � (1� �)fSi-1(x
?
i )

Therefore by a union bound, with probability 1 � o(1), we have that ⇣i � (1 � �) for all i 2 [].
Otherwise, when k >

p
log n we apply a Chernoff bound. We get that with probability 1� o(1):

f(S) �
X

i=1

⇣ifSi-1(x
?
i ) � (1� �)

X

i=1

fSi-1(x
?
i )

From Lemma 4.1 this implies the result.
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