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Abstract

Modern deep learning approaches have shown promising results in meteorolog-
ical applications like precipitation nowcasting, synthetic radar generation, front
detection and several others. In order to effectively train and validate these com-
plex algorithms, large and diverse datasets containing high-resolution imagery
are required. Petabytes of weather data, such as from the Geostationary Envi-
ronmental Satellite System (GOES) and the Next-Generation Radar (NEXRAD)
system, are available to the public; however, the size and complexity of these
datasets is a hindrance to developing and training deep models. To help address
this problem, we introduce the Storm EVent ImagRy (SEVIR) dataset - a single,
rich dataset that combines spatially and temporally aligned data from multiple
sensors, along with baseline implementations of deep learning models and evalua-
tion metrics, to accelerate new algorithmic innovations. SEVIR is an annotated,
curated and spatio-temporally aligned dataset containing over 10,000 weather
events that each consist of 384 km x 384 km image sequences spanning 4 hours
of time. Images in SEVIR were sampled and aligned across five different data
types: three channels (C02, C09, C13) from the GOES-16 advanced baseline
imager, NEXRAD vertically integrated liquid mosaics, and GOES-16 Geosta-
tionary Lightning Mapper (GLM) flashes. Many events in SEVIR were selected
and matched to the NOAA Storm Events database so that additional descriptive
information such as storm impacts and storm descriptions can be linked to the rich
imagery provided by the sensors. We describe the data collection methodology
and illustrate the applications of this dataset with two examples of deep learning
in meteorology: precipitation nowcasting and synthetic weather radar generation.
In addition, we also describe a set of metrics that can be used to evaluate the
outputs of these models. As of this writing, the SEVIR dataset can be downloaded
from https://registry.opendata.aws/sevir/. Baseline implementations of selected
applications are also available at https://github.com/MIT-AI-Accelerator/neurips-
2020-sevir.

1 Introduction

The Earth’s weather is continuously monitored by sensors that collect terabytes of data every day.
Over the US, satellite observations provided by GOES-R series satellites (GOES-16 & GOES-17),
and weather radar data provided by the national network of WSR-88D (NEXRAD) radars are two
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major sources of weather sensing used by forecasters, decision makers, and the general public.
Archives of these two sensing modalities make up petabytes of data that include images of clouds in
both visible and infrared, depictions of precipitation intensity, and detection of lightning. Recently,
there has been a great deal of work to use deep learning to better leverage these rich data sources,
specifically for applications like short term weather forecasting [30, 20, 6], synthetic weather radar
for areas lacking traditional weather radar [27], improved data assimilation for improved numerical
weather prediction [8], and many others. Furthermore, access to datasets like GOES & NEXRAD is
becoming easier as cloud services such as Google Earth Engine [12], Amazon Open Data Registry [1],
IBM’s PAIRS [3] and others provide access to Earth system datasets.

While this deluge of weather data is generally a boon for machine learning, there still remains
significant challenges for researchers trying to work in this area. The totality of datasets like GOES &
NEXRAD is simply too large to be used directly for model training, and so significant down sampling
of the data is required. This down sampling is a non-trivial step. Naive sampling techniques, like fixed
region sampling or uniform random sampling, can potentially lead to datasets that under-represent
severe weather or extreme events which are relatively rare. Moreover, combining data across different
sensing modalities like radar and satellite requires significant compute resources to properly align
these data sources on a common grid. This complexity often leads to researchers curating their own
specialized datasets, which are usually not distributed or shared. Aside from a few exceptions (e.g.
[2]), the community lacks a sufficient number of common "machine-learning ready" datasets in the
area of meteorology that are useful for validating and benchmarking new capabilities.

