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Abstract

Unsupervised domain adaptation has attracted appealing academic attentions by
transferring knowledge from labeled source domain to unlabeled target domain.
However, most existing methods assume the source data are drawn from a single
domain, which cannot be successfully applied to explore complementarily trans-
ferable knowledge from multiple source domains with large distribution discrep-
ancies. Moreover, they require access to source data during training, which are
inefficient and unpractical due to privacy preservation and memory storage. To
address these challenges, we develop a novel Confident-Anchor-induced multi-
source-free Domain Adaptation (CAiDA) model, which is a pioneer exploration
of knowledge adaptation from multiple source domains to the unlabeled target
domain without any source data, but with only pre-trained source models. Specif-
ically, a source-specific transferable perception module is proposed to automati-
cally quantify the contributions of the complementary knowledge transferred from
multi-source domains to the target domain. To generate pseudo labels for the
target domain without access to the source data, we develop a confident-anchor-
induced pseudo label generator by constructing a confident anchor group and as-
signing each unconfident target sample with a semantic-nearest confident anchor.
Furthermore, a class-relationship-aware consistency loss is proposed to preserve
consistent inter-class relationships by aligning soft confusion matrices across do-
mains. Theoretical analysis answers why multi-source domains are better than a
single source domain, and establishes a novel learning bound to show the effec-
tiveness of exploiting multi-source domains. Experiments on several representa-
tive datasets illustrate the superiority of our proposed CAiDA model. The code is
available at https://github.com/Learning-group123/CAiDA.

1 Introduction

Unsupervised Domain Adaptation (UDA) [22,59,63] captures transferable knowledge from labeled
data in a source domain to classify unlabeled data in a target domain. UDA has achieved remarkable
successes in many applications, e.g., object detection [23], medical diagnose [9,12], sentiment anal-
ysis [34], etc. Generally, most of existing methods employ adversarial learning [17] to encourage the
learned source and target features to be indistinguishable from each other [10, 15], or minimize the
distribution discrepancy across domains by matching the statistical moments of distributions [41].
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However, the above-mentioned methods have a strong assumption that the source data are merely
drawn from a single domain. Unfortunately, the source data are often collected under different
deployed environments (i.e., multiple source domains with large distribution discrepancies) in real-
world applications, which makes them difficult to explore complementarily transferable knowledge
from the multi-source domains for target prediction. To achieve this, Multi-Source Domain Adap-
tation (MSDA) [32, 34, 61] is proposed to match the features across domains and then quantify the
contributions of source domains [2,41,60]. Additionally, [29,58] aim to weight the source contribu-
tions by normalizing the distance similarities between source and target domains.

Unfortunately, recent MSDA methods [29, 34, 41, 44] require massive labeled source data when
adapting source domains to the target domain. This could make them inefficient and unpractical in
real-world applications with sensitive information (e.g., medical diagnosis [12] and recommendation
system [24]), due to privacy preservation issues, storage and security concerns [50, 51]. To this end,
a new challenging and practical problem named Multi-Source-Free Domain Adaptation (MSFDA) is
researched, which explores transferable knowledge from multiple source domains to target domain
with only pre-trained source models and without access to any source data. The trivial solutions for
tackling MSFDA via using existing single-source-free domain adaptation methods [25, 30, 33, 57]
are to adapt each source model individually and simply take an average prediction of source models.
However, they cannot explore the contributions of the complementary information transferred from
different source domains, due to the lack of source data. Therefore, tackling the MSFDA problem is
a challenging but rarely-researched task.

To address the MSFDA problem, we develop a novel Confident-Anchor-induced multi-source-free
Domain Adaptation (CAiDA) model, which is a pioneer exploration to capture transferable infor-
mation from multiple source models to promote target prediction without access to source data.
Specifically, a source-specific transferable perception module is designed to calibrate the contribu-
tions of the transferability from multiple source domains. We develop a confident-anchor-induced
pseudo label generator to mine pseudo labels for the unlabeled target data, by incorporating with
the quantified source transferability contributions. We construct a confident anchor group to assign
each target sample with a semantic-nearest confident anchor, and perform feature augmentation be-
tween them to generate confident target pseudo label. A class-relationship-aware consistency loss is
proposed to ensure the semantic consistency of underlying inter-class relationships across domains
via the alignment of soft confusion matrices. Furthermore, based on some mild assumptions, the-
oretical analysis guarantees that multiple source models could help generate more reliable pseudo
labels. Our theoretical analysis also provides a novel learning bound for MSFDA, which reveals that
multiple source models help achieve a tighter generalization error bound for the target domain. We
verify the effectiveness of our proposed model via comparison experiments on benchmark datasets.
The main contributions of our work are summarized as follows:

• We develop a novel Confident-Anchor-induced multi-source-free Domain Adaptation (CAiDA)
model to explore transferable knowledge from multiple source domains to assist target prediction
with pre-trained source models and without access to source data. To our best knowledge, this paper
is a pioneer exploration of multi-source-free domain adaptation in the field of transfer learning.

