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Abstract

In this paper, we propose a transformer-based procedure for the efficient registration
of non-rigid 3D point clouds. The proposed approach is data-driven and adopts for
the first time the transformer architecture in the registration task. Our method is
general and applies to different settings. Given a fixed template with some desired
properties (e.g. skinning weights or other animation cues), we can register raw
acquired data to it, thereby transferring all the template properties to the input
geometry. Alternatively, given a pair of shapes, our method can register the first
onto the second (or vice-versa), obtaining a high-quality dense correspondence
between the two. In both contexts, the quality of our results enables us to target real
applications such as texture transfer and shape interpolation. Furthermore, we also
show that including an estimation of the underlying density of the surface eases the
learning process. By exploiting the potential of this architecture, we can train our
model requiring only a sparse set of ground truth correspondences (10 ∼ 20% of
the total points). The proposed model and the analysis that we perform pave the
way for future exploration of transformer-based architectures for registration and
matching applications. Qualitative and quantitative evaluations demonstrate that
our pipeline outperforms state-of-the-art methods for deformable and unordered
3D data registration on different datasets and scenarios.

1 Introduction

Recent technological advancements of 3D acquisition pipelines have produced an abundance of
available data. The direct consequence is the non-standardization of the acquisition process. Such
technological democratization brings along a disparate amount of different representations, dis-
cretization, and arbitrary resolution. Given so, the request to align such data has become urgent.
Furthermore, data-driven statistical approaches require aligned data to relate feature changes across
the population, inferring underlying patterns.

The Computer Vision community has devoted an extraordinary effort in the last decades to address
3D objects analysis. A common way to approach this problem is to align the geometry of one
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Figure 1: Some results in real application targeted by our method. In the first row, three examples of
texture transfer on human shape pairs. In the second and third row, two examples of interpolation
between intra-class and inter-class shapes from ShapeNet (one for each row).

known shape to an incoming one. Such methodology is referred to as registration. Many different
axiomatic pipelines have been proposed that address different kind of objects and domains. While
many methods rely on the assumption that the shapes used in the registration task differ just by a rigid
transformation, the non-rigid domain is far more complex and interesting. This category pertains
organic objects (e.g., humans, animals, internal organs), which are particularly interesting as well.
Non-rigid registration aims to align two geometries that may differ by bending and stretching of the
geometry, which may also significantly modify its metric. This problem is even more complicated if
the geometry representation is given just by a sparse point cloud.

However, an emerging field merges data with classical algorithmic problems, exploiting such statistics
as regularization. Among the different learning approaches, recently, the use of the Attention
mechanism has become significantly popular in NLP domain, being later transferred to Computer
Vision applications. Such architecture is called Transformers, and they represent one of the most
significant groundbreaking methodological advancement since the introduction of CNNs.

In this work, we aim to let non-rigid registration meet the transformers. Intuitively, we aim to use the
transformer as a geometrical translator between two non-rigid point clouds. As the first element,
we modified the attention mechanism, proposing to make it aware of the underlying density of the
geometry. Hence, we apply such a mechanism in an autoencoder–like architecture, which takes a
template point cloud as input and aims to modify its geometry to fit the target point cloud.

The proposed method achieves better results than several state-of-the-art competitors in the shape
matching task. We show results on humans case, but also inter-class objects. In this second case,
our method is trained in an unsupervised manner, showing the power of our attention mechanism to
infer the underlying geometry. Also, thanks to the attention mechanism, we are able to interpret what
the network considers relevant for the registration. Finally, we can target texture transfer and shape
interpolation showing applicability in real tasks as demonstrated in 1.

Our contributions could be summarized as follows: (a) We propose the first transformer for non-rigid
registration task, showing the advantages of translation paradigm; (b) We modified the attention
mechanism to make it aware of the point cloud density and of the underlying geometry of a shape;
(c) We significantly improve the state-of-the-art performances on different datasets and challenging
scenarios.

All code and data is publicly available 1.

1https://github.com/GiovanniTRA/transmatching
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2 Related work

Shape matching is a problem with a tradition of decades. For a complete overview, we refer to the
surveys [54, 51]; below we cover the literature that more closely relates to our work.

