
A Proofs for Stochastic Softmax Tricks

Lemma 1. Let X ⊆ Rn be a finite, non-empty set, P := conv(X), and u ∈ Rn. We have,

max
x∈X

uTx = max
x∈P

uTx = sup
x∈relint(P)

uTx. (9)

If maxx∈X uTx has a unique solution x?, then x? is also the unique solution of maxx∈P uTx.

Proof. Assume w.l.o.g. that X = {x1, . . . , xm}. Let x? ∈ argmaxx∈X u
Tx.

First, let us consider the linear program over X vs. P . Clearly, maxx∈X u
Tx ≤ maxx∈P u

Tx. In
the other direction, for any y ∈ P , we can write y =

∑
i λixi for λi ≥ 0 such that

∑
i λi = 1, and

uTx? =
∑
i

λiu
Tx? ≥

∑
i

λiu
Txi = uT y. (10)

Hence maxx∈X u
Tx ≥ maxx∈P u

Tx. Thus x? ∈ argmaxx∈P u
Tx.

Second, let us consider the linear program over P vs. relint(P). The cases x? ∈ relint(P) or u = 0
are trivial, so assume otherwise. Since uTx? ≥ uTx for x ∈ relint(P), it suffices to show that for all
ε > 0 there exists xε ∈ relint(P) such that uTxε > uTx? − ε. To that end, take x ∈ relint(P) and
0 < λ < min(ε, ‖u‖‖x− x?‖), and define

xε := x? +
λ

‖u‖‖x− x?‖ (x− x
?). (11)

xε ∈ relint(P) by [69, Thm 6.1]. Thus, we get

uTxε = uTx? + λ
uT (x− x?)
‖u‖‖x− x?‖ > uTx? − ε (12)

Finally, suppose that x? = argmaxx∈X u
Tx is unique, but argmaxx∈P u

Tx contains more than
just x?. We will show this implies a contradiction. Let i? be the index i ∈ {1, . . . ,m} such that
x? = xi? . Let y ∈ argmaxx∈P u

Tx be such that y 6= x?. Then we may write y =
∑
i λixi for

λi ≥ 0 such that
∑
i λi = 1. But this leads to a contradiction,

uTx? =
∑
i 6=i?

λi
1− λi?

uTxi <
∑
i 6=i?

λi
1− λi?

uTx? = uTx?. (13)

Lemma 2. Let P ⊆ Rn be a non-empty convex polytope and x an extreme point of P . Define the set,

U(x) =
{
u ∈ Rn : uTx > uT y, ∀y ∈ P \ {x}

}
. (14)

This is the set of utility vectors of a linear program over P whose argmax is the minimal face {x} ⊆ P .
Then, for all u ∈ U(x), there exists an open set O ⊆ U(x) containing u.

Proof. Let u ∈ U(x). Let {x1, . . . , xm} ⊆ P be the set of extreme points (there are finitely many),
and assume w.l.o.g. that x = xm. For each xi 6= xm there exists εi > 0 such that uT (xm − xi) > εi.
Thus, for all v in the open ball Bri(u) of radius ri = εi/‖xm − xi‖ centered at u, we have

vT (xm − xi) = uT (xm − xi) + (v − u)T (xm − xi) > uT (xm − xi)− εi > 0. (15)

Define O = ∩m−1i=1 Bri(u). Note, vTxm > vTxi for all v ∈ O, xi 6= xm. Now, let y ∈ P \ {xm}.
Because P is the convex hull of the xi [12, Thm. 2.9], we must have

y =

m∑
i=1

λixi (16)

for λi ≥ 0,
∑m
i=1 λi = 1 with at least one λi > 0 for i < m. Thus, for all v ∈ O

vTxm =

m∑
i=1

λiv
Txm >

m∑
i=1

λiv
Txi = vT y. (17)

This implies that O ⊆ U(xm), which concludes the proof, as O is open, convex, and contains u.

15

Lemma 3. Given a non-empty, finite set X ⊆ Rn and a proper, closed, strongly convex function
f : Rn → {R,∞} whose domain contains the relative interior of P := conv(X), let f∗ =
minx∈Rn f(x), and δP (x) be the indicator function of the polytope P ,

δP (x) =

{
0 x ∈ P
∞ x /∈ P . (18)

For t ≥ 0, define
gt(x) := t(f(x)− f∗) + δP (x), (19)

g∗t (u) := sup
x∈Rn

uTx− gt(x). (20)

The following are true for t > 0,

1. (20) has a unique solution, g∗t is continuously differentiable, twice differentiable a.e., and

∇g∗t (u) = arg max
x∈Rn

uTx− gt(x). (21)

2. If maxx∈X u
Tx has a unique solution, then

lim
t→0+

∇g∗t (u) = argmax
x∈X

uTx. (22)

Proof. Note, relint(P) ⊆ dom(gt) ⊆ P .

1. Since gt is strongly convex [10, Lem. 5.20], (20) has a unique maximum [10, Thm. 5.25].
Moreover, g∗t is differentiable everywhere in Rn and its gradient∇g∗t is Lipschitz continuous
[10, Thm. 5.26]. By [69, Thm 25.5] ∇g∗t is a continuous function on Rn. By Rademacher’s
theorem, ∇g∗t is a.e. differentiable. (21) follows by standard properties of the convex
conjugate [69, Thm. 23.5, Thm. 25.1].

2. First, by Lemma 1,

g∗0(u) = max
x∈P

uTx = sup
x∈relint(P)

uTx = max
x∈X

uTx. (23)

Since u is such that uTx is uniquely maximized over P , g∗0 is differentiable at u by [69,
Thm. 23.5, Thm. 25.1]. Again by Lemma 1 we have

∇g∗0(u) = argmax
x∈P

uTx = argmax
x∈X

uTx. (24)

Hence, our aim is to show limt→0+ ∇g∗t (u) = ∇g∗0(u). This is equivalent to showing that
limi→∞∇g∗ti(u) = ∇g∗0(u) for any ti > 0 such that ti → 0. Let ti be such a sequence.

We will first show that g∗ti(u)→ g∗0(u). For any y ∈ relint(P),

lim inf
i→∞

g∗ti(u) = lim
i→∞

inf
j≥i

sup
x∈Rn

uTx− gtj (x)

≥ lim
i→∞

inf
j≥i

uT y − gtj (y)

= uT y

Thus,
lim inf
i→∞

g∗ti(u) ≥ sup
y∈relint(P)

uT y = g∗0(u)

Since t(f(x)− f∗) ≥ 0 for all x ∈ Rn, we also have

lim sup
i→∞

g∗ti(u) = lim sup
i→∞

sup
x∈Rn

uTx− gti(x)

≤ lim sup
i→∞

sup
x∈P

uTx = g∗0(u).

Thus limi→∞ g∗ti(u) = g∗0(u).

By Lemma 2, there exists an open convex set O containing u such that for all v ∈ O,
∇g∗0(u) = argmaxx∈P v

Tx. Again, g∗0 is differentiable on O [69, Thm. 23.5, Thm. 25.1].
Using this and the fact that g∗ti(u)→ g∗0(u), we get∇g∗ti(u)→ ∇g∗0(u) [69, Thm. 25.7].