•We propose a novel MSFDA theory, which shows that multiple source models could improve the
possibility of obtaining more reliable pseudo labels under some mild assumptions. Our theoretical
analysis also provides a novel generalization bound for MSFDA to show the effect of multiple source
models. This novel bound implies a positive answer to the solvability of MSFDA problem.

• A source-specific transferable perception module and a class-relationship-aware consistency loss
are designed to quantify the contributions of the transferability of multiple source domains and
ensure the semantic consistency of underlying inter-class relationships across domains, respectively.

• Based on the confident pseudo labeling strategy in theoretical analysis, a confident-anchor-induced
pseudo label generator is proposed to generate pseudo labels for the target domain by establishing a
confident anchor group and assigning each target sample with a semantic-nearest confident anchor.

2 Related Work

Unsupervised Domain Adaptation aims to borrow transferable knowledge from source domain
to promote the prediction of the unlabeled target domain. After Hoffman et al. [22] introduce ad-
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versarial learning [17] into domain adaptation, enormous adversarial-based methods [8, 11, 15, 59]
are proposed to perform feature-level or pixel-level distribution alignment. Besides, some mo-
ment matching-based methods [14, 35, 41] focus on matching the distribution statistical moments
at different orders to minimize the distribution discrepancy across domains. Furthermore, some re-
searches design the adversarial dropout [28], batch normalization [52] and auxiliary reconstruction
tasks [5,16] to narrow the domain discrepancy. Unfortunately, the methods mentioned above assume
massive labeled source data are available. This is unpractical due to privacy and security concerns.

Source-Free Domain Adaptation (SFDA) [33] is studied to tackle the above challenge. A common
strategy in SFDA methods is to mine the confident pseudo labels for target domain. To this end, [33]
uses a self-supervised pseudo labeling strategy, and [25] designs a confidence-based sample filtering
method. [42] alleviates the negative transfer brought by noisy pseudo labels through confidence re-
weighting and regularization. In addition to the pseudo labeling strategy, the model adaptation
strategy has also been studied. For example, [30, 57] employ an adversarial learning strategy to
perform model adaptation with only pre-trained source models. However, they cannot be applied to
tackle the MSFDA problem, due to the distribution discrepancies across different source domains.

Multi-Source Domain Adaptation is extended from vanilla domain adaptation [12, 15, 41] by ex-
ploring transferable knowledge from multiple sources. To capture the relationship between different
source domains and a given target domain, Guo et al. [19] design a mixture-of-experts model for
unsupervised domain adaptation from multiple sources. [56] focuses on determining which source
domain is the best for target prediction via dynamic curriculum learning. Some discrepancy-based
methods aim to narrow the distribution discrepancy across domains by minimizing different mea-
sures such as the Rényi-divergence [21] and maximum mean discrepancy [19]. Moreover, some
adversarial-based methods focus on optimizing the H-divergence [41, 60], generative adversarial
loss [55,61] and Wasserstein distance [32] to make features from multiple sources indistinguishable
for a shared discriminator. [34, 44] perform knowledge adaptation at the pixel-level by replaying
multiple source domains. Due to lack of source data, above strategies in MSDA may be invalid and
unsuitable to address the challenging MSFDA problem. To this end, Ahmed et al. [1] utilize nearest
distance measure to mine target pseudo labels, and weight the predictions from multiple source mod-
els for the MSFDA task. It may result in that the generation process has high probability to obtain
noisy labels [4, 31, 54] when the strategy is not matched with the target data, while our model could
generate confident pseudo labels from two different perspectives, i.e., geometry and probability.

3 Problem Setting

Let X and Y = [K] := {1, ...,K} denote the feature space and label space. A domain is a joint
distribution PXY on X × Y . There are n source domains {P i

XY }ni=1. For any source domain P i
XY ,

a corresponding neural-network-based predictor (model) hi : X → RK is given. Given a target
domain P t

XY with unlabeled target data T = {xj}mj=1 ∼ P t
X , i.i.d., the aim of multi-source-free

domain adaptation (MSFDA) is to classify the unlabeled target data by utilizing T and {hi}ni=1.

Let ℓ denote a non-negative loss function defined over RK × RK . Given a hypothesis space
H ⊂ {h : X → RK}, we denote Li

s(h) = E(x,y)∼P i
XY

ℓ(h(x),Φ(y)) and Lt(h) =

E(x,y)∼P t
XY

ℓ(h(x),Φ(y)) as the risks with respect to the i-th source domain and a given target
domain, where Φ : Y → RK maps any label y to a corresponding one-hot vector.

The source predictor hi is a vector-valued function, i.e., hi(x) = [hi
1(x), ..., h

i
K(x)]⊤, and consists

of two basic components: feature extractor f i : X → Rd and classifier ci : Rd → RK , where d is
the dimension of extracted features. Therefore, hi can be rewritten as ci ◦ f i. After using softmax as
the activation function in the output layer, we have hi

k ≥ 0 and
∑K

k=1 h
i
k = 1. To ensure that each

predictor hi is a relatively accurate predictor for the domain P i
XY , we assume that the predictor hi

is ϵ-accurate under ℓ1 loss, i.e., E(x,y)∼P i
XY
∥hi(x)−Φ(y)∥ℓ1 < ϵ, for any i ∈ [n].

