
We first would like to thank the reviewers for their insightful comments and suggestions. We will give a list of changes1

that we propose to implement to improve the quality of the paper, based on the four reviews.2

Foreword: This paper is framed as a methodological and theoretical contribution, with simple experimental validation.3

There is in particular no specific ethical concern with this paper – something we will add in a "Broader Impact" section.4

Reviewer 1 • Corollary 1: Continuity and the permutation invariance conditions are satisfied in both the linear system5

and the AC power flow problems. The uniqueness is only proven for the linear system. However it is very likely to hold6

for many problems. We will add one sentence along this line. • Correlation with ’ground truth’: RMSE and correlation7

(between DSS and ‘exact’ solutions) provide complementary views. In this context we used correlation, we will add8

RMSE results in supplementary material. • AC power flow discussion: Indeed, a large loss does not necessarily imply9

poor predictions in V and θ, nor, in turn, in Pij and Qij . But the approach remains beneficial in terms of computational10

cost as long as the predictions for Pij and Qij are good enough. This will be better explained in the final version. We11

will also modify the caption of Table 2. • “DGM” reference: We will add it to references [6]-[7].12

Reviewer 2 • Critical applications: Our primary application domain being the highly sensitive area of power grids, we13

are truly aware that AI can bring novel threats to systems security and reliability. This was our primary motivation14

for properly introducing mathematical concepts and ideas in this work. • Limitations: We are aware that the universal15

approximation theorem that we derive does not offer any guarantee of convergence. We will revise the paper to stress16

this more clearly. However, this non-trivial result is a pre-requisite to provide solid theoretical ground to the proposed17

approach. • Experimental validation: Adding more difficult use cases (pushing the loads to the limit in the power18

flow, handling non-homogeneous and even nonlinear PDEs as suggested, etc.) is on-going work. We will more clearly19

discuss the current limitations in the conclusion. In particular, we will mention the fact that in the case of critical20

applications, our approach can be used to find a good starting point for some classical method, thus saving large amounts21

of computing resources. • CPU time: We probably did not present our results clearly enough, but the unit used for22

CPU times in Table 1 is ms, making our estimation in line with the one from the review. We will modify the row23

and column captions. • Adaptive number of iterations: During our preliminary experiments we observed that having24

different neural network blocks at each propagation step gave better results, thus making k a fixed hyperparameter.25

However, a recurrent graph neural network structure with adaptive k is definitely an interesting avenue to explore. •26

AC linear domain: This aspect has been further investigated in some of our previous work, which we will cite in the27

revised version, by comparing our statistical solver, the Newton-Raphson method, and the DC-approximation (which28

relies on a linearization of the Kirchhoff’s equations). These experiments showed that the DC-approximation was29

significantly worse than our proposed method, thus proving that the DSS performs well in the non linear domain of30

the AC PF problem. We acknowledge that this aspect should have been addressed in the paper. • AC feasibility: Our31

architecture takes as input the active and reactive loads, active production and voltage setpoints at generators, and we32

use a slack bus so the AC feasibility is not an issue. • References: We were not aware of the Shental et al. reference,33

and will add it in the discussion. • Amount of samples: We do need some sample problems, but we do not need to have34

their solutions, as in the supervised "proxy" approach, since we have a closed-form expression for the loss function.35

We will stress this better in the revised version. Nevertheless, it is true that the choice of the problems (i.e. of the36

distribution D) is another important issue regarding the validation. However, the same issue arises in the proxy case. •37

Notations: RdA and RdB are introduced on line 138 and Mk
θ on line line 137, before being used in eq. (8). We will38

regroup clear notation definitions in the revised version for additional clarity. • Hypotheses: In addition to the continuity39

and permutation invariance hypotheses, we also need to have some uniqueness property as introduced in Section III to40

be able to properly lay the ground for the theorem. • Choice of k and d: If D is a dataset of snapshots of the Californian41

power grid, then one can compute the power grid diameter, which we proved to be a good lower bound for k. Moreover,42

one can expect that the larger the inputs dA or dB , the larger d should be. We will add a sentence in the revised version.43

• Hyperparameters: We will add the ranges of the grid search for all hyperparameters.44

Reviewer 3 • Labelled data and ‘proxy’ approach: We use the word ‘proxy’ to designate the method that learns45

to reproduce existing solutions. Here, we only need some sample problems, but not their solutions, thanks to the46

closed-form expression for the loss function. We will stress, and phrase, this better in the revised version. • Correlation47

with ‘ground truth’: See response to reviewer 1. • Computational complexity: The theoretical complexity has been48

addressed line 152. The wall-clock times have been reported in Table 1 and Table 2 for all considered methods.49

•Meaning of A and B: A and B are the matrix (resp. vector) that result from the discretization and assembling process50

of the Poisson equation. The chosen loss amounts to solve AU = B. Each element of U corresponds to a node that is51

shown in Figure (4). Moreover, the edges that are displayed at the top left correspond to non zero values Aij . Further52

details are provided in lines 75-77 and Appendix A. • Phrasing: The term "brick" is employed to express the idea that53

neural networks are here elementary building blocks in a broader architecture. We will modify the wording.54

Reviewer 4 • Constraints: The term “constraint” is used in the introduction: it does not refer to optimization constraints55

but to domain specific consideration. As defined in eq. (2)-(3), we focus on unconstrained optimization. Adding56

non-trivial constraints is actually a line of work we are currently investigating. We will correct this misleading phrasing.57

• Comparison with proxy solutions: We fully agree regarding the lack of comparison with proxy neural networks. This58

is on-going work.59