To help address these issues, we present the Storm EVent ImagRy dataset (SEVIR), a dataset designed
for advancing machine learning for meteorology. SEVIR contains image sequences for over 10,000
weather events that cover 384 km x 384 km patches and span 4 hours. Images in SEVIR were sampled
and aligned across 5 different sensing modalities: three channels (C02, C09, C13) from the GOES-16
advanced baseline imager (ABI) [22], NEXRAD derived vertically integrated liquid (VIL) mosaics
created by the FAA’s NextGenWeather processor Testbed [4], and GOES-16 Geostationary Lightning
Mapper (GLM) flashes [11]. Events in SEVIR were carefully sampled to ensure the dataset contains
relevant severe storm cases. The main contributions of our work are summarized below:

• Publicly available terabyte-sized SEVIR dataset of 10,000 weather events aligned across 5
imaging modalities.
• Detailed overview of two machine learning applications that can be studied using SEVIR.
• Source code for data readers, baseline model implementations, metrics, loss functions and

trained models for Nowcast and Synthetic Weather Radar applications.

2 SEVIR: Storm Event Imagery Dataset

Figure 1: The Storm EVent ImagRy (SEVIR) dataset contains over 10,000 spatially and temporally
aligned sequences across the five image types.

SEVIR is a collection of temporally and spatially aligned image sequences depicting weather events
captured over the contiguous US (CONUS) by GOES-16 satellite and the mosaic of NEXRAD
radars. Figure 1 shows a set of frames taken from a SEVIR event. SEVIR contains five image
types: GOES-16 0.6 µm visible satellite channel (vis), 6.9 µm and 10.7 µm infrared channels
(ir069, ir107), a radar mosaic of vertically integrated liquid (vil), and total lightning flashes
collected by the GOES-16 geostationary lightning mapper (GLM) (lght). See Table 1 for details.

Each event in SEVIR consists of a 4-hour length sequence of images sampled in 5 minute steps. The
lightning modality is the only non-image type, and is represented by a collection of GLM lightning
flashes captured in the 4 hour time window. SEVIR events cover 384 km x 384 km patches sampled

2



Table 1: Description of sensor types in SEVIR

Image Description Spatial Patch Event
type Resolution Size Count

vis Visible satellite imagery (day-time only) 0.5 km 768x768 13,403
ir069 Infrared Satellite imagery (mid-level water vapor) 2 km 192x192 13,552
ir107 Infrared Satellite imagery (clean longwave window) 2 km 192x192 13,541
vil NEXRAD radar mosaic of VIL 1 km 384x384 20,393
lght Intercloud and cloud to ground lightning events 8 km N/A 15,115

at locations throughout the continental U.S. (CONUS). The pixel resolution in the images differ by
image type, and were chosen to closely match the resolution of the original data. Since the patch
dimension of 384 km is constant across sensors, the size of each image differs (as shown in Table 1).

Mathematically, SEVIR events make up an indexed family (s, i) → Xs,i, where s ∈ S ≡
{vis, ir069, ir107, vil, lght} is one of the five modalities, or image types, described in Ta-
ble 1, and i ∈ Is is a alphanumeric string that uniquely identifies an event captured by one or more
image types. For all modalities except lght, Xs,i is a 3D tensor with shape [Ls, Ls, T ] representing
sequences of gray-scale images, where Ls is the patch size of modality s listed in Table 1, and T is
the number of time steps in each event (as of this writing, T = 49 for all image types). For lght,
Xs,i is 2D matrix of shape

[
N lght

i , 5
]
, with columns representing time, latitude, longitude, x-position

and y-position of each lightning flash for event i. The number of events captured by image type
s is given by Ns = |Is|. Due to gaps in sensor coverage and availability of data archives used to
make SEVIR, not all events i are covered by all image types. Table 1 provides the number of events
covered by each image type. Approximately 12,000 events are covered by all five image types.

The images in SEVIR are stored in HDF5 files that make up 952 GB of disk space. SEVIR also
contains a catalog in CSV format containing metadata for all the events, including ids i, image type s,
filename and file index pointing to Xs,i, the center time stamp of the event in UTC, corner lat/lons of
the event patch, the map projection of the patch, and other identifying information. The catalog also
makes it possible to augment SEVIR with additional datasets as needed.