4 Theoretical Analysis

Without any relations between source domains and target domain, MSFDA cannot be effectively
addressed from the theoretical view. To bridge source and target domains, Mansour et al. [40] and
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Miraj Ahmed et al. [1] assume that PXY =
∑n

i=1 λiP
i
XY and P t

Y |X = P i
Y |X = P j

Y |X , for any
i, j ∈ [n], where λi ≥ 0 and

∑n
i=1 λi = 1. This assumption is very strong and may be unrealistic in

many real-world applications. Motivated by the meta learning [43] and domain generalization [3],
in this paper, we propose some novel and mild assumptions to address MSFDA problem.
Assumption 1 (Meta Assumption.) P t

XY , P
1
XY , ..., P

n
XY are drawn (i.i.d.) from a meta distribu-

tion P , which is defined over a joint distribution space PXY .

Assumption 2 (Regular Domain.) Let the joint distribution space PXY is endowed with total
variation distance dTV(·, ·). The target domain P t

XY is a regular domain, i.e., for any σ > 0,
P(N σ

P t
XY

) > 0, where N σ
P t

XY
= {P : dTV(P, P

t
XY ) < σ}.

It is easy to check, if the meta distribution P is discrete or continuous with continuous density
function, then the target domain P t

XY drawn byP is a regular domain with probability 1. In addition,
to weaken the assumption P t

Y |X = P i
Y |X = P j

Y |X , for any i, j ∈ [n], our key strategy is to consider
the anchor point assumption that is studied in label-noise learning [36].

We say a given point x is a τ -anchor point, if there exists a predictor hi with the largest score hi
k(x),

such that hi
k(x)− hi

c(x) ≥ τ , for any c ∈ [K] and c ̸= k. hi is the τ -anchor predictor for x.
Assumption 3 (τ -Anchor Point Assumption.) Given a τ -anchor point x, suppose that all τ -
anchor predictors for x are hi1 , ...,hil , then the true label of the τ -anchor point x is k, if hj

k(x) is
the largest score among scores hi1

c , ..., hil
c , for any c ∈ [K].

When the source predictors are accurate enough, Assumption 3 implies that the source and target
conditional distributions are similar in the high confidence region. Hence, it is much weaker than
the traditional assumption P t

Y |X = P i
Y |X = P j

Y |X , for i, j ∈ [n]. τ is regarded as a threshold to
distinguish which data has highly confident prediction. In general, τ is close to 1.

Given any hi, it is easy to check that there exists a matrix function Ai(x) = [aikl(x)] such that
hi
k(x) =

∑K
l=1 a

i
kl(x)P

t
Y |X(l|x) with

∑K
k=1 a

i
kl = 1. We say the diagonal elements {aill}Kl=1 as the

transfer factor for hi and P t
Y |X . Generally, Ai(x) = [aikl(x)] is not unique, thus the transfer factor

may be not unique. The following theorem indicates that Assumption 3 holds if we give proper
assumptions for transfer factor.
Theorem 1 Suppose that the Bayesian label is true label [7]. If there exist transfer factors and a
constant B < K such that maxi∈[n],l∈[K] a

i
ll ≥ B, then Assumption 3 holds with τ > 1−B/K.

Theorem 1 provides a theoretical support for Assumption 3 and indicates that when the transfer fac-
tors are positive, Assumption 3 always holds with a proper τ . To further study the highly confident
pseudo labeling strategy, the following theorem provides a lower bound to estimate the number of
highly confident pseudo labels, i.e., the number of τ -anchor points.
Theorem 2 Assume Assumptions 1 and 2 hold and the conditional distribution P t

Y |X can be pre-
sented as a labeling function, i.e., P t

Y |X(y|x) = 0 or 1. Given η > 0, if m ≥ n and (1−η)(1−τ) >
ϵ + 2σ + 2

√
log(2m/δ)/2m, then with probability at least 1 − δ − (1 −P(N σ

PXtYt
))n > 0, at

least ηm target data are τ -anchor points, where ϵ is the upper bound of the accuracies of source
predictors, and σ is introduced in Assumption 2.

Theorem 2 indicates that multi-source predictors improve the probability to obtain more τ -anchor
points. To further understand the effect of multi-source domains, we build a novel learning bound
for the MSFDA task. Let Aτ be the set consisting of all τ -anchor points. Denote the empirical risk
L̂τ
s (h) by 1

|Aτ∩T |
∑

x∈Aτ∩T ℓ(h(x),Φ(y)), where y is the label of the anchor point x.