Surface matching Early attempts to match non-rigid objects work under the assumption of near
isometry. Such is the case, for instance, of blended intrinsic maps [27], which combine multiple
conformal mappings with an additional penalty to preserve local areas. Similarly, several variants and
applications of the functional maps framework [41] implicitly assume near isometries by requiring a
special structure of the functional representation, or by means of dedicated regularizers [42, 40, 18,
38, 49] also designed for handling partial shapes [50, 11, 45]. A common drawback to these works
is that they do not disambiguate the intrinsic shape symmetries; further, the surface connectivity
introduces a structural bias which may affect the performance, as recently shown in [36]. An attempt
to overcome these issues was proposed in [37], but with the extra assumption that the shapes to match
are in the same pose. More recently, SmoothShells [15] proposes an iterative algorithm to recover
dense correspondences by an alignment of intrinsic information. While these methods do not address
3D shape registration directly, they rely on the general idea that a correspondence can be recovered
by aligning specialized, possibly high-dimensional embeddings of the shapes at hand.

Template-free registration A popular approach to solve for a matching between 3D objects is to
align their geometries extrinsically via ICP-like procedures [5, 29, 2]. In fact, registration and
matching are intimately related problems with different goals. While the matching problem aims to
find a combinatorial solution, which indicates for each point its image on the target shape, registration
looks for a spatial transformation of the geometry. If the two shapes have a significantly different
discretization, the latter problem is less ambiguous than the former. ICP-based approaches iteratively
solve the two subproblems in an alternating fashion, by finding a point-to-point correspondence and
the best transformation that adheres to such correspondence. These methods do not convergence to a
good solution if the input shapes are significantly misaligned. Similarly, Coherent Point Drift [39]
and variants [26, 22] rephrase the registration problem as an alignment of probability densities.

Template-based registration

A different family of approaches make use of a given template, which is known a priori and is possibly
parametric, toward which a given input shape is to be matched. Taking as an example the case of
human bodies, it is common to model the surface deformation related to the subject identity using
PCA [1, 3, 31, 44], while recent advancements in statistical data-science suggested that non-linear
methods are more expressive to catch fine details of humans [48, 59, 9]. Similarly, the pose can be
modeled by simple paradigms like Linear-Blend Skinning [31, 44], triangle deformations [3, 23], but
also learning methods [59]. Efforts to register such templates to arbitrary target models have been
carried out extensively by the community [23, 61, 32, 33]. However, the requirement of a template is
not always easy to satisfy.

Learning methods With the rise of learning methods, several attempts have been made to introduce
a statistical prior to the matching and registration process. For example, several extensions have been
proposed to bring the functional maps formalism into a learning paradigm [30, 13, 53]. SmoothShells
has also been extended to be data-driven [16]. The point cloud representation has received comparably
less attention, mainly in a rigid alignment setting [24, 43, 52]. In the non-rigid domain, a seminal
work is 3DCoded [19] that proposes a proper registration using an autoencoder architecture. However,
having a fixed template forbids inter–class operations and limits the use of the point cloud structure.
The constraint of having a fixed template has been relaxed in [21] but it still requires couple of
isomorphic shapes in training. Recently, it has been proposed to learn a linearly-invariant embedding
[34], but the method requires training two separate networks and relies on simple PointNets [46]
which are not able to catch the fine details of the objects. Finally, a recent trend in geometric deep
learning suggests that implicit representations may also be used for shape matching [6].

Transformer-based architectures Transformers have been first introduced in the context of neural
machine translation by the pioneering work [56], and later procedeed to revolutionize the field of
natural language processing [12, 47]. The success obtained in NLP inspired further work to employ
transformers in computer vision [14], where they managed to outperform convolutional networks.
Exploiting the input invariance property characterising the attention mechanism, many works have
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naturally extended transformers to handle point clouds [20, 60, 17]. These works show promising
results, but work only in the context of object classification and segmentation. Instead, [57] proposes
a network to find the rigid alignment between two point clouds imitating ICP, and using a transformer
architecture to infer the residual term. Differently, we aim to solve for non-rigid registration, which is
a more general case.