2.1 SEVIR Event Selection

Events in SEVIR were selected in one of two ways - Random selection and Storm event based
selection. To select random events, a set of random times was uniformly selected through the years
2017-2019. For each time, each image type was retrieved if it was available. Event centers were
sampled randomly based on the VIL data, with higher probability given to pixels with higher VIL
intensity. This sampling method ensured that the dataset did not oversample the "no precipitation"
case. Random events in SEVIR have an id starting with R.

The storm event based selection method used the National Centers for Environmental Information
(NCEI) Storm Events Database3 to target reported cases of severe weather. This database contains the
time window, location, severe weather category, descriptors of storm strength and impact, as well as
narratives summarizing each event. For SEVIR, entries in the Storm Events Database between 2017
and 2019 matching category Flood, Flash Flood, Hail, Heavy Rain, Lightning, Thunderstorm Wind
or Tornado were selected. These events were clustered based on time, latitude and longitude using a
hierarchical clustering algorithm. The central point in each identified cluster was used to select the
central time and position of a SEVIR event. Storm events in SEVIR have an id starting with S.

The left panel of Figure 2 shows the geospatial locations of all SEVIR events, separated by "Random"
events and "Storm" events. The times of the events counted across the 5 image types is shown in
the right panel of Figure 2. The storm events are more clustered in the summer months over the US,
whereas the random events are more evenly distributed. In 2017, SEVIR only contains vil, which
explains the lower number of events prior to 2018.

For storm events, the SEVIR catalog also provides the EVENT_ID, EPISODE_ID, and storm type for
the event in the Storm Event database used to select the SEVIR event. By cross referencing these

3https://www.ncdc.noaa.gov/stormevents/
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Figure 2: (Left) Location of all events collected in SEVIR. The red points represent SEVIR events
that are directly linked to NCEI Storm Events. (Right) Temporal distribution of SEVIR events.

columns with the NCEI Storm Event database, several other text-based data entries can be linked to
the imagery data in SEVIR. Figure 3 shows an example one such record corresponding to a SEVIR
Storm Event.

Figure 3: Many events in SEVIR are directly linked to the NCEI storm event database which contains
data associated with SEVIR events such as storm types, storm impacts, and storm narratives.

3 Applications of SEVIR for problems in Weather Modeling

SEVIR was designed to address a number of problems in meteorology. Many of these problems have
connections to well-known problems in computer vision and machine learning, such as:

Future Prediction: Given sequence X = {X1, ..., Xp} of consecutive frames of image type s,
predict future frames Y = {Y 1, ..., Y f}. This is the problem of nowcasting, which is a term used for
short-term forecasts that typically go 1 to 2 hours into the future.

Image-to-Image translation: Given image types si ∈ Sinput, estimate unknown image type(s)
sj ∈ Soutput. For example, generate "synthetic" weather radar imagery (like that represented by
vil), using satellite imagery and lightning detection for areas lacking ground based weather radar.

Unsupervised optical flow: Given a sequence of frames from image type s, generate a flow field
V ∈ RLs,Ls,2 that describes motion in the image. In meteorology, this is similar to atmospheric
motion estimation [9], which provides wind inputs to numerical weather prediction models.

Classification or automatic caption generation: Given data from multiple image types, classify
storm type, and generate text based descriptions of the event similar to that shown in Figure 3.

Super-Resolution: Down sample images in SEVIR, and try to learn a mapping to the original higher
resolution. In meteorology, this is similar to statistical downscaling [26].

Each problem in this (non-exhaustive) list can be studied using SEVIR. The remainder of this paper
will focus on two of these examples: nowcasting and synthetic weather radar generation. Working
baseline implementations and evaluations of these two capabilities are provided. Models discussed
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here use SEVIR data before June 1, 2019 for training. Data during and after June 1, 2019 is the test
dataset and is used only for final evaluation of the fit model.