Theorem 3 Given Assumption 3 and some assumptions used in Theorem 2, and suppose that the
loss ℓ has upper bound M > 0 and hypothesis space H has finite Natarajan dimension, for η > 0,
if m ≥ n and (1 − η)(1 − τ) > ϵ + 2σ + 2

√
log(2m/δ)/2m, then for any h ∈ H and b ∈ (0, 1),

there exists a constant C(b,K) such that with the probability at least 1− 2δ− 2(1−P(N σ
P t

XY
))n:

∣∣Lt(h)− L̂τ
s (h)

∣∣ ≤MC(b,K)

√
log(2/δ)

η1−bm1−b
+M

2σ + ϵ

1− τ − 2σ − ϵ
, (1)

where ϵ is the upper bound of accuracies of source predictors, and σ is introduced in Assumption 2.
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Figure 1: Overview of our model, mainly including a source-specific transferable perception strat-
egy to quantify the contributions of the transferability of source domains, a confident-anchor-
induced pseudo label generator to generate pseudo labels for target domain, and a class-relationship-
aware consistency loss to ensure the semantic consistency of underlying inter-class relationships.

Theorem 3 shows that multiple source domains improve the probability to ensure a tighter gener-
alization bound, i.e., Eq. (1) holds. Note that the Natarajan dimension used in Theorem 3 is a bit
outdated. However, the Natarajan dimension can be replaced and Theorem 3 can be updated without
any technical barriers, if there exists better generalization theory for supervised learning.

Summary of Theoretical Analysis: The reasons to develop MSFDA are to study the solvability of
MSFDA and understand how multi-source predictors benefit the target domain’s classification. By
Theorems 2 and 3, we realize that multi-source predictors improve the probability to obtain more
highly confident pseudo labels, resulting in a tighter generalization bound. The generalization bound
in Theorem 3 gives a positive answer to the solvability of MSFDA. Additionally, Theorems 1 and 2
also imply two interesting and important results: Theorem 1 provides the first theoretical support to
the confident pseudo labeling strategy, and Theorem 2 provides the first lower bound of the number
of highly confident pseudo labels. As we know, the theoretical results in Theorems 1 and 2 are novel.

5 The Proposed CAiDA Model

The graphical illustration of our proposed model is depicted in Figure 1. It mainly consists of three
significant components: source-specific transferable perception, confident-anchor-induced pseudo
label generator and class-relationship-aware consistency loss, which are elaborated as follows.

5.1 Source-Specific Transferable Perception

Generally, in multi-source domain adaptation (MSDA), different source domains have different con-
tributions to improve the performance on target domain [21,61]. To this end, many previous MSDA
methods match the features across different domains, and then quantify the contributions of source
domains by taking the average of the trained source predictors [41,60], or weight the trained source
predictors by normalizing the distance similarities [29,58] between source and target domains. How-
ever, due to the lack of source data, these methods cannot employ source data to match features and
cannot be successfully applied to multi-source-free domain adaptation (MSFDA) tasks.

Therefore, a source-specific transferable perception module is developed to automatically quantify
the contributions of the transferability of source domains, as shown in Figure 1. Specifically, the
one-hot encoding vector ui ∈ Rn of the i-th source domain can be considered as the unique do-
main characterization, which is then employed as network input to quantify the contribution of the
transferability. We then concatenate all source domains’ one-hot characterizations together to obtain
U = [u1, · · · ,un]⊤ ∈ Rn×n. U is then forwarded into a Multi-Layer Perceptron (MLP) network
Ω to automatically quantify the contribution of the transferability µ ∈ Rn of n source domains:
µ = Ω(U) = Ω([u1,u2, · · · ,un]⊤), such that

∑n
i=1 µi = 1, where µi denotes the quantified

contribution of the i-th source domain to the target prediction.

When the source data are unavailable, it is difficult to narrow distribution discrepancy across do-
mains, due to lack of any supervised information. Inspired by [33], we freeze the network parameters
of classifiers {ci}ni=1 and solely perform distribution adaptation across domains on feature extrac-
tors {f i}ni=1 via information maximization [26], since {ci}ni=1 contain class distribution information
of source domains. However, Liang et al. [33] cannot be effectively applied to multi-source-free do-
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main adaptation scenario, where different source domains have different transferable contributions
on target prediction. Therefore, Lent is proposed to minimize conditional entropy of target outputs
by incorporating the source-specific transferable perception µ:

Lent = −
1

m

m∑
j=1

[
K∑

k=1

hk(x
j) log(hk(x

j))], (2)

where hk(x
j) is the k-th coordinate value of h(xj), here h(xj) =

∑n
i=1 µih

i(xj) denotes the com-
bination of source predictions. The larger value of µi indicates the larger contribution of transferabil-
ity of the i-th source domain for target adaptation. Unfortunately, our proposed CAiDA model may
suffer from the trivial solution of Eq. (2) by predicting all target data as a single class to minimize
Eq. (2). To tackle this issue, Ldiv is designed to consider class prediction diversity by maximizing
the entropy of empirical label distribution [6] predicted by different source domains:

Ldiv =
∑K

k=1
p̂k log p̂k, (3)

where p̂k = 1
m

∑m
j=1 hk(x

j) denotes the mean prediction probability over target data.