16

Proposition 1. If X in Def. 1 is a.s. unique, then for Xt in Def. 2, limt→0+ Xt = X a.s. If
additionally L : P → R is bounded and continuous, then limt→0+ E[L(Xt)] = E[L(X)].

Proof. For g∗t defined in (20), we have by Lemma 3,

Xt = argmax
x∈P

UTx− tf(x) = ∇g∗t (U). (25)

If X is a.s. unique, then again by Lemma 3

P
(

lim
t→0+

Xt = X

)
= P

(
lim
t→0+

∇g∗t (U) = argmax
x∈X

UTx

)
≥ P (X is unique)
= 1

The last bit of the proof follows from the dominated convergence theorem, since the loss in bounded
on P by assumption, so |L(Xt)| is surely bounded.

Proposition 2. Xt in Def. 2 exists, is unique, and is a.e. differentiable and continuous in U .

Proof. For g∗t defined in (20), we have by Lemma 3,

Xt = argmax
x∈P

UTx− tf(x) = ∇g∗t (U). (26)

Our result follows by the other results of Lemma 3.

Proposition 3. If P(UTa = 0) = 0 for all a ∈ Rn such that a 6= 0, then X in Def. 1 is a.s. unique.

Proof. It suffices to show that for all subsets S ⊆ X with |S| > 1, the event {S =
argmaxx∈X UTx} has zero measure. If |S| > 1, then we can pick two distinct points x1, x2 ∈ S
with x1 6= x2. Now,

P
(
S = argmax

x∈X
UTx

)
= P(∀x ∈ S, UTx =M) ≤ P

(
UT (x1 − x2) = 0

)
= 0. (27)

where M = maxx∈X UTx.

Proposition 4. Let X ⊆ Rn be a non-empty finite set. If X is convex independent, i.e., for all x ∈ X ,
x /∈ conv(X \ {x}), then X is the set of extreme points of conv(X). In particular, any non-empty set
of binary vectors X ⊆ {0, 1}n is convex independent and thus the set of extreme points of conv(X).

Proof. Let X = {x1, . . . , xm}. The fact that the extreme points of conv(X) are in X is trivial. In the
other direction, it is enough to show that xm is an extreme point. Assume xm ∈ X is not an extreme
point of conv(X). Then by definition, we can write xm = λy + (1 − λ)z for y, z ∈ conv(X),
λ ∈ (0, 1) with y 6= xm and z 6= xm. Then, we have that

xm =

m−1∑
i=1

λαi + (1− λ)βi
1− λαm − (1− λ)βm

xi (28)

for some sequences αi, βi ≥ 0 such that
∑m
i=1 αi =

∑m
i=1 βi = 1 and αm, βm < 1. This is clearly

a contradiction of our assumption that xm /∈ conv(X \ {xm}), since the weights in the summation
(28) sum to unity. This implies that X are the extreme points of conv(X).
Let X ⊆ {0, 1}n. It is enough to show that xm /∈ conv({x1, . . . , xm−1}). Assume this is not the
case. Let c = xm − 1/2 ∈ Rn, and note that cTxi < cTxm for all i 6= m when xi are distinct
binary vectors. But, this leads to a contradiction. By assumption we can express xm as a convex
combination of x1, . . . , xm−1. Thus, there exists λi ≥ 0 such that

∑m−1
i=1 λi = 1, and

cTxm =

m−1∑
i=1

λic
Txi <

m−1∑
i=1

λic
Txm = cTxm. (29)

17

B An Abbreviated Field Guide to Stochastic Softmax Tricks

B.1 Introduction

Overview. This is a short field guide to some stochastic softmax tricks (SSTs) and their associated
stochastic argmax tricks (SMTs). There are many potential SSTs not discussed here. We assume
throughout this Appendix that readers are completely familiar with main text and its notation; we do
not review it. In particular, we follow the problem definition and notation of Section 2, the definition
and notation of SMTs in Section 4, and the definition and notation of SSTs in Section 5.

This field guide is organized by the abstract set Y . For each Y , we identify an appropriate set X ⊆ Rn
of structured embeddings. We discuss utility distributions used in the experiments. In some cases, we
can provide a simple, “closed-form”, categorical sampling process for X , i.e., a generalization of the
Gumbel-Max trick. We also cover potential relaxations used in the experiments. In the remainder of
this introduction, we introduce basic concepts that recur throughout the field guide.

Notation. Given a finite set S, the indicator vector xT of a subset T ⊆ S is the binary vector
xT := (xs)s∈S such that xs = 1 if s ∈ T and xs = 0 if s /∈ T . For example, given an graph
G = (V,E), let T be the edges of a spanning tree (ignoring the direction of edges). The indicator
vector xT of T is the vector (xe)e∈E with xe = 1 if e is in the tree and xe = 0 if e is not.

X ∼ D(θ, Y) means that X is distributed according to D, which takes arguments θ and Y . Unless
otherwise stated, X is conditionally independent from all other random variables given θ, Y . For
multidimensional U ∈ Rn, we use the same notation:

U ∼ Exp(λ) ⇐⇒ Ui ∼ Exp(λi) independent (30)

Given A ⊆ {1, . . . , n} and λi ∈ (0,∞] for 0 < i ≤ n, the following notation,

K ∼ λi1A(i), (31)

means that K is a random integer selected from A with probability proportional to λi. If any λi =∞,
then we interpret this as a uniform random integer from the integers i ∈ A with λi =∞.

Basic properties of exponentials and Gumbels. The properties of Gumbels and exponentials are
central to SMTs that have simple descriptions for the marginal pθ. We review the important ones here.
These are not new; many have been used for more elaborate algorithms that manipulate Gumbels
[e.g., 54].

A Gumbel random variable G ∼ Gumbel(θ) for θ ∈ Rn is a location family distribution, which can
be simulated using the identity

G
d
= θ − log(− logU), (32)

for U ∼ uniform(0, 1). An exponential random variable E ∼ Exp(λ) for rate λ > 0 can be
simulated using the identity

E
d
= − logU/λ, (33)

for U ∼ uniform(0, 1). Any result for exponentials immediately becomes a result for Gumbels,
because they are monotonically related:
Proposition 5. If E ∼ Exp(λ), then − logE ∼ Gumbel(log λ).

Proof. If U ∼ uniform(0, 1), then − logE
d
= − log(− logU) + log λ ∼ Gumbel(log λ).

Although we prove results for exponentials, using their monotonic relationship, all of these results
have analogs from Gumbels.

The properties of exponentials are summarized in the following proposition.
Proposition 6. If Ei ∼ Exp(λi) independent for λi > 0 and i ∈ {1, . . . , n}, then

1. argminiEi ∼ λi,
2. miniEi ∼ Exp(

∑n
i=1 λi),

18

3. miniEi and argminiEi are independent,

4. Given K = argminiEi and EK = miniEi, Ei for i 6= K are conditionally, mutually
independent; exponentially distributed with rates λi; and truncated to be larger than EK .

Proof. The joint density of K = argminiEi and Ei is given by
∏n
i=1 λi exp(−λiei)1x≥ek(ei).