3.1 Model Architecture and Loss Functions

We use variants of the U-Net architecture [19] to solve both the nowcasting and synthetic radar
problems. Combined SEVIR inputs are passed through a series of 4 encoder blocks with 32, 64, 128
and 256 filters of size 3x3, followed by a bottleneck layer with 1024 2D convolutional filters with a
3x3 receptive field. The decoder portion of the network consists of 4 decoder blocks for nowcasting,
and 5 in the case of synthetic radar in order to match the target resolution. The final 2D convolutional
layer of the network uses a linear activation, configured with the appropriate number of outputs.
(Additional details in supplementary materials). All models were implemented in TensorFlow [5]
and were trained on the MIT Supercloud TX-GAIA [17, 21] system with compute nodes having two
32GB NVIDIA Volta V100 GPUs and dual 20-core Intel Xeon Gold 6248 CPUs with 384 GB of
RAM. The Horovod [23] framework was used for data distributed training. Models were trained
using 8 GPUs across 4 nodes.

Several variations of loss functions were tested for comparison. In both problems considered, the
goal is to produce images of vil, thus Lp loss functions like MSE or MAE are appropriate. However,
it is well known that sole reliance on these loss functions can lead to poor texture [16, 31]. Therefore
we also implemented advanced loss functions to test if more realistic texture can be produced in
addition to spatial and temporal accuracy in the prediction. The loss functions used are as follows:

Reconstruction Loss: Either LMSE or LMAE .

VGG16 Content Loss: Lcontent(Y, Ŷ ; `) = ‖φ`(Y )− φ`(Ŷ )‖2, where φ` is the activation of the `th
layer of the VGG16 network [24].

VGG16 Style Loss: Lstyle(Y, Ŷ ;w) =
∑

` w
`‖G`(Y )−G`(Ŷ )‖2, where w =

[
w1, . . . , wL

V GG16

]
are weights corresponding to VGG layers, and G` is the gram matrix of features corresponding to the
activations of layer `.

Conditional GAN Loss: LcGAN (X,Y, Ŷ ) = Ex,y [D(x, y)] +Ex [1−D(x,G(x))], where G is the
model generating a prediction given inputs x, D is a discriminator model trying to predict if an image
is either from the training set or produced by the generator, and E is the expectation taken w.r.t. the
training data. A discriminator model similar to the pix2pix model (PatchGAN) [14] was used.

3.2 Evaluation Metrics

Evaluation of network performance using image quality assessment can be inherently challenging.
We propose the dual approach of forecast-specific metrics as well as commonly used image quality
metrics for evaluating networks trained on the SEVIR dataset. We evaluate the overall quality of
the generated imagery using metrics that are common in forecast evaluation [29]. These metrics
are computed by first binarizing the truth and prediction images at a set of thresholds that span
the range 0 - 255. Thresholds for vil were chosen based on the 6 Video Integrator and Processor
(VIP) intensity levels [18] which correspond to pixel values [16, 74, 133, 160, 181, 219]. Binarized
pixels are scored as "Hits" if prediction=truth=1, "Misses" if prediction=0,truth=1, "False
Alarms" if prediction=1,truth=0 and "Correct Rejection" otherwise. The following summary
statistics are computed by aggregating these counts over the test set:

Probability of detection (POD) = #Hits
#Hits+#Misses , Success Ratio (SUCR) = #Hits

#Hits+#F.Alarm

Critical Success Index (CSI) = #Hits
#Hits+#Misses+#F.Alarms , BIAS = #Hits+#F.Alarms

#Hits+#Misses

Note that POD, SUCR and CSI are equivalent to recall, precision and intersection over union (IOU),
however we will keep the naming conventions used in the forecast verification literature. In addition to
these metrics, the outputs of these models are also evaluated on a perceptual basis. While pixel-based
metrics such as the MSE/MAE and region based metrics such as the structural similarity (SSIM) [28]
can be a computationally efficient approach to comparing image quality, these do not capture the rich
textural information in weather radar images. Thus, to evaluate the perceptual quality of the generated
images, we propose the use of the Learned Perceptual Image Patch Similarity (LPIPS) proposed by
Zhang et. al. [31], which has been shown to outperform these widely used metrics. The LPIPS metric
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calculates the cosine distance between normalized network activations from deep networks such as
AlexNet, SqueezeNet and VGG. In this paper we use the ImageNet [10] trained AlexNet network
with fixed pre-trained network weights.