5.2 Confident-Anchor-Induced Pseudo Label Generator

Although the minimization of both Lent and Ldiv promotes the class diversity and knowledge adap-
tation between multiple unseen source data and target data, it cannot circumvent erroneous label
assignment due to the noisy target prediction brought by domain discrepancy. To alleviate this issue,
based on Assumption 3, a confident-anchor-induced pseudo label generator is developed to mine
confident pseudo labels for target data, as shown in Figure 1. Specifically, based on the τ -anchor
assumption, we select target data xj as confident anchor when the maximum category prediction
probability hk∗(xj) is larger than the rest of category prediction probabilities hk(x

j) (k ̸= k∗) by
a threshold τp. For each confident anchor, we integrate the features extracted from multiple source
extractors together to obtain a probability-based confident anchor group Cp:

Cp = {f(xj)|hk∗(xj)− hk(x
j) ≥ τp,∀k ̸= k∗, j = 1, 2, · · ·m}, (4)

where f(xj) =
∑n

i=1 µif
i(xj) denotes the feature of the j-th target data. τp is defined as the

median value of the probability difference between the largest and the second largest probabilities
over all target data. Furthermore, inspired by the proposed τ -anchor assumption, to circumvent the
noisy anchor in Cp, we construct a distance-based confident anchor group Cd. The feature centroid
of the k-th class induced by the i-th source domain for the whole target data is defined as ξik =∑m

j=1 h
i
k(x

j)f i(xj)/
∑m

j=1 h
i
k(x

j). {ξik}ni=1 are then weighted with source-specific transferability
to obtain the feature centroid ξk of the k-th class over all source domains via ξk =

∑n
i=1 µiξ

i
k. The

distance between the feature of xj and the k-th feature centroid ξk is denoted as d(f(xj), ξk), where
d(·, ·) is a distance measure function. When the minimum distance d(f(xj), ξk∗) is shorter than the
rest of distances d(f(xj), ξk)(k ̸= k∗) by a threshold τd, we select the target data xj into Cd:

Cd = {f(xj)|d(f(xj), ξk)− d(f(xj), ξk∗) ≥ τd, ∀k ̸= k∗, j = 1, 2, · · ·m}, (5)

where we set τd as the median value of the distance difference between the shortest and the second
shortest distances over all target data. Therefore, the final confident anchor group C is obtained by
performing an intersection operation between Cp and Cd, i.e., C = Cp ∩ Cd.

To generate confident pseudo labels for unconfident target data, we select a semantic-nearest confi-
dent anchor from C for each target data via continual similarity searching. To be specific, given an
unconfident target data xj , we search a serial of unconfident guiding data consecutively using the
distance measure function d(·, ·) in the feature space, until the confident anchor from C is detected.
During each searching process, the previous searched guiding data are not considered in the follow-
ing iteration. Denote I as the set containing previously searched guiding data, xjc as the searched
confident anchor closest to xj . The guiding sample xj(t) in the t-th search could be obtained by:

xj(t) = arg min
xj∈T

d(f(xj(t−1)), f(xj)), subject to xj(t) ̸= xj(t−1),xj(t) /∈ I, (6)
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Algorithm 1 The Searching Process of
Semantic-Nearest Confident Anchor xjc.

1: Input: xj , C, t = 1;
2: Initialize: xj(t−1) = xj , I = ∅;
3: While xj(t−1) /∈ C do
4: Obtain xj(t) via Eq. (6);
5: Update I via adding xj(t) into I;
6: Update xj(t−1) via xj(t−1) ← xj(t);
7: End
8: Obtain xjc via xjc ← xj(t−1)

9: Return xjc.

Algorithm 2 The Optimization of Our Model.
1: Input: {hi}ni=1, T , E epoches, B batches;
2: Initialize: κ1, κ2, the parameters of Ω;
3: For e = 1, · · · , E do
4: Obtain pseudo labels via Eq. (7);
5: For b = 1, · · · , B do
6: Select a mini-batch of target data;
7: Update {f i}ni=1 and Ω via Eq.(9);
8: End
9: End

10: Return: {hi}ni=1 and Ω.

where xj(t−1) is the guiding data in the previous search. The searching process of xjc for the j-th
target data is summarized in Algorithm 1. Moreover, we fuse the target data and their corresponding
confident anchor in the feature space for feature augmentation, and the synthetic feature is denoted
as fsyn(x

j) = (1 − ω)f(xj) + ωf(xjc), where ω ∈ [0, 1] is the random weight to determine the
influence of confident anchor on fsyn(x

j). Therefore, the confident-anchor-induced pseudo label ŷj

of the j-th target data xj and the classification loss Lcls of whole target data are formulated as:

ŷj = arg min
k∈[K]

d(fsyn(x
j), ξk); Lcls =

1

m

m∑
j=1

K∑
k=1

[−1ŷj=k log(hk(x
j))]. (7)

