
A Proof of Theorem 1

In this section, we derive a lower bound for the trace of the covariance of the PG estimator in
environments with stochastic dynamics. Recall that πθ(ai|si) ∼ N (µθµ(si),Σ) and pθ(τ) =

p(s0)
∏N−1
i=0 πθ(ai|si)p(si+1|si, ai) , where the mean µθµ(si) = [µθµ,1(si), . . . , µθµ,K(si)]

> (the
subscript k in µθµ,k(si) denotes the k-th element of the vector µθµ(si)) is modeled by a neu-
ral network, Σ = diag(σ2

1 , . . . , σ
2
K) is the learnable variance that is independent of states,

θ = [θ>µ , σ1, . . . , σK ]> is the whole parameters of the policy πθ, and K = dim(A).

First, let us consider a single scalar parameter ϑ that is a bias in the last layer of the mean network
µθµ , such that µθµ(si) = µ′θµ′ (si) + [b1, b2, . . . , bK ]> and w.l.o.g. σ1 = min(σ1, σ2, . . . , σK) and

ϑ , b1, where [b1, . . . , bK ] is the set of bias parameters in the last layer and µ′θµ′ (si) denotes the
remainder of the mean network. Then, the following holds:

tr

[
Vτ∼pθ(τ)

[(
N−1∑
i=0

∇θ log πθ(ai|si)
)
R(τ)

]]
(9)

≥ Vτ∼pθ(τ)

[(
N−1∑
i=0

∂

∂ϑ
log πθ(ai|si)

)
R(τ)

]
(10)

= Vτ∼pθ(τ)

[(
N−1∑
i=0

∂

∂ϑ

K∑
k=1

(
− 1

2σ2
k

(ai,k − µθµ,k(si))
2 − 1

2
log(2πσ2

k)

))
R(τ)

]
(11)

= Vτ∼pθ(τ)

[(
N−1∑
i=0

K∑
k=1

1

σ2
k

(ai,k − µθµ,k(si))
∂

∂ϑ
µθµ,k(si)

)
R(τ)

]
(12)

= Vτ∼pθ(τ)

[(
N−1∑
i=0

1

σ2
1

(ai,1 − µθµ,1(si))

)
R(τ)

]
. (13)

By reparameterizing the actions as ai,k = µθµ,k(si) + σkεi,k for all 0 ≤ i ≤ N − 1 and

1 ≤ k ≤ K, where {εi,k} i.i.d.∼ N (0, 1) (we use the simplified notation {εi,k} to denote
(ε0,1, . . . , ε0,K , ε1,1, . . . , εN−1,K)), we obtain

Vτ∼pθ(τ)

[(
N−1∑
i=0

1

σ2
1

(ai,1 − µθµ,1(si))

)
R(τ)

]
(14)

= V
{εi,k}

i.i.d.∼N (0,1)
s0:N∼pθ(s0:N |{εi,k})

[(
N−1∑
i=0

εi,1
σ1

)
R(τ)

]
. (15)
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We then use the law of total variance to decompose Equation (15) as follows:

V
{εi,k}

i.i.d.∼N (0,1)
s0:N∼pθ(s0:N |{εi,k})

[(
N−1∑
i=0

εi,1
σ1

)
R(τ)

]
(16)

= V
{εi,k}

i.i.d.∼N (0,1)

[
Es0:N∼pθ(s0:N |{εi,k})

[(
N−1∑
i=0

εi,1
σ1

)
R(τ)

]]

+ E
{εi,k}

i.i.d.∼N (0,1)

[
Vs0:N∼pθ(s0:N |{εi,k})

[(
N−1∑
i=0

εi,1
σ1

)
R(τ)

]]
(17)

≥ E
{εi,k}

i.i.d.∼N (0,1)

[
Vs0:N∼pθ(s0:N |{εi,k})

[(
N−1∑
i=0

εi,1
σ1

)
R(τ)

]]
(18)

= E
{εi,k}

i.i.d.∼N (0,1)