3.3 Radar Nowcasting

Nowcasts are high resolution, short-term (e.g. up to 2 hours) weather forecasts of radar echos,
precipitation, cloud coverage or other meteorological quantities widely used in public safety, air
traffic control, and many other areas that require high fidelity and rapidly updating forecasts. Previous
work on deep learning for Nowcasting includes convolutional Long Short Term Memory (ConvLSTM)
models [30], recurrent architectures [13] and fully convolutional networks [20, 6] for precipitation
nowcasting.

We frame nowcasting as a future prediction task where the model input consists of 13 VIL images
sampled at 5 minute intervals. The model is trained to produce the next 12 images in the sequence,
corresponding to the next hour of weather. Data from SEVIR was first extracted and processed into
44,760 sequences for training and an independent set of 12,144 sequences for testing the fit model.
This was done by splitting each SEVIR event into 3 input and output sequences. The model input was
of size Nx384x384x13 and the output sequence was Nx384x384x12 pixels, where N is the batch size.

Inputs Target
Persistence
Score Map OptFlow

OptFlow
Score Map MSE

MSE
Score Map MSE+SC

MSE+SC
Score Map cGAN+MAE

cGAN+MAE
Score Map

False Alarm Miss Hit

Figure 4: Nowcast output from U-Net model with different loss functions. Abbreviations used are as
follows: MSE - Mean Squared Error, SC - Style and content loss, cGAN - Conditional GAN
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Figure 5: Trends in evaluation metrics over lead times: All approaches show improved performance
over the persistence model. However, the metrics show degraded performance as the lead time
increases. Numbers 74, 133 on the y-axis correspond to threshold levels described in Section 3.2

We used the U-Net architecture and four different loss functions as described in Section 3. The
simplest loss function used was an LMSE loss which has been shown to produce forecasts that do not
have sufficient detail over the entire prediction sequence [20, 25]. To improve upon this, we trained
a second model using Style and Content (SC) loss computed from a VGG16 model trained on the
ImageNet dataset as described in [15]. This model was found to generate improved textures in the
predicted images, but it fails to track motion in the images. A third model that combined the LMSE
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loss and the SC loss was trained to improve motion tracking as well as texture. Finally, we trained
a conditional GAN (cGAN) with the same UNet as a generator and a discriminator as described in
Section 3. The cGAN model was trained for 300 epochs with the Adam optimizer and a batch size
of 32. All other models were trained for 100 epochs. Models that used Style and Content loss were
trained with a batch size of 4 because of GPU memory constraints.

The models described above were evaluated against two common baseline models for nowcasting.
The first is the Persistence Model which assumes that conditions do not change at successive time
steps past the final input image. This evaluates whether new models outperform the most trivial
model which simply repeats the last data seen. The second baseline is an optical-flow based nowcast
obtained using the rainymotion4 package [7]. This optical flow model estimates a dense flow field
at each pixel using the last two frames in the input sequence, and creates a nowcast by advecting each
pixel in the last input image by the estimated flow field using a semi-Lagrangian scheme.

Figure 4 shows sample output of an easterly moving storm (SEVIR ID S846323) comparing the
persistence and optical flow benchmarks to three of the U-Net variations described above at 15, 30,
45 and 60 minute lead times. We show only the score for the persistence model since it simply repeats
the last image from the input. Visually, it’s apparent that the MSE-trained model washes out detail
and much of the higher intensity weather for longer leads, whereas the models trained using SC or
adversarial loss retains more radar-like texture at longer leads. The score columns show each of the
U-Net models are able to adequately track the motion of the system, and generate fewer false alarms
along the back edge of the storm compared to persistence and optical flow.