3 Notation and general objective

3D shapes We model 3D shapes as compact 2-dimensional Riemannian manifoldsM, possibly with
boundary ∂M. In the discrete setting, we represent the manifoldM as an unorganized point cloud
of nM vertices embedded in R3, and encoded in a coordinate matrix XM ∈ RnM×3.

source target registration

Shape registration The main objective of this paper is to intro-
duce a data-driven approach to perform shape registration. Given
a source shape S and a target shape T , respectively represented
by the sets of vertices XS and XT , our goal is to find a corre-
sponding 3D position for each point in S on the surface of T .
An example is shown in the inset figure, where the underlying
surface is visualized for reference only.

Our method does not assume the source S to be a fixed template, but can generalize to arbitrary shape
pairs S and T ; this is in contrast, e.g., with [19], where the objective is to learn how to deform a fixed
known template into another shape.

Attention One of the most influential ideas in the recent years, attention originated in the realm of
natural language processing but has since gained traction in other fields, such as computer vision and
signal processing, due to the vast increase in performance and interpretability exhibited in several
tasks. At its heart, the attention mechanism allows learning models to encode latent relations between
inputs, assigning higher importance, or "attention", to the parts deemed more relevant. In this sense,
attention allows to efficiently capture context information as well as higher order dependencies.

Formally, given two generic input sequences X1 ∈ Rn×d and X2 ∈ Rm×d (for clarity of exposition
we assume a constant embedding dimension d, but it is not a necessary assumption), the attention
mechanism models the linearly encoded representation of the inputs as triplets of query, key, and
value matrices, respectively Q ∈ Rn×d, K ∈ Rm×d, and V ∈ Rm×d. The attention score W is then
defined as W = softmax

(
QKT d−0.5

)
and used to compute the weighted mean of the value vectors,

resulting in an output feature matrix A = WV . We refer to self–attention whenever X1 and X2 are
the same object, and use the term cross–attention otherwise.

4 Method

Our method takes as input two point clouds XT and XS , with nT and nS points respectively, and
deforms the points of the source shape XS to fit the geometry described by the target point cloud XT .
To do so, we rely on a novel attention mechanism which considers the underlying geometry conveyed
by the point cloud, rather than treating the points simply as elements of a set.

Surface Attention The classic attention definition, as introduced in Section 3, looks at the input data
points simply as elements of a set, and uses the computed attention scores to perform a weighted sum
of the value vectors. When the value vectors represent a sampling of a signal over a surface, however,
the natural domain for the integration should be the surface itself, of which the weighted sum is just
an approximation highly sensitive to the specific surface sampling (depending, for instance, on the
acquisition method).

To overcome this limitation we propose to modify the attention mechanism to consider the portion of
surface represented by each point, weighting the attention score by an estimated local area element.

In practice, for each point xi ∈ X , we estimate its area contribution as the inverse of the local point
density: A(X)i = (|{xj ∈ X s.t. ‖xj − xi‖2 < r}|)−1, where | · | denotes the cardinality of a set,
and r is a local radius (r = 0.05 in our experiments). Note that, we are not interested in the absolute
value of the area elements, rather on the relative contribution of each point. The surface attention
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Figure 2: The proposed transformer-based architecture for 3D point cloud registration. The latent
probes capture the geometry of the input target shape XT through the encoder layers. The resulting
latent vectors drive the deformation of an input source shape XS in the decoding layers, resulting in
a deformation of the points of XS to fit the geometry of XT .

score is thus defined as:

W̃i,j =
eWi,jA(X)j∑
t e

Wi,tA(X)t
. (1)

As in the classical attention, output features are computed as W̃V . Figure 3 shows that the surface
attention mechanism results in a more stable localization of the attention scores across different
samplings of the surface.

In our architecture, each time attention is computed over point clouds, we use such formulation.

Architecture The architecture we propose, portrayed in Figure 2, is an iteratively conditioned
autoencoder. The two main ingredients are an encoder, that maps a target point cloud XT into a latent
space LST , and a decoder, that deforms a source point cloud XS to resemble the geometry of the
target point cloud XT .