[
(
∑N−1
i=0 εi,1)2

σ2
1

Vs0:N∼pθ(s0:N |{εi,k}) [R(τ)]

]
. (19)

Now we apply the following assumption:

∀{εi,k} Vs0:N∼pθ(s0:N |{εi,k}) [R(τ)] ≥ c, (20)

where c is a small constant greater than 0. This assumption states that the environment is inherently
stochastic in the sense that its return has a variance of at least c even if conditioned on the reparame-
terized actions {εi,k} (or equivalently, V[R(τ)] is greater than or equal to c even if the random seed
used for sampling actions is fixed). Note that environments with deterministic transition dynamics,
such as the MuJoCo environments, could also satisfy this assumption, considering the stochasticity
of the initial state: s0 ∼ p(s0) (although a perfect baseline could cancel out the initial stochasticity in
such environments).

Using this assumption, Equation (19) can be rewritten as

E
{εi,k}

i.i.d.∼N (0,1)

[
(
∑N−1
i=0 εi,1)2

σ2
1

Vs0:N∼pθ(s0:N |{εi,k}) [R(τ)]

]
(21)

≥ E
{εi,k}

i.i.d.∼N (0,1)

[
(
∑N−1
i=0 εi,1)2

σ2
1

c

]
(22)

=
Nc

σ2
1

(23)

=
Tc

δσ2
1

(24)

=
Tc

δ ·min(σ2
1 , σ

2
2 , . . . , σ

2
K)
. (25)

From Equation (25), we can conclude that δ → 0 leads the variance of the PG estimator to explode in
stochastic environments.
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As a side note, if we leave the other term when decomposing Equation (15), we obtain

V
{εi,k}

i.i.d.∼N (0,1)
s0:N∼pθ(s0:N |{εi,k})

[(
N−1∑
i=0

εi,1
σ1

)
R(τ)

]
(26)

= V
{εi,k}

i.i.d.∼N (0,1)

[
Es0:N∼pθ(s0:N |{εi,k})

[(
N−1∑
i=0

εi,1
σ1

)
R(τ)

]]

+ E
{εi,k}

i.i.d.∼N (0,1)

[
Vs0:N∼pθ(s0:N |{εi,k})

[(
N−1∑
i=0

εi,1
σ1

)
R(τ)

]]
(27)

≥ V
{εi,k}

i.i.d.∼N (0,1)

[
Es0:N∼pθ(s0:N |{εi,k})

[(
N−1∑
i=0

εi,1
σ1

)
R(τ)

]]
(28)

= V
{εi,k}

i.i.d.∼N (0,1)

[(
N−1∑
i=0

εi,1
σ1

)
Es0:N∼pθ(s0:N |{εi,k}) [R(τ)]

]
. (29)

From this, we can speculate that even in completely deterministic environments, δ → 0 is also likely
to cause variance explosion (e.g., consider a simple setting with R(τ) = 1), but generalizing this may
require more sophisticated assumptions, which we leave for future work.

B Concrete Example of the Challenging Exploration Problem

In this section, we illustrate the difficulty of exploration with a low δ. Let us consider the following
simple continuous-time MDP defined as

T = 2 (30)
γ = 1 (31)

s(t) ∈ R2 (32)
a(t) ∈ {−1,+1} (33)

s(0) = [0, 0]> (34)

F (s(t), a(t)) = [a(t), 1]>, (35)

where T denotes the physical time limit.

Its discretized MDP with a discretization time scale δ = 2
N , which equally divides the total duration

by N , is defined as follows:

τ = (s0, a0, . . . , sN ) (36)

s0 = [0, 0]> (37)

si+1 = si +

[
2

N
ai,

2

N

]>
(38)

r(si, ai) = 1{|si,0|≥1 and si,1≥2}, (39)

where 1 denotes the indicator function and we additionally define the reward function r(si, ai).