Figure 5 shows selected metrics described in 3.2 for each model. All networks optimized using
reconstruction loss outperformed the benchmarks in MSE, which isn’t too surprising, but noteworthy.
The overall poor performance of SC only suggests some weighting of reconstruction loss is necessary,
as leaving it out seems to cause forecasts to not move. MSE and MSE+SC based loss functions
provide higher CSI (IOU) compared to persistence, but fail outperform optical flow. These networks
seem to generate more conservative forecasts that favor higher SUCR (Precision) over POD (Recall),
whereas the oppostie is true for optical flow. For moderate precipitation levels (threshold 74), the
MAE+GAN yields higher CSI scores at later leads (> 25 minutes), suggesting adversarial component
combined with an MAE term is effective for this problem. For higher intensity precipitation (threshold
= 133), the U-Net models show lower CSI (IOU), however the GAN model is close and the gap
can likely be overcome with additional hyperparameter tuning. In terms of perceptual similarity,
inclusion of style or adversarial loss drastically improves the texture of the output forecast relative to
an MSE loss. The LPIPs score of these neural network models are within 0.1 of both the persistence
and optical flow scores, which are both expected to score well in this category as they are mainly
copies of the input data and hence will retain a greater textural similarity.

3.4 Synthetic Weather Radar

Depictions of storms obtained from weather radar are extremely important in many areas; however,
most areas of the world do not have access to ground based radar. Using SEVIR, we will train a
model that creates radar-like imagery of storm depictions using only satellite and lightning as inputs.
To do so, we take the set of image types Sinput = {ir069,ir107,lght} as inputs to the model. We
will train the U-Net described in Section 3.1 to transform these three image types into vil.

Data in SEVIR first needed to extracted and pre-processed prior to the U-net. The lght data was
converted to an image by binning 5 minutes of flashes prior to ir069 and ir107 onto a 48 x 48
pixel grid5. The three input images were then resized to the vil size of 384x384. Each channel was
normalized by subtracting their mean and dividing by their standard deviation computed over the
training set. The three resized and normalized images are then passed to the U-net.

Three loss variations were tested for the synthetic radar problem: (1) MSE normalized by the
variance of the target variable (2) Content loss Lcontent using VGG19’s block5_conv4 layer added
to MSE: Lcontent + LMSE , and (3) Conditional adversarial loss added to MAE (similar to pix2pix):
LcGAN +LMAE . For (1) and (2), training was done until the loss stopped decreasing on a validation
set constructed using 20% of the training data. For (3), training was done for 200 epochs and stopped.

4https://github.com/hydrogo/rainymotion
5The choice of 48 is because GLM has an approximate accuracy of 8km, and the SEVIR patches are of size

384km.
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Table 2: Test set scores for the synthetic radar model. MSE loss leads to lowest MSE/MAE, as well
as better CSI for the higher thresholds. For the low to mid thresholds, MSE+Content loss is the best
performer for BIAS and CSI. Models trained with the cGAN+MAE loss generates yielded the best
LPIPS score, suggesting this loss provides the best perceptual match to the target.

Loss MSE MSE cGAN MSE MSE cGAN
Metric Thres +Content +MAE Metric Thres. +Content +MAE

MAE - 10.93 11.04 12.69

B
IA

S

16 1.1474 1.0787 0.7437
74 0.6683 0.7405 0.4507

MSE - 466.64 497.26 738.41 133 0.3238 0.4193 0.3106
160 0.3313 0.3625 0.3996

LPIPS - 0.3934 0.6195 0.3498 181 0.2889 0.2781 0.3397
219 0.0768 0.0799 0.1211

PO
D

16 0.8211 0.7868 0.5746

C
SI

16 0.6191 0.6090 0.4915
74 0.4994 0.5300 0.3176 74 0.4273 0.4378 0.2803
133 0.2353 0.2619 0.1918 133 0.2162 0.2263 0.1714
160 0.2496 0.2388 0.2188 160 0.2307 0.2125 0.1853
181 0.2100 0.1751 0.1602 181 0.1947 0.1588 0.1358
219 0.0432 0.0344 0.0242 219 0.0418 0.0329 0.0221

Figure 6 shows the results of the three loss functions for three cases in the test set. In all cases, the

