
We thank the referees for their detailed work and their thoughtful comments that we gratefully use to improve our paper.1

Answer to referee 1: We will add and adjust the two mentioned references, thanks for letting us know.2

1. We do not know whether there is a general criteria that would distinguish when the decay is 1/α or 1/
√
α. Providing3

such a generic criteria is definitely a line of research we would like investigate in the future.4

2. Our analysis in this paper focuses on i.i.d Gaussian data and L2 regularization, as this case was very extensively5

studied in past works, in particular in statistical physics. As mentioned, the CGMT analysis used in this work can6

be generalized to non-isotropic Gaussian and any convex loss and separable regularization. We will add a related7

discussion in the final version to clarify.8

3. We thank the referee for pointing out this very interesting work. First, note that the main focus of our work is on9

the test error including the constants for any α, not only on the rate at very large α. Secondly, we focus here on the10

generalization for a non Lipshitz function (namely the sign/misclassification loss) so that the suggested reference that11

focus on smooth loss functions does not readily apply. We shall, however, include the discussion of these bounds in the12

section where we compare to the Rademacher bounds, and investigate this interesting connection.13

4. This is correct. The main reason why we use CGMT and not AMP is that we do not know how to prove that the state14

evolution of the AMP corresponds to the solution of the ERM. Only after having the CGMT proof in hand, it follows15

that the SE of AMP gives the same equations than the CGMT. We will add a comment to the paper.16

Answer to referee 2: We shall indeed comment on the absence of the computational gap in the final version.17

The set of fixed point equations is fully rigorous. The analytic solution of this set of equations is provided only in the18

ridge case, and also for vanishing λ → 0 that allows to obtain analytically the asymptotic generalization behaviour19

of the max-margin estimator. Unfortunately, in the others situations, we did not find a closed form expression of the20

fixed point, so that the generalization behaviour is evaluated numerically. We, however, note that these are fixed point21

equations on scalar variables so their numerical resolution posed no problem. The non-trivial part of the rigorous22

analysis is the reduction of the high-dimensional problem to the scalar fixed point equations.23

We will clarify and distinguish the points of our work that are rigorously proven with this work, and the ones for which24

the proof can be extended. As correctly pointed out, in order to not overload the paper and as most of the numerics has25

been performed in this case, the set of fixed point equations (10) has been made rigorous only for L2 regularization26

for binary classification, even though the entropy for regression is proven as well in (SM III.1.1). We stated that our27

results are valid for a wide range of regularizers as the replica’s prediction of the fixed point equations are provided for28

generic convex and separable loss and regularizer. They are believed to hold true and the generic Gordon’s mini-max29

framework can be easily generalized to this case.30

We only reproduced the results of [49] to bring to light interesting conclusions relating our work of the ERM estimations31

and the discussion of [49]. We will clarify this in the final version.32

1. As briefly explained in the proof below Theorem 4.1, the GAMP algorithm, recalled in (S.M VI.1), is valid for ERM33

estimation with the corresponding updates f ermout (l, r), f ermw (l, r) in (S.M VI.2). Thm 4.1 relies basically therefore on34

the fact that the optimal loss lopt and regularizer ropt are designed in (S.M VI) such that at each time step the ERM35

denoisers match the Bayes-optimal ones: f ermout (lopt, ropt) = fbayesout and f ermw (lopt, ropt) = fbayesw . As these denoising36

steps are the only difference between ERM-AMP and Bayes-AMP, and as according to [53] AMP algorithm with37

Bayes-updates reaches Bayes-optimal performances, we obtain Theorem 4.1 and will clarify the discussion.38

2. Indeed the Gordon analysis apply to Φ (SM III.9) and Φ̃ (SM III.10). The free entropy of the problem is therefore39

given by Φ̃ that reads as an optimization problem over µ, δ, τ in (SM III.4). As λ > 0, it can be shown that this problem40

has a unique solution (µ?, δ?) so that (µ, δ) → (µ?, δ?). As suggested, we will add a clarification of this technical step.41

Answer to referee 3: Our motivation to focus on the sign-teacher with Gaussian data and ground truth vector is that it42

has been extensively studied in the past. Our analysis is valid more generically, and we will discuss this in the revised43

manuscript more clearly, see answer to referee 2. We will correct the reference to the Moreau-Yosida regularization.44

Answer to referee 5: We will correct the typos, thank you very much. Concerning consequences for practitioners, we45

think that our result about approaching very closely the Bayes-optimal performance with simple regularized ERM is an46

interesting message for practitioners. Of course, shoving this in more realistic settings would be desired.47

As correctly pointed out, the construction of the optimal loss and regularizer requires the knowledge of the teacher48

distribution related to Z?
out, Z?

w in (17). Indeed, in the Bayes-optimal setting, we may directly use the Bayes-optimal49

AMP algorithm to achieve optimal performances as proven in [53]. Nevertheless, it seems to us interesting to point out50

that Bayes performances that require, in principle, to compute an intractable high-dimensional posterior sampling can51

be obtained instead by the easier, more common and practical ERM estimation.52