Let us assume that the initial policy π(ai|si) follows the uniform distribution such that π(ai =
−1|si) = π(ai = +1|si) = 1

2 for all i. Intuitively, this corresponds to a simple 1-D random walk
process, where the first dimension of the state denotes the agent’s position, the second dimension
denotes the current time, and a positive reward occurs if the final position sN,0 of the agent is located
outside of the interval (−1, 1).

16



When δ → 0, we can compute the probability that the agent gets a positive reward with the policy π
as follows:

P (Rπ(τ) > 0) = 1− P
(

1

4
N < X <

3

4
N

)
where X ∼ B

(
N,

1

2

)
(40)

≈ 1− P
(

1

4
N < Y <

3

4
N

)
where Y ∼ N

(
N

2
,
N

4

)
(41)

= 1− P
(
−
√
N

2
< Z <

√
N

2

)
where Z ∼ N (0, 1) (42)

→ 0 as N =
2

δ
→∞, (43)

where Rπ(τ) denotes the random variable corresponding to the return of the trajectory obtained by
the policy π, B denotes the binomial distribution and N denotes the normal distribution. We use the
normal approximation of the binomial distribution because N becomes sufficiently large as δ → 0.

Equation (43) shows that when the discretization time scale is infinitesimal, it is impossible for the
initial random policy to discover a state that produces a positive reward.

C Proof of Proposition 2

Recall that we consider the setting with δ → 0, x → 0, δ < x, ν → ∞ and f(num) = 0 in the
AlertThenOff environment; thus the return R(τ) is given by ξ. We first discuss the optimal policy
πθf for FiGAR-C. Its optimal policy for t, πtθf (t|s), should produce t ≤ x because otherwise it
has the risk of ending up with −ν reward, which is not an optimum. Therefore, we assume that
its (stochastic) duration policy πtθf (t|s), which is parameterized by µt, always produces durations
that are less than or equal to x. The whole parameters of FiGAR-C’s policy become θf = [µ, µ>t ],
and πθf (which consists of πoff

θf
, πnum

θf
and πtθf ) produces deterministic actions for off and stochastic

actions for num and t. Now we compute a lower bound for the variance of the PG estimator:

tr
[
Vτ∼pθf (τ)

[
Gθf (τ)

]]
(44)

= tr

[
Vτ∼pθf (τ)

[(
N−1∑
i=0

∇θf log πθf (numi, ti|si)
)
R(τ)

]]
(45)

≥ Vτ∼pθf (τ)

[(
N−1∑
i=0

∂

∂µ
log πnum

θf
(numi|si)

)
R(τ)

]
(46)

= V
{εi}

i.i.d.∼N (0,1)
s0:N∼pθf (s0:N |{εi})

[(
N−1∑
i=0

εi

)
R(τ)

]
(47)

≥ E
{εi}

i.i.d.∼N (0,1)

(N−1∑
i=0

εi

)2

Vs0:N∼pθf (s0:N |{εi}) [R(τ)]

 (48)

= E
{εi}

i.i.d.∼N (0,1)

(N−1∑
i=0

εi

)2

Vξ∼N (0,1) [ξ]

 (49)

= N ≥ 1

x
, (50)

where N denotes the number of decision steps. We reparameterize actions as in Equation (15) and
use the law of total variance. For simplicity, we assume that FiGAR-C’s duration policy is stochastic,
but Equation (50) still holds even if the duration policy is deterministic or fixed (in this case, θf
becomes [µ]) due to the inequality in Equation (46).