Manipulating this joint, we can see that
n∏
i=1

λi exp(−λiei)1x≥ek(ei)

= λk exp(−λkek)
∏
i6=k

λi exp(−λiei)1x≥ek(ei)

=
λk∑n
i=1 λi

(
n∑
i=1

λi

)
exp(−λkek)

∏
i 6=k

λi exp(−λiei)1x≥ek(ei)

=

[
λk∑n
i=1 λi

][(n∑
i=1

λi

)
exp

(
−

n∑
i=1

λiek

)]∏
i 6=k

λi exp(−λiei)
exp(−λiek)

1x≥ek(ei)

(34)

While hard to parse, this manipulation reveals the all of the assertions of the proposition.

Prop. 6 has a couple of corollaries. First, subtracting the minimum exponential from a collection only
affects the distribution of the minimum, leaving the distribution of the other exponentials unchanged.
Corollary 1. If Ei ∼ Exp(λi) independent for λi > 0 and i ∈ {1, . . . , n}, then Ei −miniEi are
mutually independent and

Ei −min
i
Ei ∼

{
Exp(λi) i 6= K

0 i = K
, (35)

where K = argminiEi.

Proof. Consider the change of variables e′i = ei − ek in the joint (34). Each of the terms in the right
hand product over i 6= k of (34) are transformed in the following way

λ exp(−λi(e′i + ek))

exp(−λiek)
1x≥ek(e

′
i + ek) −→ λi exp(−λie′i) (36)

This is essentially the memoryless property of exponentials. Thus, the E′i = Ei −EK for i 6= K are
distributed as exponentials with rate λi and mutually independent. E′K is the constant 0, which is
independent of any random variable. Our result follows.

Second, the process of sorting the collection Ei is equivalent to sampling from {1, . . . , n} without
replacement with probabilities proportional to λi.
Corollary 2. Let Ei ∼ Exp(λi) independent for λi > 0 and i ∈ {1, . . . , n}. Let argsortx :
{1, . . . , n} → {1, . . . , n} be the argsort permutation of x ∈ Rn, i.e., the permutation such that
xargsortx(i) is in non-decreasing order. We have

P(argsortE = σ) =

n∏
i=1

λσ(i)∑n
j=i λσ(j)

(37)

Given argsortE = σ, the sorted vector Eσ = (Eσ(i))
n
i=1 has the following distribution,

Eσ(1) ∼ Exp
(∑n

j=1
λσ(j)

)
Eσ(i) − Eσ(i−1) ∼ Exp

(∑n

j=i
λσ(j)

) (38)

Proof. This follows after repeated, interleaved uses of Cor. 1 and Prop. 6.

19

B.2 Element Selection

One-hot binary embeddings. Given a finite set Y with |Y| = n, we can associate each y ∈ Y
with a one-hot binary embedding. Let X ⊆ Rn be the following set of one-hot embeddings,

X =

{
x ∈ {0, 1}n

∣∣∣∣∣∑
i

xi = 1

}
. (39)

For u ∈ Rn, a solution to the linear program x? ∈ argmaxx∈X u
Tx is given by setting x?k = 1 for

k ∈ argmaxi ui and x?k = 0 otherwise.

Random Utilities. If U ∼ Gumbel(θ), then X ∼ exp(θi). This is known as the Gumbel-Max
trick [52, 54], which follows from Props. 5 and 6.

Relaxtions. If f(x) =
∑
i xi log xi, then the SST solution Xt is given by

Xt =

(
exp(Ui/t)∑n
j=1 exp(Uj/t)

)n
i=1

. (40)

In this case, the categorical entropy relaxation and the exponential family relaxation coincide. This
is known as the Gumbel-Softmax trick when U ∼ Gumbel(θ) [53, 35]. If f(x) = ‖x‖2/2, then
Xt can be computed using the sparsemax operator [55]. In analogy, we name this relaxation with
U ∼ Gumbel(θ) the Gumbel-Sparsemax trick.

B.3 Subset Selection

Binary vector embeddings. Given a finite set S with |S| = n, let Y be the set of all subsets of S,
i.e., Y = 2S := {y ⊆ S}. The indicator vector embeddings of Y is the set,

X = {xy : y ∈ 2S} = {0, 1}|S| (41)

For u ∈ Rn, a solution to the linear program x? ∈ argmaxx∈X u
Tx is given by setting x?i = 1 if

ui > 0 and x?i = 0 otherwise, for all i ≤ n.

Random utilities. If U ∼ Logistic(θ), then Xi ∼ Bern(σ(θi)) for all i ≤ n, where σ(·) is the
sigmoid function. This corresponds to an application of the Gumbel-Max trick independently to
each element in S. U ∼ Logistic(θ) has the same distribution as θ + logU ′ − log(1 − U ′) for
U ′ ∼ uniform(0, 1).

Relaxations. For this case, the exponential family and the binary entropy relaxation, where f(x) =∑n
i=1 xi log(xi) + (1− xi) log(1− xi), coincide. The SST solution Xt is given by

Xt = (σ(Ui/t))
n
i=1 (42)

where σ(·) is the sigmoid function. For the categorical entropy relaxation with f(x) =∑n
i=1 xi log(xi), the SST solution is given by Xt = (min(1, exp(Ui/t)))

n
i=1 [13].

B.4 k-Subset Selection

k-hot binary embeddings. Given a finite set S with |S| = n, let Y be the set of all subsets of S
with cardinality 1 ≤ k < n, i.e., Y = {y ⊆ S | |y| = k}. The indicator vector embeddings of Y is
the set,

X = {xy : y ⊆ S, |y| = k} (43)
For u ∈ Rn, let arg topku be the operator that returns the indices of the k largest values of u. For
u ∈ Rn, a solution to the linear program x? ∈ argmaxx∈X u

Tx is given by setting x?i = 1 for
i ∈ arg topku and x?i = 0 otherwise.

Random utilities. If U ∼ Gumbel(θ), this induces a Plackett-Luce model [52][66] over the
indices that sort U in descending order. In particular, X may be sampled by sampling k times without
replacement from the set {1, . . . , n} with probabilities proportional to exp(θi), setting the sampled
indices of X to 1, and the rest to 0 [44]. This can be seen as a consequence of Cor. 2.

20

Relaxations. For the Euclidean relaxation with f(x) = ‖x‖2/2, Xt we computed Xt using a
bisection method to solve the constrained quadratic program, but note that other algorithms are
available [13]. For the categorical entropy relaxation with f(x) =

∑n
i=1 xi log(xi), the SST solution

Xt can be computed efficiently using the algorithm described in [56]. For the binary entropy
relaxation with f(x) =

∑n
i=1 xi log(xi) + (1− xi) log(1− xi), the SST solution can be computed

using the algorithm in [7]. Finally, for the exponential family relaxation, the SST solution can be
computed using dynamic programming as described in [79].