5.3 Class-Relationship-Aware Consistency Loss

The inherent relationships between different classes have semantic consistency across domains, re-
gardless of distribution discrepancy. In light of this, aligning class relationships could promote more
shared transferable knowledge from source domains towards target adaptation. To achieve this, as
depicted in Figure 1, a class-relationship-aware consistency loss Lcrc is designed to encourage target
data from the same class to be compactly clustered together while preserving the intrinsic inter-class
relationships via soft confusion matrix alignment. To be specific, the soft label distribution sik of the
k-th class predicted via the i-the source predictor is formulated as sik = 1

m

∑m
j=1[1ŷj=kµih

i(xj)].
The collection of soft label distributions {sik}Kk=1 represents a kind of soft confusion matrix associ-
ated with a particular domain, encoding inter-class relationships learned by the i-th source predictor
(e.g., computers have more similar semantic relationship with desks than horses). Without access to
the source data, Lcrc aims to align soft confusion matrices from different source predictors:

Lcrc =
1

2n2

n∑
i=1

n∑
i′=1

K∑
k=1

(
KL(sik||si

′

k ) + KL(si
′

k ||sik)
)
, (8)

where KL(p||q) =
∑

r pr log
pr

qr
denotes the Kullback-Leibler (KL) divergence. The complexity of

Lcrc is not problematic in practice, due to the limited number of source domains.

In summary, the overall optimization objective to optimize {f i}ni=1 and Ω is formulated as:

L = Lent + Ldiv + κ1Lcls + κ2Lcrc, (9)

where κ1, κ2 are the balanced weights. The optimization of our model is presented in Algorithm 2.

6 Experiments

6.1 Datasets and Baseline Methods

Datasets: Office-31 [22] consists of three representative domains with 31 shared object categories
in the office environment, i.e., Amazon (A), Webcam (W) and DSLR (D). Office-Caltech [18] is an
extension dataset of Office-31 [22] by adding an additional subset called Caltech-256 (C) on it and
extracting 10 common object classes among them. Office-Home [46] is composed of four different
domains including Product (Pr), Clipart (Cl), Art (Ar), and Realworld (Re). Each of these subsets
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Table 1: Comparisons between our model and other competing methods on Office-31 [22] dataset
(the left block) and Office-Caltech [18] dataset (the right block).

Methods Source Data A, D→W A, W→D D, W→A Avg. A, D, C→W A, C, W→D C, D, W→A A, D, W→C Avg.
Source only [20] 3 97.1 92.0 51.6 80.2 93.5 94.2 90.6 87.5 91.5

MDAN [60] 3 99.2 95.4 55.2 83.3 99.4 98.7 93.5 91.6 95.8
DCTN [55] 3 99.6 96.9 54.9 83.8 99.3 99.4 94.1 91.3 96.0
M3SDA [41] 3 99.4 96.2 55.4 83.7 99.5 99.2 94.5 92.2 96.4
MDDA [62] 3 99.2 97.1 56.2 84.2 99.3 99.6 95.3 92.3 96.6

LtC-MSDA [47] 3 99.6 97.2 56.9 84.6 99.4 99.7 93.7 95.1 97.0
Source model only 7 95.4 97.5 60.2 84.4 98.0 99.5 96.3 92.1 96.5

BAIT [57] 7 98.5 98.8 71.1 89.5 98.0 97.5 97.5 95.7 97.2
PrDA [25] 7 93.8 96.7 73.2 87.9 97.6 97.1 97.3 94.6 96.7
SHOT [33] 7 94.9 97.8 75.0 89.3 99.6 96.8 95.7 95.8 97.0
MA [30] 7 96.1 97.3 75.2 89.5 99.8 97.2 95.7 95.6 97.1

DECISION [1] 7 98.4 99.6 75.4 91.1 99.6 100.0 95.9 95.9 98.0
Ours-w/oEnt 7 97.5 99.1 74.2 90.3 99.1 99.0 94.5 96.3 97.2
Ours-w/oDiv 7 97.2 98.6 73.7 89.8 98.6 99.3 94.1 95.7 96.9
Ours-w/oCls 7 96.7 98.4 73.0 89.4 97.3 98.4 93.6 95.2 96.1
Ours-w/oCrc 7 98.6 99.5 75.4 91.2 99.6 100.0 95.3 96.5 97.9

Ours 7 98.9 99.8 75.8 91.6 99.8 100.0 96.8 97.1 98.4

(a) Source model only (b) Ours (c) Source model only (d) Ours
Figure 2: t-SNE [45] visualizations on Office-31 [22] dataset when performing D, W→A (a)(b) and
A, W→D (c)(d) domain adaptation tasks.

consists of 65 shared object categories. Digits-Five [41] contains five digit recognition subsets
including MNIST-M (MM), USPS (UP), MNIST (MT), SVHN (SV) and Synthetic Digits (SY).