From Equation (50), we can find that when x→ 0, both the variance of the policy gradient and the
number of decision steps explode to infinity.
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On the other hand, let us consider SAR’s optimal policy πθs . If we set ∆(s1, s2) = |s1 − s2|, one of
the optimal (deterministic) policies for d can simply be πdθs(s) = 1

2 . In this case, the whole parameters
of SAR’s policy become θs = [µ], and πθs (which consists of πoff

θs
, πnum
θs

and πdθs ) produces stochastic
actions for num and deterministic actions for off and d. Also, N becomes 2, as it stops an action
only once when s changes to 1 (alerted). We can then compute the variance of the PG estimator as
follows:

tr
[
Vτ∼pθs (τ) [Gθs(τ)]

]
(51)

= Vτ∼pθs (τ)

[(
N−1∑
i=0

∇θs log πnum
θs (numi|si)

)
R(τ)

]
(52)

= V
{εi}

i.i.d.∼N (0,1)
s0:N∼pθs (s0:N |{εi})

[(
N−1∑
i=0

εi

)
R(τ)

]
(53)

= V
{εi}

i.i.d.∼N (0,1),ξ∼N (0,1)

[(
N−1∑
i=0

εi

)
ξ

]
(54)

= V
{εi}

i.i.d.∼N (0,1),ξ∼N (0,1)
[(ε0 + ε1) ξ] (55)

= 2. (56)

Therefore, we conclude that the optimal policy for SAR does not suffer from either variance explosion
or infinite decision steps in AlertThenOff environment, even if x→ 0.
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Figure 7: Training curves of SAR-A2C, FiGAR-C-A2C and A2C on four deterministic MuJoCo
environments with various δ’s. Shaded areas represent the 95% confidence intervals over eight runs.
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Figure 8: Training curves of SAR-TRPO and FiGAR-C-TRPO on eight MuJoCo environments with
various types of stochasticity. Shaded areas represent the 95% confidence intervals over eight runs.

D Additional Results

Deterministic Environments. We train SAR-A2C, FiGAR-C-A2C, A2C on the four environments
of Swimmer-v2, Hopper-v2, InvertedDoublePendulum-v2 and InvertedPendulum-v2, whose results
are shown in Figure 7. We find that A2C struggles to perform well on complex environments such as
Ant-v2. SAR mostly shows δ-invariance, outperforming the baselines in most of the environments.
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Figure 9: Changes in the average action durations of SAR-PPO, FiGAR-C-PPO and PPO on eight
deterministic MuJoCo environments with the lowest-δ settings. Shaded areas represent the 95%
confidence intervals over eight runs.

Stochastic Environments. We also provide the result comparing SAR-TRPO to FiGAR-C-TRPO on
eight stochastic MuJoCo environments in Figure 8. As in the case of the PPO baseline, SAR-TRPO
mostly demonstrates stronger performance than FiGAR-C-TRPO.

Average action duration. We provide how the average action durations of SAR-PPO, FiGAR-C-PPO
and PPO change as they are trained. Figure 9 demonstrates the results on eight MuJoCo environments
with the lowest-δ settings.

E Experiments with Varying Stochasticity Levels

To further examine how SAR and FiGAR-C evolves as the stochasticity level increases, we perform an
experiment on stochastic InvertedPendulum-v2 (δ = 0.002) with external forces. We train SAR-PPO
and FiGAR-C-PPO on the environment with pext ∈ {0.025, 0.05, 0.1, 0.2}, where pext denotes the
probability of an external force being applied. Figure 10 shows the plots of the average reward
and the learned (normalized) action duration or safe region radius of each setting. From the second
row, we can observe that the learned action duration decreases as the stochasticity level increases in
FiGAR-C, while such shrinkage does not happen in SAR. This is because FiGAR-C should reduce
action durations when the stochasticity level increases in order to quickly respond to unexpected
events. Since FiGAR-C is unaware of underlying state changes, its best strategy is to shorten the
duration of actions to be more responsive. On the other hand, SAR does not necessarily shrink the
size of safe regions even if the stochasticity level increases because it can easily detect the presence
of unexpected events by appropriately setting its safe region sizes. As a result, SAR can handle
stochasticity more robustly as well as preventing the variance explosion problem caused by too short
action durations.
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Figure 10: Training curves of SAR-PPO and FiGAR-PPO on InvertedPendulum-v2 with the lowest-δ
setting, in which the stochasticity level pext varies from 0.025 to 0.2. The first row shows the average
performance and the second row shows the average normalized action duration (FiGAR-C-PPO) or
safe region radius (SAR-PPO). Shaded areas represent the 95% confidence intervals over eight runs.
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Figure 11: Bar plots showing the estimated total variations tr[V̂τ∼pθ(τ)[Gθ(τ)]] of SAR-VPG and
VPG on eight deterministic MuJoCo environments with various δ’s. We estimate the total variation
with the initial policy. Error bars represent the 95% confidence intervals over eight runs.
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Figure 12: Bar plots showing the estimated total variations tr[V̂τ∼pθ(τ)[Gθ(τ)]] of SAR-PPO and
PPO on eight deterministic MuJoCo environments with various δ’s. We estimate the total variation
with the initial policy. Error bars represent the 95% confidence intervals over eight runs.