B.5 Correlated k-Subset Selection

Correlated k-hot binary embeddings. Given a finite set S with |S| = n, let Y be the set of all
subsets of S with cardinality 1 ≤ k < n, i.e., Y = {y ⊆ V | |y| = k}. We can associate each
y ∈ Y with a (2n − 1)-dimensional binary embedding with a k-hot cardinality constraint on the
first n dimensions and a constraint that the n− 1 dimensions indicate correlations between adjacent
dimensions in the first n, i.e. the vertices of the correlation polytope of a chain [83, Ex. 3.8] with an
added cardinality constraint [59]. Let X ⊆ Rn be the set of all such embeddings,

X =
{
x ∈ {0, 1}2n−1

∣∣∣∑n

i=1
xi = k; xi = xi−nxi−n+1 for all n < i ≤ 2n− 1

}
. (44)

For u ∈ Rn, a solution to the linear program x? ∈ argmaxx∈X u
Tx can be computed using dynamic

programming [79, 59].

Random utilities. In our experiments for correlated k-subset selection we considered Gumbel
unary utilities with fixed pairwise utilities. This is, we considered Ui ∼ Gumbel(θi) for i ≤ n and
Ui = θi for n < i ≤ 2n− 1.

Relaxations. The exponential family relaxation for correlated k-subsets can be computed using
dynamic programming as described in [79, 59].

B.6 Perfect Bipartite Matchings

Permutation matrix embeddings. Given a complete bipartite graph Kn,n, let Y be the set of all
perfect matchings. We can associate each y ∈ Y with a permutation matrix and let X be the set of all
such matrices,

X =

x ∈ {0, 1}n×n
∣∣∣∣∣∣ for all 1 ≤ i, j ≤ n,

∑
i

xij = 1,
∑
j

xij = 1

 . (45)

For u ∈ Rn×n, a solution to the linear program x? ∈ argmaxx∈X u
Tx can be computed using the

Hungarian method [47].

Random utilities. Previously, [58] considered U ∼ Gumbel(θ) and [31] uses correlated Gumbel-
based utilities that induce a Plackett-Luce model [52][66].

Relaxations. For the categorical entropy relaxation with f(x) =
∑n
i=1 xi log(xi), the SST solution

Xt can be computed using the Sinkhorn algorithm [75]. When choosing Gumbel utilities, this recovers
Gumbel-Sinkhorn [58]. This relaxation can also be used to relax the Plackett-Luce model, if combined
with the utility distribution in [31].

B.7 Undirected Spanning Trees

Edge indicator embeddings. Given a undirected graph G = (V,E), let Y be the set of spanning
trees of G represented as subsets T ⊆ E of edges. The indicator vector embeddings of Y is the set,

X = ∪T∈Y{xT }. (46)

We assume that G has at least one spanning tree, and thus X is non-empty. A linear program over
X is known as a maximum weight spanning tree problem. It is efficiently solved by the Kruskal’s
algorithm [46].

21

Random utilities. In our experiments, we used U ∼ Gumbel(θ). In this case, there is a simple,
categorical sampling process that described the distribution over X .

The sampling process follows Kruskal’s algorithm [46]. The steps of Kruskal’s algorithm are as
follows: sort the list of edges e in non-increasing order according to their utilities Ue, greedily
construct a tree by adding edges to T as long as no cycles are created, and return the indicator vector
xT . Using Cor. 2 and Prop. 5, for Gumbel utilities this is equivalent to the following process: sample
edges e without replacement with probabilities proportional to exp(θe), add edges e to T in the
sampled order as long as no cycles are created, and return the indicator vector xT .

Relaxations. The exponential family relaxation for spanning trees can be computed using Kirch-
hoff’s Matrix-Tree Theorem. Here we present a quick informal review. Consider an exponential
family with natural parameters u ∈ R|E| over X such that the probability of x ∈ X is proportional to
exp(uTx). Define the weights,

wij =

{
exp(ue) if i 6= j and ∃ e ∈ E connecting nodes i and j
0 otherwise

. (47)

Consider the graph Laplacian L ∈ R|V |×|V | defined by

Lij =

{∑
k 6=j wkj if i = j

−wij if i 6= j
(48)

Let Lk,k be the submatrix of L obtained by deleting the kth row and kth column. The Kirchhoff
Matrix-Tree Theoreom states that

log detLk,k = log

(∑
T∈Y

exp
(
uTxT

))
. (49)

[82, p. 14] for a reference. We can use this to compute the marginals of the exponential family via its
derivative [83]. In particular,

µ(u) :=

(
∂ log detLk,k

∂ue

)
e∈E

=
∑
T∈Y

xT exp
(
uTxT

)∑
T ′∈Y exp (u

TxT ′)
. (50)

These partial derivatives can be computed in the standard auto-diff libraries. All together, we may
define the exponential family relaxation via Xt = µ(U/t).

B.8 Rooted, Directed Spanning Trees

Edge indicator embeddings. Given a directed graph G = (V,E), let Y be the set of r-
arborescences for r ∈ V . An r-arborescence is a subgraph of G that is a spanning tree if the edge
directions are ignored and that has a directed path from r to every node in V . Let xT := (xe)e∈E be
the indicator vector of an r-arborescence with edges T ⊆ E. Define the set T (r) of r-arborescences
of G. The indicator vector embeddings of Y is the set,

X = ∪T∈T (r){xT }. (51)

We assume that G has at least one r-arborescence, and thus X is non-empty. A linear program
over X is known as a maximum weight r-arborescence problem. It is efficiently solved by the
Chu-Liu-Edmonds algorithm (CLE) [18, 24], see Alg. 1 for an implementation by [39].

Random utilities. In the experiments, we tried U ∼ Gumbel(θ), −U ∼ Exp(θ) with θ > 0, and
U ∼ N (θ, 1). As far as we know X does not have any particularly simple closed-form categorical
sampling process in the cases U ∼ Gumbel(θ) or U ∼ N (θ, 1).

In contrast, for negative exponential utilities −U ∼ Exp(θ), X can be sampled using the sampling
process given in Alg. 2. In some sense, Alg. 2 is an elaborate generalization of the Gumbel-Max
trick to arborescences.

We will argue that Alg. 2 produces the same distribution over its output as Alg. 1 does on negative
exponential Ue. To do this, we will argue that joint distribution of the sequence of edge choices (lines

22

Algorithm 1: Maximum r-arborescence [39]
Init: graph G, node r, Ue ∈ R, T = ∅;

1 foreach node v 6= r do
2 Ev = {edges entering v};
3 U ′e = Ue −maxe∈Ev

Ue, ∀e ∈ Ev;
4 Pick e ∈ Ev s.t. U ′e = 0; T = T ∪ {e};
5 if T is an arborescence then return xT ;
6 else there is a directed cycle C ⊆ T
7 Contract C to supernode, form graph G′;
8 Recurse on (G′, r, U ′) to get arbor. T ′;
9 Expand T ′ to subgraph of G and add

10 all but one edge of C; return xT ′ ;

Algorithm 2: Equiv. for neg. exp. U
Init: graph G, node r, λe > 0, T = ∅;

1 foreach node v 6= r do
2 Ev = {edges entering v};
3 Sample e ∼ λe1Ev

(e); T = T ∪ {e};
4 λ′a = λa if a 6= e else∞, ∀a ∈ Ev;
5 if T is an arborescence then return xT ;
6 else there is a directed cycle C ⊆ T
7 Contract C to supernode, form graph G′;
8 Recurse on (G′, r, λ′) to get arbor. T ′;
9 Expand T ′ to subgraph of G and add

10 all but one edge of C; return xT ′ ;

Figure 6: Alg. 1 and Alg. 2 have the same output distribution for negative exponential U , i.e., Alg.
2 is an equivalent categorical sampling process for X . Alg. 1 computes the maximum point of a
stochastic r-arborescence trick with random utilities Ue [39]. When−Ue ∼ Exp(λe), it has the same
distribution as Alg. 2. Alg. 2 samples a random r-arborescence given rates λe > 0 for each edge.
Both Algs. assume that G has at least one r-arbor. Color indicates the main difference.