The encoder draws inspiration from [25], featuring a set of learnable parameters, we refer to them as
latent probes LP . It presents multiple layers of cross attention which iteratively condition the latent
probes LP with the embedding of XT . After each conditioning, the resulting latent space is further
transformed by layers of self attention, feed forwards and residual connections. The encoder output is
a set of latent vectors LST containing relevant information collected from the target point cloud XT .

The decoder is analogous to the encoder but the relationship between the latent space and the point
cloud in the cross attention is reversed. That is, the embedding of the source point cloud XS is
transformed and iteratively conditioned with the latent space LST produced by the encoder. This
procedure induces a deformation of XS that, after a final MLP layer, aligns to the points of XT .

Training Given a training dataset equipped with a ground-truth correspondence, we train our net-
work in a supervised setting. Starting from a set of shapes in correspondence, we minimize the
reconstruction error using the standard reconstruction loss:

Lsup(XS , XT ) = ‖XT −D(XS , E(XT ))‖22 . (2)

Furthermore, in case a ground-truth correspondence is not available, our network can be trained in an
unsupervised way using the Chamfer distance, between XT and YT = D(XS , E(XT )), as defined
below: ∑

s∈XT

min
t∈YT

‖s− t‖22 +
∑
t∈YT

min
s∈XT

‖t− s‖22 . (3)

Testing At test time, our network can register a point cloud to another instantaneously, with a
single forward pass. In the following experiments that involve the computation of matching, the
correspondence can be obtained just by looking for the Euclidean nearest-neighbor between XT and
the output D(XS , E(XT )) in the 3D space.

Refinement The peculiar structure of our architecture allows us to refine the output during the testing
procedure. This is achieved by minimizing the energy function chamfer(XT , D(XS , E(XT ))) with
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Table 1: Ablation study. We report the relative average matching error (lower is better) with respect
to the baseline architecture used in all the experiments (for which the error is set to 1).

Test Set # of latent space vectors # E/D layers latent space dimension
32 16 8 4 2 4 8 12 32 64 128

SURREAL 1.00 1.00 0.93 0.97 0.91 1.04 1.00 0.93 1.36 1.00 1.45
FAUST 1.00 1.01 1.24 1.30 1.29 1.45 1.00 1.22 0.82 1.00 0.94

Average 1.00 1.01 1.08 1.13 1.10 1.24 1.00 1.07 1.09 1.00 1.19

Classic attention Surface attention
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Figure 3: Comparison between the classic (left) and surface (right) attention mechanism behavior
with differently sampled surfaces. The surface attention is more stable across different sampling
strategies. The two attention mechanism have been trained separately, so there is no correspondence
on the attention localization between the two. Surfaces are shown just for visualization purposes.

Figure 4: The colormap shows the attention value given to each point of the shape by each input
latent vector (only 5 of 32 are shown) at the first (left half) and last (right half) layers of the decoder.

respect to the latent vectors LST . In practice, we use the latent vectors produced by a single forward
pass as initial guess for LST , and minimize the previous energy function using Adam optimizer.

As we show in Section 5, this step can significantly improve the shape matching results. We remark
that this is possible only thanks to the registration formulation of our approach. Shape alignment in
3D space can be optimized continuously, while a point-to-point assignment is non-differentiable due
to the combinatorial nature of the problem.

5 Experiments & Results

We evaluate the effectiveness of our architecture on a number of challenges. We begin by analyzing
the key components of our model, motivating our architectural choices through ablation studies.
Finally, we present our results in the context of matching, registration, and inter–class registration.

6



5.1 Experimental settings

Training data For all our experiments in the humans domain, we trained our method on the same
shapes from the SURREAL dataset [55] used in [34]. It consists of 10000 point clouds for training.
Each point cloud has 1000 points, which simulate a significantly sparse sampling of the original
shape. During training we augment the data by randomly rotating shapes along the second axis. We
also trained our model on the ShapeNet dataset [8]. This dataset is composed of 16881 point clouds
representing 3D shapes from 16 different objects categories(from chairs to airplanes), that also do not
share a ground truth correspondence. Hence, we trained our method in an unsupervised manner for
this particular data. We sample 1024 points for each object and use the same train/test split as in [58].