F Further Demonstrations of PG Methods’ Failure with a Low δ

F.1 Variance Explosion of the PG Estimator

As shown in Theorem 1, policy gradient methods are subjected to the variance explosion problem
with an exceedingly small δ. In this section, we empirically demonstrate this phenomenon on eight
MuJoCo environments. We estimate the total variation tr[V̂τ∼pθ(τ)[Gθ(τ)]] with the two baseline
policy gradient methods: Vanilla Policy Gradient (VPG) and PPO. In VPG, we do not use any
technique for variance reduction such as value functions and reward-to-go policy gradient; hence,
the formula for its gradient estimator is identical to Equation (3). In PPO, we employ the same
implementation used for our main results, including multiple variance reduction techniques such as
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Figure 13: Training curves of SAR-PPO and PPO’s variants with respect to (a) physical time and
(b) training time for x-axis on eight deterministic MuJoCo environments with the lowest-δ settings.
Shaded areas represent the 95% confidence intervals over eight runs.

the GAE [29]. We estimate the total variation with 100 randomly sampled trajectories (after sampling
10 trajectories for an initial burn-in phase) on each of eight randomly initialized policies. Figures 11
and 12 show the estimated total variations of both the baseline methods and SAR with various δ’s.
These results confirm that variance explosion empirically occurs on both VPG and PPO with lower-δ
settings, whereas our SAR method can alleviate such a problem.

F.2 Further Demonstrations of PPO with a Low δ

We verify both theoretically (Section 4.1) and empirically (Appendix F.1) that PG methods suffer
from variance explosion if the learning rate and minibatch size remain the same. In this section,
we show that PG methods still fail in low-δ settings even if such parameters are properly scaled,
possibly due to the difficulty of exploration (Section 4.1). We additionally test a variant of PPO
(“PPO (scaled)”) with a learning rate scaled by δ/δ0 as in Wawrzynski [38], where δ0 denotes the
original discretization time scale of each environment. Also, in order to compare them on multiple
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Figure 14: Training curves of SAR-PPO and ARP-PPO’s variants with respect to (a) physical time
and (b) training time for x-axis on eight deterministic MuJoCo environments with the lowest-δ
settings. Shaded areas represent the 95% confidence intervals over eight runs.

criteria, we plot the results on the two x-axes of physical time and training time, where physical
time indicates the time elapsed in the simulated environment and training time indicates the time
elapsed in the real world for training. Figure 13 demonstrates the training curves on deterministic
MuJoCo environments with the lowest-δ settings. We observe that both PPO and the scaled PPO
variant struggle with small discretization time scales. On the contrary, SAR-PPO exhibits strong
performance compared to the baseline PPO methods. Furthermore, as revealed by the comparison
between the physical time curve and the training time curve of InvertedPendulum-v2, the result
suggests that our method significantly facilitates training via action repetition.

G Comparison with Autoregressive Policies

We make an additional comparison with autoregressive policies (ARPs) [14], which use autoregressive
processes that could prevent the variance explosion problem with a low δ. An ARP uses the
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Figure 15: Training curves of λ-SAR-PPO (λ = 0.5), SAR-PPO and FiGAR-C-PPO on four stochas-
tic POMDP environments with the lowest-δ settings. Shaded areas represent the 95% confidence
intervals over eight runs. λ-SAR shows better performance compared to the others in these POMDP
settings.

autoregressive noise process to sample actions so that the actions can be temporally correlated. It has
two main hyperparameters: pord and α, where pord is the order of the autoregressive process and α
controls its temporal smoothness (α = 0 corresponds to the white Gaussian noise).