2-4 colored red in Alg. 1), after integrating out U , is given by lines 2-4 (colored blue) of Alg. 2.
Consider the first call to CLE: all Ue are negative and distinct almost surely, for each node v 6= r the
maximum utility edge is picked from the set of entering edges Ev, and all edges have their utilities
modified by subtracting the maximum utility. The argmax of Ue over Ev is a categorical random
variable with mass function proportional to the rates λe, and it is independent of the max of Ue over
Ev by Prop. 6. By Cor. 1, the procedure of modifying the utilities leaves the distribution of all
unpicked edges invariant and sets the utility of the argmax edge to 0. Thus, the distribution of U ′
passed one level up the recursive stack is the same as U with the exception of a randomly chosen
subset of utilities U ′e whose rates have been set to∞. The equivalence in distribution between Alg. 1
and Alg. 2 follows by induction.

Relaxations. The exponential family relaxation for r-arborescences can be computed using the
directed version of Kirchhoff’s Matrix-Tree Theorem. Here we present a quick informal review.
Consider an exponential family with natural parameters u ∈ R|E| over X such that the probability of
x ∈ X is proportional to exp(uTx). Define the weights,

wij =

{
exp(ue) if i 6= j and ∃ e ∈ E from node i→ j

0 otherwise
. (52)

Consider the graph Laplacian L ∈ R|V |×|V | defined by

Lij =

{∑
k 6=j wkj if i = j

−wij if i 6= j
(53)

Let Lr,r be the submatrix of L obtained by deleting the rth row and rth column. The result by Tutte
[82, p. 140] states that

log detLr,r = log

 ∑
T∈T (r)

exp
(
uTxT

) (54)

We can use this to compute the marginals of the exponential family via its derivative [83]. In particular,

µ(u) :=

(
∂ log detLr,r

∂ue

)
e∈E

=
∑

T∈T (r)

xT exp
(
uTxT

)∑
T ′∈T (r) exp (u

TxT ′)
. (55)

These partial derivatives can be computed in the standard auto-diff libraries. All together, we may
define the exponential family relaxation via Xt = µ(U/t).

23

Table 4: For k-subset selection on appearance aspect, SSTs select subsets with high precision and
outperform baseline relaxations. Test set MSE (×10−2) and subset precision (%) is shown for models
selected on valid. MSE.

k = 5 k = 10 k = 15

Model Relaxation MSE Subs. Prec. MSE Subs. Prec. MSE Subs. Prec.

Simple

L2X [17] 3.1± 0.1 48.7± 0.6 2.6± 0.1 41.9± 0.6 2.5± 0.1 38.6± 1.5
SoftSub [86] 3.2± 0.1 43.9± 1.1 2.7± 0.1 41.9± 2.1 2.5± 0.1 38.0± 2.4

Euclid. Top k 3.0± 0.1 49.4± 1.7 2.6± 0.1 48.8± 1.2 2.4± 0.1 42.9± 1.0
Cat. Ent. Top k 3.0± 0.1 53.2± 1.7 2.6± 0.1 46.3± 1.9 2.4± 0.1 41.3± 0.8
Bin. Ent. Top k 3.0± 0.1 54.5± 5.6 2.6± 0.1 48.9± 1.7 2.4± 0.1 43.1± 0.6
E.F. Ent. Top k 3.0± 0.1 53.2± 0.9 2.5± 0.1 50.6± 2.1 2.4± 0.1 43.3± 0.3

Corr. Top k 2.7± 0.1 71.6± 1.1 2.4± 0.1 69.7± 1.7 2.3± 0.1 66.7± 1.7

Complex

L2X [17] 2.6± 0.1 76.6± 0.4 2.4± 0.1 69.3± 0.9 2.4± 0.1 62.6± 3.0
SoftSub [86] 2.6± 0.1 79.4± 1.1 2.5± 0.1 69.5± 2.0 2.4± 0.1 60.2± 7.0

Euclid. Top k 2.6± 0.1 81.6± 0.9 2.4± 0.1 76.9± 1.7 2.3± 0.1 69.7± 2.2
Cat. Ent. Top k 2.5± 0.1 83.7± 0.8 2.4± 0.1 76.5± 0.9 2.2± 0.1 65.9± 1.4
Bin. Ent. Top k 2.6± 0.1 81.9± 0.7 2.4± 0.1 75.7± 1.2 2.2± 0.1 65.7± 1.1
E.F. Ent. Top k 2.6± 0.1 82.3± 1.4 2.4± 0.1 72.9± 0.7 2.3± 0.1 65.8± 1.3

Corr. Top k 2.5± 0.1 85.1± 2.4 2.3± 0.1 77.8± 1.3 2.2± 0.1 74.5± 1.5

Table 5: For k-subset selection on palate aspect, SSTs tend to outperform baseline relaxations. Test
set MSE (×10−2) and subset precision (%) is shown for models selected on valid. MSE.

k = 5 k = 10 k = 15

Model Relaxation MSE Subs. Prec. MSE Subs. Prec. MSE Subs. Prec.

Simple

L2X [17] 3.5± 0.1 27.8± 3.7 3.2± 0.1 21.0± 1.8 3.0± 0.1 20.5± 0.7
SoftSub [86] 3.7± 0.1 23.9± 1.4 3.3± 0.1 23.5± 3.7 3.1± 0.1 20.0± 1.7

Euclid. Top k 3.5± 0.1 36.0± 5.7 3.2± 0.1 27.1± 0.7 3.0± 0.1 23.7± 0.8
Cat. Ent. Top k 3.6± 0.1 25.4± 3.6 3.0± 0.1 28.5± 2.9 3.0± 0.1 21.7± 0.4
Bin. Ent. Top k 3.6± 0.1 25.2± 1.7 3.2± 0.1 27.2± 2.6 3.0± 0.1 23.4± 1.7
E.F. Ent. Top k 3.6± 0.1 26.0± 3.0 3.1± 0.1 27.0± 1.6 2.9± 0.1 23.4± 0.6

Corr. Top k 3.2± 0.1 54.3± 1.0 2.8± 0.1 50.0± 1.7 2.7± 0.1 46.0± 2.0

Complex

L2X [17] 3.1± 0.1 47.4± 1.7 2.8± 0.1 40.8± 0.6 2.7± 0.1 34.8± 0.8
SoftSub [86] 3.1± 0.1 44.4± 1.1 2.8± 0.1 44.2± 2.0 2.8± 0.1 38.7± 1.0