Baseline Methods: To validate the effectiveness of our model, we conduct comparison experiments
with a wide array of baseline methods. Specifically, MDAN [60], DCTN [55], M3SDA [41], MDDA
[62] and LtC-MSDA [47] are traditional representative multi-source domain adaptation methods
with access to source data. BAIT [57], PrDA [25], SHOT [33] and MA [30] focuses on unsupervised
single-source domain adaptation without access to source data. We compare against the multi-source
extensions of [25, 30, 33, 57] by taking an average of target soft predictions from all adapted source
models. DECISION [1] combines the source adaptation models with suitable weights automatically
for multi-source-free domain adaptation. Furthermore, Source only denotes the performance of
evaluation on target data when combining the rest of source data for training, and Source model
only represents the average performance over the predictions of all source models.

6.2 Experiments on Office-31 and Office-Caltech Datasets

Performance Comparisons: The comparisons between our CAiDA model and other state-of-the-
art methods on Office-31 [22] and Office-Caltech [18] datasets are presented in Table 1. We have the
following conclusions from the results in Table 1: 1) When compared with the multi-source domain
adaptation methods [41, 47, 55, 60, 62] that employ source data for training, our proposed model
without access to source data significantly outperforms them by a large margin of 1.4%∼8.3% in
terms of mean accuracy. It verifies the superiority of our model to tackle multi-source-free domain
adaptation. 2) Our model performs better than the multi-source extensions of single-source-free
domain adaptation methods [25, 30, 33, 57], which validates the effectiveness of our pseudo label
generation process. 3) The performance of our model is better than [1] for all evaluation tasks,
since the confident-anchor-induced pseudo label generator and class-relationship-aware consistency
loss promote the adaptation performance. Figure 2 shows that our model significantly narrows
distribution discrepancy across domains on Office-31 [22] when compared with Source model only.

Ablation Studies: This subsection introduces the effectiveness of each component in our model
via ablation studies on Office-31 [22] and Office-Caltech [18] datasets, as shown in Table 1. Ours-
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Figure 3: Qualitative analysis about parameters {κ1, κ2} (a)(b), weights of domain A (c) and con-
vergence on Office-Caltech (d), where R in (c) denotes the rest of domains except for the target.

Table 2: Comparisons between our model and other competing methods on Office-Home [46].
Methods Source Data Ar, Cl, Pr→ Re Ar, Cl, Re→ Pr Ar, Pr, Re→ Cl Cl, Pr, Re→ Ar Avg.

Source only [20] 3 67.8 71.3 51.8 53.4 61.1
MDAN [60] 3 77.3 77.6 62.2 65.4 70.6
DCTN [55] 3 78.7 78.3 63.8 66.4 71.8
M3SDA [41] 3 79.4 79.1 63.5 67.2 72.3
MDDA [62] 3 79.6 79.5 62.3 66.7 71.0

LtC-MSDA [47] 3 80.1 79.2 64.1 67.4 72.7
Source model only 7 76.3 78.8 50.1 50.9 64.0

BAIT [57] 7 77.2 79.4 59.6 71.1 71.8
PrDA [25] 7 76.8 79.1 57.5 69.3 70.7
SHOT [33] 7 82.9 82.8 59.3 72.2 74.3
MA [30] 7 81.7 82.3 57.4 72.5 73.5

DECISION [1] 7 83.6 84.4 59.4 74.5 75.5
Ours-w/oEnt 7 82.6 83.0 58.7 74.2 74.6
Ours-w/oDiv 7 82.1 82.9 58.5 73.8 74.3
Ours-w/oCls 7 81.4 82.7 57.9 73.1 73.8
Ours-w/oCrc 7 83.5 84.4 59.7 74.9 75.6

Ours 7 84.2 84.7 60.5 75.2 76.2

w/oEnt, Ours-w/oDiv, Ours-w/oCls and Ours-w/oCrc are the abbreviations of training our proposed
model without Lent, Ldiv, Lcls and Lcrc, respectively. When any one of component of our model is
abandoned, the performance degrades 0.4%∼2.3% in terms of average accuracy, which illustrates
the rationality and effectiveness of all components to cooperate together. All modules play an indis-
pensable role in improving performance, even though our model has no access to source data.

Parameter Investigation: This subsection investigates the effects of hyper-parameters κ1 in a range
of {0.1, 0.3, 0.5, 0.7, 0.9} and κ2 in a range of {10−4, 10−3, 10−2, 10−1, 1} on Office-31 [22] and
Office-Caltech [18] datasets, as shown in Figure 3 (a)(b). It validates that our proposed model
achieves stable performance over a wide range of hyper-parameters selection. Moreover, the best
performance of our proposed model on target domain is obtained when κ1 = 0.7 and κ2 = 10−2.

Contribution Weights and Convergence Analysis: Figure 3 (c)(d) present the contribution weights
of domain A and convergence curves of our proposed model on Office-31 [22] and Office-Caltech
[18] datasets. The source-specific transferable perception module could quantify the transferabil-
ity contributions of complementary information from multiple source domains to target prediction.
Furthermore, the accuracy on Office-Caltech [18] dataset converges to a stable value after a few
epoches, which demonstrates the convergence effectiveness of our proposed CAiDA model.