We compare SAR-PPO to ARPs trained with PPO (“ARP-PPO”) as well as its variant (“ARP-
PPO (scaled)”) with the scaled learning rate specified in Appendix F.2. For ARP-PPO and
ARP-PPO (scaled), we respectively perform hyperparameter search over p ∈ {1, 3} and α ∈
{0.3, 0.5, 0.8, 0.95}. We individually tune the hyperparameters on each environment, while we share
the hyperparameter dmax = 0.5 across all the environments in the case of SAR. The hyperparameters
used for ARPs are as follows:

• Ant-v2: p = 3, α = 0.5 for ARP-PPO and p = 3, α = 0.5 for ARP-PPO (scaled).

• HalfCheetah-v2: p = 3, α = 0.3 for ARP-PPO and p = 1, α = 0.8 for ARP-PPO (scaled).

• InvertedDoublePendulum-v2: p = 1, α = 0.5 for ARP-PPO and p = 1, α = 0.95 for
ARP-PPO (scaled).

• InvertedPendulum-v2: p = 1, α = 0.3 for ARP-PPO and p = 1, α = 0.95 for ARP-PPO
(scaled).

• Swimmer-v2: p = 1, α = 0.95 for ARP-PPO and p = 3, α = 0.8 for ARP-PPO (scaled).

• Reacher-v2: p = 1, α = 0.3 for ARP-PPO and p = 3, α = 0.8 for ARP-PPO (scaled).

• Hopper-v2: p = 3, α = 0.5 for ARP-PPO and p = 1, α = 0.95 for ARP-PPO (scaled).

• Walker2d-v2: p = 1, α = 0.5 for ARP-PPO and p = 1, α = 0.8 for ARP-PPO (scaled).

Figure 14 shows the training curves with respect to both physical time and training time (details in
Appendix F.2). It is observed that SAR outperforms ARPs often by a large margin on both criteria.

H Results with λ-SAR

To verify whether λ-SAR described in Section 4.4 could be effective in partially observable MDPs
(POMDPs), we modify the stochastic MuJoCo environments with the “Strong External Force (Per-
ceptible)” setting (described in Section 5.2) by adding partial observability. Specifically, in addition
to the stochasticity, we make the environment cause a penalty reward of rpenalty when the agent holds
the same action more than or equal to tthres seconds, where the agent cannot observe the current
holding time of an action, which renders the environment to be a POMDP. We test methods on the
four MuJoCo environments of InvertedPendulum-v2, InvertedDoublePendulum-v2, Hopper-v2 and
Walker2d-v2 with the lowest δ’s, where we set tthres = 0.04 and rpenalty = −1 for InvertedPendulum-
v2, tthres = 0.04 and rpenalty = −10 for InvertedDoublePendulum-v2, and tthres = 0.025 and
rpenalty = −20 for Hopper-v2 and Walker2d-v2. Figure 15 shows the training curves of λ-SAR-
PPO (λ = 0.5), SAR-PPO and FiGAR-C-PPO. We confirm that λ-SAR can cope with such partial
observability by incorporating temporal information into safe regions.
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Figure 16: Training curves of multiple variations of SAR-PPO on eight deterministic MuJoCo
environments with various δ’s. Shaded areas represent the 95% confidence intervals over eight runs.