Euclid. Top k 2.9± 0.1 56.2± 0.7 2.7± 0.1 43.9± 1.7 2.6± 0.1 38.0± 1.1
Cat. Ent. Top k 2.9± 0.1 55.1± 0.7 2.7± 0.1 45.2± 0.8 2.6± 0.1 40.2± 0.9
Bin. Ent. Top k 2.9± 0.1 55.6± 0.8 2.7± 0.1 47.6± 1.0 2.7± 0.1 39.1± 1.0
E.F. Ent. Top k 2.9± 0.1 56.3± 0.3 2.7± 0.1 48.1± 1.3 2.6± 0.1 40.3± 1.0

Corr. Top k 2.8± 0.1 60.4± 1.5 2.6± 0.1 53.5± 2.9 2.6± 0.1 46.8± 1.5

C Additional Results

C.1 REINFORCE and NVIL on Graph Layout

We experimented with 3 variants of REINFORCE estimators, each with a different baseline. The
EMA baseline is an exponential moving average of the ELBO. The Batch baseline is the mean ELBO
of the current batch. Finally, the Multi-sample baseline is the mean ELBO over k multiple samples,
which is a local baseline for each sample (See section 3.1 of [43]). For NVIL, the input-dependent
baseline was a one hidden-layer MLP with ReLU activations, attached to the GNN encoder, just
before the final fully connected layer. We did not do variance normalization. We used weight decay
on the encoder parameters, including the input-dependent baseline parameters. We tuned weight
decay and the exponential moving average constant, in addition to the learning rate. For Multi-sample
REINFORCE, we additionally tuned k = {2, 4, 8}, and following [43], we divided the batch size by
k in order to keep the number of total samples constant.

24

Table 6: For k-subset selection on taste aspect, MSE and subset precision tend to be lower for all
methods. This is because the taste rating is highly correlated with other ratings making it difficult to
identify subsets with high precision. SSTs achieve small improvements. Test set MSE (×10−2) and
subset precision (%) is shown for models selected on valid. MSE.

k = 5 k = 10 k = 15

Model Relaxation MSE Subs. Prec. MSE Subs. Prec. MSE Subs. Prec.

Simple

L2X [17] 3.1± 0.1 28.5± 0.6 2.9± 0.1 24.1± 1.3 2.7± 0.1 26.8± 0.8
SoftSub [86] 3.1± 0.1 29.9± 0.8 2.9± 0.1 27.7± 0.7 2.7± 0.1 27.8± 1.9

Euclid. Top k 3.0± 0.1 30.2± 0.4 2.7± 0.1 28.0± 0.4 2.6± 0.1 26.5± 0.5
Cat. Ent. Top k 3.1± 0.1 28.5± 0.6 2.8± 0.1 28.9± 0.6 2.6± 0.1 30.5± 1.6
Bin. Ent. Top k 3.0± 0.1 29.2± 0.4 2.9± 0.1 24.6± 1.7 2.6± 0.1 27.9± 0.9
E.F. Ent. Top k 3.0± 0.1 29.7± 0.3 2.7± 0.1 29.0± 1.5 2.6± 0.1 26.5± 0.5

Corr. Top k 2.8± 0.1 31.7± 0.5 2.5± 0.1 37.7± 1.6 2.4± 0.1 37.8± 0.5

Complex

L2X [17] 2.5± 0.1 40.3± 0.7 2.4± 0.1 42.4± 2.0 2.4± 0.1 39.7± 1.1
SoftSub [86] 2.5± 0.1 43.3± 0.9 2.4± 0.1 41.3± 0.5 2.3± 0.1 40.5± 0.7

Euclid. Top k 2.4± 0.1 43.8± 0.7 2.3± 0.1 43.1± 0.6 2.2± 0.1 42.2± 0.8
Cat. Ent. Top k 2.4± 0.1 46.5± 0.6 2.3± 0.1 44.6± 0.3 2.2± 0.1 45.5± 1.1
Bin. Ent. Top k 2.4± 0.1 40.9± 1.3 2.3± 0.1 46.3± 0.9 2.2± 0.1 44.7± 0.5
E.F. Ent. Top k 2.4± 0.1 45.3± 0.6 2.2± 0.1 46.1± 0.8 2.2± 0.1 46.6± 1.1

Corr. Top k 2.4± 0.1 45.9± 1.3 2.2± 0.1 47.3± 0.6 2.1± 0.1 45.1± 2.0

Table 7: NVIL and REINFORCE struggle to learn the underlying structure wherever their SST
counterparts struggle. NVIL with Spanning Tree is able to learn some structure, but it is still worse
and higher variance than its SST counterpart. This is for T = 10.

REINFORCE (EMA) NVIL

Edge Distribution ELBO Edge Prec. Edge Rec. ELBO Edge Prec. Edge Rec.

Indep. Directed Edges −1730± 60 41± 4 92± 7 −1550± 20 44± 1 94± 1
Top |V | − 1 −2170± 10 42± 1 42± 1 −2110± 10 42± 2 42± 2
Spanning Tree −2250± 20 40± 7 40± 7 −1570± 300 I 83± 20 83± 20

REINFORCE (Batch) REINFORCE (Multi-sample)

Edge Distribution ELBO Edge Prec. Edge Rec. ELBO Edge Prec. Edge Rec.

Indep. Directed Edges −1780± 20 39± 3 90± 6 −1710± 30 38± 3 88± 6
Top |V | − 1 −2180± 0 39± 1 39± 1 −2150± 10 40± 0 40± 0
Spanning Tree −2260± 0 41± 1 41± 1 −2230± 20 42± 1 42± 1

We used U as the “action” for all edge distributions, and therefore, computed the log probability over
U . We also computed the KL divergence with respect to U as in the rest of the graph layout experi-
ments (See App. D.5.2).This was because computing the probability of X is not computationally
efficient for Top |V | − 1 and Spanning Tree. In particular, the marginal of X in these cases is not in
the exponential family. We emphasize that using U as the “action” for REINFORCE is atypical.

We found that both NVIL and REINFORCE with Indep. Directed Edges and Top |V | − 1 perform
similarly to their SST counterparts, struggling to learn the underlying structure. This is also the case
for REINFORCE with Spanning Tree. On the other hand, NVIL with Spanning Tree, is able to learn
some structure, although worse and higher variance than its SST counterpart.

D Experimental Details

D.1 Implementing Relaxed Gradient Estimators

For implementing the relaxed gradient estimator given in (7), several options are available. In general,
the forward computation of Xt may be unrolled, such that the estimator can be computed with the aid
of modern software packages for automatic differentiation [1, 65, 16]. However, for some specific
choices of f and X , it may be more efficient to compute the estimator exactly via a custom backward

25

pass, e.g. [7, 56]. Yet another alternative is to use local finite difference approximations as pointed
out by [21]. In this case, an approximation for dL(Xt)/dU is given by

dL(Xt)

dU
≈ Xt(U + ε∂L(Xt)/∂Xt)−Xt(U − ε∂L(Xt)/∂Xt)

2ε
(56)

with equality in the limit as ε → 0. This approximation is valid, because the Jacobian of Xt is
symmetric [70, Cor. 2.9]. It is derived from the vector chain rule and the definition of the derivative
of Xt in the direction ∂L(Xt)/∂Xt. This method only requires two additional calls to a solver for
(6) and does not require additional evaluations of L. We found this method helpful for implementing
E.F. Ent. Top k and Corr. Top k.