S8
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41
6

Input ir069 Input ir107 Input lght Target
Synthetic Radar

MSE Loss
Synthetic Radar

MSE+Content Loss
Synthetic Radar
cGAN+MAE Loss

S8
51

83
9

S8
46

22
3

Figure 6: Three examples of the synthetic weather radar model trained using three different loss
functions. MSE leads to an accurate, albeit overly smoothed, prediction. The content and adversarial
losses are able to provide additional textures that are visually more similar to the target.

model was able to generate an accurate depiction of vil, particularly in the areas with high lightning
intensity. Visually, the MSE-trained model generates overly smoothed output, whereas qualitatively,
the VGG & cGAN losses provide improved texture. Table 2 shows a set of evaluation metrics applied
to the test set. Unsurprisingly, the network trained with MSE loss performed the best under both MSE
and MAE. The addition of content loss yielded slightly better scores in both BIAS and CSI at the 74
and 133 thresholds. The cGAN+MAE has the highest LPIPS score, suggesting this loss generated the
most perceptually similar result to the target (at the expense of other metrics) as seen in Figure 6.

4 Conclusions

This work introduced the Storm EVent ImageRy dataset (SEVIR). SEVIR is a unique, terabyte-sized
collection of over 10,000 weather events depicted by five spatially and temporally aligned sensors,
including 3 channels from the GOES-16 satellite, one weather radar-derived variable (VIL), and
lighting detections from the GOES GLM sensor. Each SEVIR event covers a 4 hour period of
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time in 5 minute increments, sampled randomly (with over sampling of events with mid and high
precipitation), and by using the NOAA Storm Event Database. SEVIR can be used to to build
and evaluate models for a range of problems in meteorology. Baseline models and performance
benchmarks of two problems, nowcasting and synthetic weather radar, were provided. By providing
baseline implementations, evaluation metrics and a large dataset, we hope that SEVIR will spur new
developments in the machine learning and meterological fields. SEVIR will continue to grow as new
data becomes available and additional data modalities will be added to SEVIR as appropriate.

It is our hope that SEVIR will be used by researchers to both improve upon the models described in
this work, and to solve other problems relevant to meteorology. We believe that SEVIR also presents
an opportunity for researchers to address new challenges with more unintuitive data than classical
image recognition/classification datasets. Additionally, this dataset presents interesting insights into
the capabilities and limitations of current deep learning approaches as well as the open question of
qualitative image assessment.

In addition to the applied research tasks discussed in this work, future efforts may include

• Public Challenges One of the main motivations in curating SEVIR was its use in future
public challenges for radar and satellite meteorology. One challenge focused on nowcasting
is already being planned for 2021.

• Transfer Learning ML researches in the earth system sciences often lack appropriate
pretrained models for transfer learning approaches. SEVIR acts a benchmark dataset for
providing such models and for learning representations appropriate for weather and climate
forecasting. This will benefit researchers working in areas of the world with sparse weather
and climate measurements.

• Model Robustness Weather and climate datasets are particularly susceptible to noise and
sensor calibration discrepancies. SEVIR provides an idealized dataset with relatively clean
data that can be artificially modified to develop robustness strategies.

• Transparency and Explainability Forecast models that are too opaque may limit user
acceptance in an operational setting. SEVIR provides a common dataset for developing
and demonstrating techniques that illuminate features that explain how certain outputs are
generated.

By providing baseline implementations, evaluation metrics and a large dataset, we hope that SEVIR
will spur new developments in the machine learning and meteorological fields.

Broader Impact

This work offers a free and open dataset with the purpose of advancing machine learning applications
in the area of meteorology. In addition to the dataset, we offer two benchmark problems with working
implementations and evaluation metrics. These will allow other researchers to easily build off of this
work to create new and enhanced capabilities. Authors do not foresee negative ethical consequences
as a result of this work. A potential positive societal impact may arise from the development of
models that can generate radar imagery from modalities that are not available world-wide. This could
give new meteorological monitoring capabilities to underdeveloped or low resource societies.
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