I Ablation Study

Variants of SAR-PPO. We test SAR-PPO with its variations. As stated in Appendix J, we fix
dmax = 0.5 in SAR for the experiments in the main paper. We alter dmax to 0.2 (“SAR-PPO
(dmax = 0.2)”) or 1.0 (“SAR-PPO (dmax = 1.0)”) to demonstrate how this hyperparameter affects
the performance of SAR. We also experiment with another variant of SAR (“SAR-PPO (No limit
on t)”) that does not impose an upper limit on the maximum duration of actions. Figure 16 shows
the results on eight deterministic MuJoCo environments. We observe that a small dmax may lead
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Figure 17: Training curves of SAR-PPO, FiGAR-C-PPO and their variants without t limit on eight
deterministic MuJoCo environments with the lowest-δ settings. Shaded areas represent the 95%
confidence intervals over eight runs.

to inferior performance on average since it may excessively limit action durations, increasing the
average number of decision steps and thus the variance of the PG estimator.

Effect of a limit on t. In order to examine the effect of imposing an upper limit on action durations,
we test variants of SAR-PPO and FiGAR-C-PPO. “SAR-PPO (No limit on t)” denotes the same
setting as the previous experiment and “FiGAR-C-PPO (No limit on t)” denotes the setting of FiGAR-
C-PPO without clipping t while it uses the same scale of t as our original FiGAR-C-PPO. Figure 17
demonstrates that in both setting, imposing a limit on t leads to better performance on most of the
environments as it helps stabilize training, although SAR-PPO (No limit on t) sometimes outperforms
the original SAR-PPO on some environments such as Reacher-v2.

Variants of SAR-PPO’s distance function. We use the `1 norm for the distance function of SAR:
∆(s, si) = ‖s̃− s̃i‖1/dim(S). In this experiment, we test another variant of SAR with the `2 norm,
whose distance function is defined as ∆(s, si) = ‖s̃− s̃i‖2/

√
dim(S). We set dmax = 0.5 for the `1

norm and dmax = 1.0 for the `2 norm. Figure 18 suggests that the `1 norm is slightly more effective
than the `2 norm. We speculate that this is because some state dimensions with large changes may
dominate `2 distances.
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Figure 18: Training curves of SAR-PPO with the `1 or `2 norm on eight deterministic MuJoCo
environments with the lowest-δ settings. Shaded areas represent the 95% confidence intervals over
eight runs.
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Table 1: Discretization time scales.
Environment δlowest δlow δmiddle δoriginal (δ0)

Ant-v2 2e− 3 5e− 3 1e− 2 5e− 2
HalfCheetah-v2 2e− 3 5e− 3 1e− 2 5e− 2
InvertedDoublePendulum-v2 2e− 3 5e− 3 1e− 2 5e− 2
InvertedPendulum-v2 2e− 3 5e− 3 1e− 2 4e− 2
Swimmer-v2 2e− 3 5e− 3 1e− 2 4e− 2
Reacher-v2 1e− 3 2e− 3 5e− 3 2e− 2
Hopper-v2 5e− 4 1e− 3 2e− 3 8e− 3
Walker2d-v2 5e− 4 1e− 3 2e− 3 8e− 3

J Experimental Details

J.1 Implementation

We implement SAR and the baseline methods based on the open-source implementations of Stable
Baselines3 [25] (a port of Stable Baselines [12] for PyTorch[24]) for PPO [30] and A2C [20], and
Stable Baselines [12] for TRPO [28]. We use the publicly released official implementations for DAU
[36] (https://github.com/ctallec/continuous-rl) and ARP [14] (https://github.com/
kindredresearch/arp). We provide the implementation for our experiments (including licenses)
in the anonymous repository at https://vision.snu.ac.kr/projects/sar.

J.2 Environments

We experiment on eight continuous control environments from MuJoCo [37]: InvertedPendulum-v2,
InvertedDoublePendulum-v2, Hopper-v2, Walker2d-v2, HalfCheetah-v2, Ant-v2, Reacher-v2 and
Swimmer-v2.

The environment parameters used in our experiments are as follows:

• Ant-v2: S = R111, A = [−1, 1]8, σact = 1, pact = pext = 0.05, σext = 100, σext2 = 300.