D.2 Numerical Stability

Our SSTs for undirected and rooted direct spanning trees (Spanning Tree and Arborescence) require
the inversion of a matrix. We found matrix inversion prone to suffer from numerical instabilities when
the maximum and minimum values in θ grew too large apart. As a resolution, we found it effective to
cap the maximal range in θ to 15 during training. Specifically, if θmax = max(θ), we clipped, i.e.,
θi = max(θi, θmax − 15). In addition, after clipping we normalized, i.e., θ = θ − θmax. This leaves
the computation unaffected but improves stability. In addition, for Spanning Tree we chose the index
k (c.f., Section B) to be the row in which θmax occurs. We did not clip when evaluating the models.

D.3 Estimating Standard Errors by Bootstrapping Model Selection

For all our experiments, we report standard errors over the model selection process from bootstrapping.
In all our experiments we randomly searched hyperparameters over N = 20 (NRI, ListOps) or
N = 25 (L2X) independent runs and selected the best model over these runs based on the task
objective on the validation set. In all tables, we report test set metrics for the best model thus selected.
We obtained standard errors by bootstrapping this procedure. Specifically, we randomly sampled
with replacement N times from the N runs and selected models on the sampled runs. We repeated
this procedure for M = 105 times to compute standard deviations for all test set metrics over the M
trials.

D.4 Computing the KL divergence

There are at least 3 possible KL terms for a relaxed ELBO: the KL from a prior over X to the
distribution of X , the KL from a prior over conv(X) to the distribution of Xt, or the KL from
a prior over Rn to the distribution of U , see Section C.3 of [53] for a discussion of this topic.
In our case, since we do not know of an explicit tractable density of Xt or X , we compute
the KL with respect to U . The KL divergence with respect to U is an upper-bound to the KL
divergence with respect to Xt due to a data processing inequality. Therefore, the ELBO that we
are optimizing is a lower-bound to the relaxed variational objective. Whether or not this is a good
choice is an empirical question. Note, that when optimizing the relaxed objective, using a KL
divergence with respect to X does not result in a lower-bound to the relaxed variational objec-
tive, as it is not necessarily an ELBO for the continuous relaxed model (see again Section C.3 of [53]).

D.5 Neural Relational Inference (NRI) for Graph Layout

D.5.1 Data

Our dataset consisted of latent prior spanning trees over 10 vertices. Latent spanning trees were
sampled by applying Kruskal’s algorithm [46] to U ∼ Gumbel(0) for a fully-connected graph. Note
that this does not result in a uniform distribution over spanning trees. Initial vertex locations were
sampled from N (0, I) in R2. Given initial locations and the latent tree, dynamical observations were
obtained by applying a force-directed algorithm for graph layout [25] for T ∈ {10, 20} iterations. We
then discarded the initial vertex positions, because the first iteration of the layout algorithm typically
results in large relocations. This renders the initial vertex positions an outlier which is hard to model.
Hence, the final dataset used for training consisted of 10 respectively 20 location observations in
R2 for each of the 10 vertices. By this procedure, we generated a training set of size 50,000 and
validation and test sets of size 10,000.

26

D.5.2 Model

The NRI model consists of encoder and decoder graph neural networks. Our encoder and decoder
architectures were identical to the MLP encoder and MLP decoder architectures, respectively, in [38].

Encoder The encoder GNN passes messages over the fully connected directed graph with n = 10
nodes. We took the final edge representation of the GNN to use as θ. The final edge representation
was in R90×m, where m = 2 for Indep. Directed Edges and m = 1 for E.F. Ent. Top |V | − 1 and
Spanning Tree, both over undirected edges (90 because we considered all directed edges excluding
self-connections). We had m = 2 for Indep. Directed Edges, because we followed [38] and applied
the Gumbel-Max trick independently to each edge. This is equivalent to using U ∼ Logistic(θ),
where θ ∈ R90. Both E.F. Ent. Top |V | − 1 and Spanning Tree require undirected graphs, therefore,
we “symmetrized” θ such that θij = θji by taking the average of the edge representations for both
directions. Therefore, in this case, θ ∈ R45.

Decoder Given previous timestep data, the decoder GNN passes messages over the sampled graph
adjacency matrix X and predicts future node positions. As in [38], we used teacher-forcing every
10 timesteps. X ∈ Rn×n in this case was a directed adjacency matrix over the graph G = (V,E)
where V were the nodes. Xij = 1 is interpreted as there being an edge from i → j and 0 for no
edge. For the SMTs over undirected edges (E.F. Ent. Top |V | − 1 and Spanning Tree) X was the
symmetric, directed adjacency matrix with edges in both directions for each undirected edge. The
decoder passed messages between both connected and not-connected nodes. When considering a
message from node i → j, it used one network for the edges with Xij = 1 and another network
for the edges with Xij = 0, such that we could differentiate the two edge “types”. For the SST
relaxation, both messages were passed, weighted by (Xt)ij and 1− (Xt)ij , respectively. Because
of the parameterization of our model, during evaluation, it is ambiguous whether the sampled hard
graph is in the correct representation (adjacency matrix where 1 is the existence of an edge, and
0 is the non-existence of an edge). Therefore, when measuring precision and recall for structure
discovery, we selected whichever graph (the sampled graph versus the graph with adjacency matrix
of one minus that of the sampled graph) that yielded the highest precision, and reported precision and
recall measurements for that graph.

Objective Our ELBO objective consisted of the reconstruction error and KL divergence. The
reconstruction error was the Gaussian log likelihood of the predicted node positions generated from
the decoder given ground truth node positions. As mentioned in D.4, we computed the KL divergence
with respect to U instead of the sampled graph for all methods, because computing the probability of a
Spanning Tree, or Top k sample is not computationally efficient. We chose our prior to be Gumbel(0).
The KL divergence between a Gumbel distribution with location θ and a Gumbel distribution with
location 0, is θ + exp(−θ)− 1.

D.5.3 Training

All graph layout experiments were run with batch size 128 for 50000 steps. We evaluated the model
on the validation set every 500 training steps, and saved the model that achieved the best average
validation ELBO. We used the Adam optimizer with a constant learning rate, and β1 = 0.9, β2 =
0.999, ε = 10−8. We tuned hypermarameters using random uniform search over a hypercube-shaped
search space with 20 trials. We tuned the constant learning rate, and temperature t for all methods.
For E.F. Ent. Top k, we additionally tuned ε, which is used when computing the gradients for the
backward-pass using finite-differences. The ranges for hyperparameter values were chosen such that
optimal hyperparameter values (corresponding to the best validation ELBO) were not close to the
boundaries of the search space.

D.6 Unsupervised Parsing on ListOps

D.6.1 Data

We considered a simplified variant of the ListOps dataset [62]. Specifically, we used the same data
generation process as [62] but excluded the summod operator and used rejection sampling to ensure
that the lengths of all sequences in the dataset ranged only from 10 to 50 and that our dataset contained

27

the same number of sequences of depths d ∈ {1, 2, 3, 4, 5}. Depth was measured with respect to the
ground truth parse tree. For each sequence, the ground truth parse tree was defined by directed edges
from all operators to their respective operands. We generated 100,000 samples for the training set
(20,000 for each depth), and 10,000 for the validation and test set (2,000 for each depth).

