
We thank all the reviewers for their detailed and helpful comments.1

Response to Reviewers 1&4: Is the assumption DKLpptrue||p0q ă `8 in Thm 4.5 attainable?2

R: We would like to clarify that the definition of ptrue is to satisfy y “
ş

uhpθ,xqptruepθ, uqdθdu, which is ir-3

relevant to α. In comparison, pt is the parameter distribution for the neural network defined in (3.1) with the4

scaling factor α. So the KL-divergence bound on pt in Theorem 4.4 does not contradict with the existence of5

ptrue. This assumption on ptrue essentially assumes that the target function is in the very big function class6

F “ tfpxq “
ş

uhpθ,xqptruepθ, uqdθdu,Dχ2pptrue||p0q ă `8u, and therefore it is attainable. Note that this7

type of assumption on the target function is inevitable: Without any target function assumptions, the random label case8

is not excluded, and for random labels small test error is impossible. We will add more discussion in the camera ready.9

Response to Reviewer 1:10

Q1: The minimal eigenvalue of the NTK Gram matrix affacts trainable and generalization properties11

R1: Thank you for pointing out the related work [S1]. We will cite this paper and add more discussion on the rate of12

the smallest eigenvalue of NTK Gram matrix in the camera ready. λ0 indeed depends on n, which is consistent with13

existing NTK literature. However, our theorem assumptions are all still attainable in this setting.14

Q2(a): (4.1) in Thm 4.4 cannot cover the mean filed case α “ 1. (b): The KL bound in Thm 4.4 increases with n.15

R2: We believe both questions are caused by a misunderstanding on the scaling factor α. We would like to clarify that16

α is not Op1q. Instead, in all of our main results (Theorems 4.4 and 4.5), α “ polypnq. In other words, Theorem 4.4 is17

not supposed to cover the mean field case α “ 1 at all. Also, because of α “ polypnq, the KL bound in Theorem 4.418

will not increase with n. A simple way to parse and understand our results is to make an analogy between α and the19

square root of network width
?
m in the standard NTK literature.20

Response to Reviewer 2:21

Q1: Explain how and why noisy gradient and regularizers can not be handled by standard NTK analysis22

R1: Thank you for your suggestion. We will add a section to explain this claim in detail. Here we provide a short23

explanation. In noisy gradient descent, the weight decay regularizer pushes the weights towards zero, and gradient24

noises further push the weights towards a random direction. Therefore, they jointly make each weight fairly far away25

from initialization. However, the joint effect of weight decay and gradient noise does not push the distribution far away26

from initialization, as they together give a KL-divergence regularization in the energy functional.27

Q2: The scaling factor should appear in the definition of tangent kernel28

R2: Our definition of the NTK is correct and consistent with existing results. Our definition matches the definition in29

equation (16) in [25], where a similar large scaling factor is also considered.30

Q3: Should specify in what sense does “parameters stay close to initialization”.31

R3: Here by “parameters stay close to initialization” we mean the “node-wise” `2-norm distance. Thanks for pointing32

out the related work. We will comment on it in the camera ready.33

Q4: Do the results still hold, if the gradient noise and regularizer are controlled by different coefficient?34

R4: When the gradient noise and regularizer scales are different, the corresponding regularizer on distribution is no35

longer on the KL-divergence towards initialization distribution p0, but is towards some different Gaussian distribution rp.36

Therefore, this setting is likely different from the NTK regime, and our linear convergence result may no longer hold.37

Nevertheless, our generalization results can easily cover this setting by assuming DKLpptrue||rpq ă `8.38

Q5: How does the scaling factor alpha affect the results? Why does scaling factor matter? From Eq. (4.1), it seems that39

for smaller alpha the theorem does not hold. A discussion of the order of scaling factor alpha is preferred40

R5: As we discussed around line 94, α corresponds to the square root of network width in the standard NTK regime,41

and therefore condition (4.1) is the counterpart of the network width requirement m ě polypnq in standard NTK-type42

optimization results [2,14,15,35]. Therefore, requiring a large α is natural to ensure that the training of the network is in43

the NTK regime (or lazy training regime), and the setting with smaller α is not the focus of this paper. We will clarify it44

and provide the specific order of α in the camera ready.45

Response to Reviewer 3:46

Q1: There is no finite bound on the number of neurons.47

R1: By using similar techniques as in [25,26], we are able to study how the training of a finitely wide network can be48

approximated by the PDE (3.4) in a bounded time interval r0, T s. We will add more discussion in the camera ready.49

Response to Reviewer 4:50

Q1: motivation of regularization, regularization might not be necessary for over-parameterized model51

R1: Weight decay regularization is a widely used regularization in deep learning practice, and therefore we believe it52

is important to establish theoretical guarantees that cover weight decay. It is true that generalization bounds can be53

developed even without the use of regularizers. This is mainly due to the study of the implicit regularization induced by54

training algorithms. However, the study of explicit regularization is still an important problem, as explicit regularization55

can still affect generalization in a different way compared with implicit regularization. See e.g., [33].56

Q2: Discuss on the relation to generalization bounds for SGD57

R2: Our generalization bound is in the probability measure space. In comparison, existing generalization bounds for58

SGD are in parameter space, which is not applicable in our setting.59