• HalfCheetah-v2: S = R17, A = [−1, 1]6, σact = 1, pact = pext = 0.05, σext = 30,
σext2 = 300.

• InvertedDoublePendulum-v2: S = R11, A = [−1, 1]1, σact = 1, pact = pext = 0.05,
σext = 100, σext2 = 1000.

• InvertedPendulum-v2: S = R4, A = [−3, 3]1, σact = 3, pact = pext = 0.05, σext = 300,
σext2 = 1000.

• Swimmer-v2: S = R8, A = [−1, 1]2, σact = 1, pact = pext = 0.05, σext = 100, σext2 =
1000.

• Reacher-v2: S = R11, A = [−1, 1]2, σact = 1, pact = pext = 0.05, σext = 300, σext2 =
1000. Due to its unique environment dynamics, we apply external torques instead of forces.

• Hopper-v2: S = R11, A = [−1, 1]3, σact = 1, pact = pext = 0.05, σext = 30, σext2 = 300.

• Walker2d-v2: S = R17, A = [−1, 1]6, σact = 1, pact = pext = 0.05, σext = 100,
σext2 = 1000.

For the discretization time scales, we generally follow the values from Tallec et al. [36]. Table 1 shows
the values we used for δ’s. We use an episode horizon of 1000 and a discount factor of γ0 = 0.99 for
all the environments with the original discretization time scale (δ0). In lower-δ settings, we scale the
episode length by δ0/δ to maintain the same physical time limit, and set the discount factor to γδ/δ00
to have the same effective horizon. We discount the reward both between decision steps (accordingly
to Equation (5)) and during action repetitions in SAR and FiGAR-C. For the “Strong External Force
(Perceptible)” setting described in Section 5.2, we append to the state the applied 3-D force (or 3-D
torque in the case of Reacher-v2) vector clipped to a range of [−1, 1].
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Table 2: Hyperparameters for PPO.
Hyperparameter Value

Optimizer Adam
Learning rate 1e− 4
Nonlinearity ReLU
# decision steps per train step 2048
# epochs per train step 10
Minibatch size 64
GAE parameter λ 0.95
Clipping parameter ε 0.2

Table 3: Hyperparameters for TRPO.
Hyperparameter Value

Optimizer Adam
Learning rate 1e− 4
Nonlinearity ReLU
# decision steps per train step 1024
GAE parameter λ 0.95
KL step size 0.01
Conjugate gradient damping factor 0.1
# iterations for conjugate gradient 10
# iterations for the value function 5
Minibatch size for the value function 128

Table 4: Hyperparameters for A2C.
Hyperparameter Value

Optimizer RMSProp
Adam learning rate 1e− 4
Nonlinearity ReLU
# decision steps per train step 256

J.3 Training

Throughout the experiments, we model each learnable component with an MLP with two hidden
layers of 256 dimensions. For the policies of PPO, TRPO and A2C, we use a normal distribution with
a learnable diagonal covariance matrix that is independent of states, following the implementations
of Schulman et al. [28, 30]. For the policies of SAR and FiGAR-C, we modify the variance
corresponding to d or t actions to be dependent on states. We normalize returns (rewards) and each
dimension of states using their moving averages for the inputs of the components in all environments
except Ant-v2; we find that it performs better not to use the normalization in Ant-v2. For SAR’s
distance function, we use normalized states in all environments in order to make safe regions agnostic
to the scale of each state dimension. We set dmax = 0.5 (chosen among {0.1, 0.2, 0.5, 1.0}) for SAR
and tmax = 0.05 (chosen among {0.01, 0.02, 0.05, 0.1}) for FiGAR-C, and share them across all the
environments. We run our experiments on our internal CPU cluster mostly consisting of Intel Xeon
E5-2695 v4 and Intel Xeon Gold 6130 processors. Each run in our experiments usually takes 3-12
hours on a single CPU core.

We report the hyperparameters used for each RL algorithm in Tables 2 to 4. For further implementation
details, we refer to our released code as well as the official implementations of DAU and ARP.
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