D.6.2 Model

We used an embedding dimension of 60, and all neural networks had 60 hidden units.

LSTM We used a single-layered LSTM going from left to right on the input embedding matrix.
The LSTM had hidden size 60 and includes dropout with probability 0.1. The output of the LSTM
was flattened and fed into a single linear layer to bring the dimension to 60. The output of the linear
layer was fed into an MLP with one hidden layer and ReLU activations.

GNN on latent (di)graph Our models had two main parts: an LSTM encoder that produced a
graph adjacency matrix sample (X or Xt), and a GNN that passed messages over the sampled graph.

The LSTM encoder consisted of two LSTMs– one representing the “head” tokens, and the other for
“modifier” tokens. Both LSTMs were single-layered, left-to-right, with hidden size 60, and include
dropout with probability 0.1. Each LSTM outputted a single real valued vector for each token i
of n tokens with dimension 60. To obtain θ ∈ Rn×n, we defined θij = vheadT

i vmod
j , where vhead

i is
the vector outputted by the head LSTM for word i and vmod

i is the vector outputted by the modifier
LSTM for word j. As in the graph layout experiments, we symmetrized θ for the SSTs that require
undirected edges (Indep. Undirected Edges, and Spanning Tree). For exponential U ∼ Exp(θ), θ
was parameterized as the softplus function of the Rn×n matrix output of the encoder. We used the
Torch-struct library [73] to obtain soft samples for arborescence.

X ∈ Rn×n in this case was a directed adjacency matrix over the graph G = (V,E) where V were
the tokens. Xij = 1 is interpreted as there being an edge from i → j and 0 for no edge. For the
SMTs over undirected edges (Indep. Undirected Edges and Spanning Tree) X was the symmetric,
directed adjacency matrix with edges in both directions for each undirected edge. For Arborescence,
we assumed the first token is the root node of the arborescence.

Given X , the GNN ran 5 message passing steps over the adjacency matrix, with the initial node
embeddings being the input embedding. The GNN architecture was identical to the GNN decoder in
the graph layout experiments, except we did not pass messages on edges with Xij = 0 and we did
not include the last MLP after every messaging step. For the SST, we simply weighted each message
from i → j by (Xt)ij . We used dropout with probability 0.1 in the MLPs. We used a recurrent
connection after every message passing step. The LSTM encoder and the GNN each had their own
embedding lookup table for the input. We fed the node embedding of the first token to an MLP with
one hidden layer and ReLU activations.

D.6.3 Training

All ListOps experiments were run with batch size 100 for 50 epochs. We evaluated the model on the
validation set every 800 training steps, and saved the model that achieved the best average validation
task accuracy. We used the AdamW optimizer with a constant learning rate, and β1 = 0.9, β2 =
0.999, ε = 10−8. We tuned hypermarameters using random uniform search over a hypercube-shaped
search space with 20 trials. We tuned the constant learning rate, temperature t, and weight decay for
all methods. The ranges for hyperparameter values were chosen such that optimal hyperparameter
values (corresponding to the best validation accuracy) were not close to the boundaries of the search
space.

D.7 Learning To Explain (L2X) Aspect Ratings

Data. We used the BeerAdvocate dataset [57], which contains reviews comprised of free-text
feedback and ratings for multiple aspects, including appearance, aroma, palate, and taste. For each
aspect, we used the same de-correlated subsets of the original dataset as [49]. The training set for the
aspect appearance contained 80k reviews and for all other aspects 70k reviews. Unfortunately, [49]
do not provide separate validation and test sets. Therefore for each aspect, we split their heldout set
into two evenly sized validation and test sets containing 5k reviews each. We used pre-trained word

28

embeddings of dimension 200 from [49] to initialize all models. Each review was padded/ cut to 350
words. For all aspects, subset precision was measured on the same subset of 993 annotated reviews
from [57]. The aspect ratings were normalized to the unit interval [0, 1] and MSE is reported on the
normalized scale.

Model. Our model used convolutional neural networks to parameterize both the subset distribution
and to make a prediction from the masked embeddings. For parameterizing the masks, we considered
a simple and (a more) complex architecture. The simple architecture consisted of a Dropout layer
(with p = 0.1) and a convolutional layer (with one filter and a kernel size of one) to parameterize
θi ∈ R for each word i, producing a the vector θ ∈ Rn. For Corr. Top k, θ ∈ R2n−1. The
first n dimensions correspond to each word i and are parameterized as above. For dimensions
i ∈ {n + 1, . . . , 2n − 1}, θi represents a coupling between words i and i + 1, so we denote this
θi,i+1. It was parameterized as the sum of three terms, θi,i+1 = φi + φ′i + φi,i+1: φi ∈ R computed
using a seperate convolutional layer of the same kind as described above, φ′i ∈ R computed using
yet another convolutional layer of the same kind as described above, and φi,i+1 ∈ R obtained from
a third convolutional layer with one filter and a kernel size of two. In total, we used four separate
convolutional layers to parameterize the simple encoder. For the complex architecture, we used
two additional convolutional layers, each with 100 filters, kernels of size three, ReLU activations to
compute the initial word embeddings. This was padded to maintain the length of a review.

X was a k-hot binary vector in n-dimensions with each dimension corresponding to a word. For Corr.
Top K, we ignored dimensions i ∈ {n+1, . . . , 2n− 1}, which correspond to the pairwise indicators.
Predictions were made from the masked embeddings, using Xi to mask the embedding of word i.
Our model applied a soft (at training) or hard (at evaluation) subset mask to the word embeddings of
a given review. Our model then used two convolutional layers over these masked embeddings, each
with 100 filters, kernels of size three and ReLU activations. The resulting output was max-pooled
over all feature vectors. Our model then made predictions using a Dropout layer (with p = 0.1), a
fully connected layer (with output dimension 100, ReLU activation) and a fully connected layer (with
output dimension one, sigmoid activation) to predict the rating of a given aspect.

Training. We trained all models for ten epochs at minibatches of size 100. We used the Adam
optimizer [36] and a linear learning rate schedule. Hyperparameters included the initial learning
rate, its final decay factor, the number of epochs over which to decay the learning rate, weight
decay and the temperature of the relaxed gradient estimator. Hyperparameters were optimized for
each model using random search over 25 independent runs. The learning rate and its associated
hyperparameters were sampled from {1, 3, 5, 10, 30, 50, 100} × 10−4, {1, 10, 100, 1000} × 10−4

and {5, 6, . . . , 10} respectively. Weight decay was sampled from {0, 1, 10, 100} × 10−6 and the
temperature was sampled from [0.1, 2]. For a given run, models were evaluated on the validation set
at the end of each epoch and the best validated model was was retained. For E.F. Ent. Top k and
Corr. Top k, we trained these methods with ε ∈ {1, 10, 100, 1000} × 10−3 and selected the best ε
on the validation set. We believe that it may be possible to improve on the results we report with an
efficient exact implementation of the backward pass for these two methods. We found the overhead
created by automatic differentiation software to differentiate through the unrolled dynamic program
was prohibitively large in this experiment.

29