6.3 Experiments on Office-Home Dataset

Performance Comparisons: As presented in Table 2, we conduct comparison experiments on
Office-Home [46] dataset to illustrate the effectiveness of our model. We have the following ob-
servations from Table 2: 1) Without access to source data, our model significantly outperforms the
representative multi-source domain adaptation methods [41, 47, 55, 60, 62] by 3.5%∼5.6% in terms
of average accuracy. 2) The confident pseudo label generator encourages our proposed model to
perform better than [1], which verifies the superiority of our model for multi-source-free domain
adaptation. 3) The performance of our model improves a large margin of 1.9%∼5.5% in terms of
mean accuracy, compared with [25, 30, 33, 57]. It validates the efficiency of source-specific transfer-
able perception strategy and class-relationship-aware consistency to narrow distribution discrepancy.

Ablation Studies: As introduced in Table 2, we conduct ablation studies of our model on Office-
Home [46] dataset to illustrate the rationality of all designed modules. When compared with Ours,
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Table 3: Comparisons between our model and other competing methods on Digits-Five [41] dataset,
where R denotes the rest of four domains except for the single target domain.

Methods Source Data R→MM R→MT R→ UP R→ SV R→ SY Avg.
Source only [27] 3 63.4 90.5 88.7 63.5 82.4 77.7

MDAN [60] 3 69.5 98.0 92.4 69.2 87.4 83.3
DCTN [55] 3 70.5 96.2 92.8 77.6 86.8 84.8
M3SDA [41] 3 72.8 98.4 96.1 81.3 89.6 87.7
MDDA [62] 3 78.6 98.8 93.9 79.3 89.7 88.1

LtC-MSDA [47] 3 85.6 99.0 98.3 83.2 93.0 91.8
Source model only 3 25.2 90.0 93.3 42.8 77.8 65.8

BAIT [57] 7 87.6 96.2 96.7 60.6 90.5 86.3
PrDA [25] 7 86.2 95.4 95.8 57.4 84.8 83.9
SHOT [33] 7 90.4 98.9 97.7 58.3 83.9 85.8
MA [30] 7 90.8 98.4 98.0 59.1 84.5 86.2

DECISION [1] 7 93.0 99.2 97.8 82.6 97.5 94.0
Ours-w/oEnt 7 92.1 97.3 96.0 80.7 96.3 92.5
Ours-w/oDiv 7 91.7 97.0 96.8 82.2 96.5 92.8
Ours-w/oCls 7 91.3 96.6 96.4 80.5 95.8 92.1
Ours-w/oCrc 7 92.8 98.2 98.1 82.8 97.7 93.9

Ours 7 93.7 99.1 98.6 83.3 98.1 94.6

the performances of Ours-w/oEnt, Ours-w/oDiv, Ours-w/oCls and Ours-w/oCrc degrades 1.6%,
1.9%, 2.4% and 0.6% in terms of average accuracy, respectively. It validates that all designed mod-
ules could cooperate well to address MSFDA task. Moreover, a confident-anchor-induced pseudo
label generator could reduce the distribution discrepancy via mining confident pseudo labels.

6.4 Experiments on Digits-Five Dataset

This subsection presents the ablation studies and comparison experiments between our model and
other competing methods on Digits-Five [41] dataset, as introduced in Table 3. Some conclusions
are drawn from the presented results in Table 3: 1) Our proposed model performs the best in terms of
average accuracy when compared with multi-source domain adaptation methods [1,41,47,55,60,62]
and single-source-free adaptation methods [25,30,33,57]. The significant performance improvement
demonstrates the effectiveness of our model, even without access to source data. 2) Our model
outperforms [25, 30, 33, 57] by 8.3%∼10.7% mean accuracy, since it automatically quantifies the
contributions of different source domains to target adaptation. When we compare our model with
[1, 41, 47, 55, 60, 62], the confident-anchor-induced pseudo label generator and class-relationship-
aware consistency loss facilitate the performance improvement by mining confident pseudo labels
and aligning soft confusion matrices across domains. 3) The performance degradation in ablation
studies (i.e., Ours-w/oEnt, Ours-w/oDiv, Ours-w/oCls and Ours-w/oCrc) validates that all proposed
components are designed effectively and reasonably to explore transferable knowledge.

7 Conclusion and Future Work
This paper proposes a novel confident-anchor-induced multi-source-free domain adaptation
(CAiDA) model to capture transferable knowledge from multiple source domains without access
to source data. To be specific, a source-specific transferable perception module is developed to auto-
matically weight the contributions of the transferability of source domains. Meanwhile, we design a
confident-anchor-induced pseudo label generator to mine confident pseudo labels for the target do-
main by establishing a confident anchor group, and develop a class-relationship-aware consistency
loss to capture consistent inter-class relationships across domains. Theoretical analysis provides
some new perspectives to the highly confident pseudo labeling strategy, and gives theoretical sup-
port for MSFDA task under some proper mild assumptions. Extensive experiments illustrate the
superiority of our proposed model. In the future, we will extend MSFDA to the multi-label [48, 49]
or open-set [13, 37, 53] scenarios and use MSFDA techniques to study pandemic [38, 39].
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