We also compare our model on other human datasets, thus assessing the ability to generalize to data
out of the training distribution. A popular dataset to analyze real identities and poses is FAUST [7],
which is composed by ten subjects in ten different poses. We also used a 1000 points version of it,
which we refer to as FAUST1K. To simulate the noise produced by a 3D acquisition pipeline, we
considered the same data from [34] in which the points are perturbated by a Gaussian noise. Also,
we challenge our method on SHREC’19 [36]. Such dataset is composed by 44 shapes which have
different connectivities, poses and densities. In all the experiments we refer to our method as Our.

In our comparisons we train our model for 10000 epochs using Adam optimizer [28]. We use 32
latent probes of dimension 64, and 8 layers for both the encoder and the decoder.

Competitors We consider 3DCoded [19] (3DC) as our principal competitor. Similarly to us, it aims
at deforming a shape into another using an autoencoder architecture. However, it assumes one of the
two shapes to be a predefined template, limiting its generalization capability. Further, we consider
the Linearly-Invariant Embedding approach of [34] (LinInv), which learns an high-dimensional
embedding in which the shapes can be aligned by a linear transformation. It is based on PointNet,
and do not exploit any local structural mechanism. Finally, we considered the Geometric Functional
Maps definition [13], using DiffusionNet [53] as feature extractor (DiffNet). Similarly to [34], it
learns to embed each shape point into a common higher-dimensional.

Both our method and 3DC can improve the registration with a post-processing refinement, we refer to
these as 3DCR and OurR.

5.2 Ablation and analysis

Here we justify our choices on hyperparameters through an ablation study, and we present some
insight on the key properties of our method with an in depth analysis.

Ablation study To investigate the different components of the proposed architecture, we run a batch
of experiments in a reduced version of the SURREAL dataset, using the first 1000 shapes for training,
and a different set of 2700 shapes for testing. We also test on FAUST1K.

We report the results in Table 1. We test for three possible ablations: number of latent space vectors,
their dimension, and the number of encoder–decoder blocks. We remark that the while SURREAL
share discretization and density with the training data, FAUST1K does not. This may explain the
difference in performance we observe, and their almost inverse relationship. In fact, it seems that a
low number of latent vectors tend to overfit the specific sampling seen during training, while a higher
number seems to provide better generalization. A similar behavior can be observed for the other
hyperparameters considered. Finally, to reach a good trade off between bias and variance, we choose
the configuration that produces the minimum mean error on these two evaluation sets.

Analysis of the Surface attention Quantitative and qualitative results showing the importance of the
surface attention mechanism compared to the standard point attention. This novel kind of attention
we propose has the merit of being much more agnostic to the particular discretization and density
of the given point cloud. We can observe this behavior clearly in Figure 3. Here we visualize the
attention across different densities and discretization strategies and two different settings, one with
surface attention and one with regular attention. With the regular attention mechanism the part of the
point cloud attended shows erratic behavior, with different intensities and often even different part
that gets attended. Surface attention completely solves this issue, enabling the architecture to achieve

7



Figure 5: Interpolation examples of two shapes. Left group: left and right-most shapes are the
registration of a source shape S to two different target shapes T1, T2, the central shape is obtained
passing as input to the decoder latent vectors obtained by linearly interpolating the latent vectors of
the two target shapes. In the second and third groups the interpolation is performed only on a subset
of the vectors: we fix the latent vectors of the first shape which attention, on the last layer of the
decoder, focuses respectively on the upper part of the body (center) and on the legs (right), while
interpolating the remaining ones.

greater generalization capacity and enjoying increased robustness, and allowing us to decrease the
error on the full version of FAUST of more that 50%.

Multivariate Latent Space

Inspecting the cross attention of the decoder layer we can seize the impact of the latent probes in
our learning. In the top row of Figure 4 we can see how the attention in the first layer of the decoder
captures global information of the shape, while in the last layer (bottom row), attention puts its focus
on small details of the shape.

The possibility of directly visualizing attention maps and the multivariate nature of the latent space
permits further analysis. In Figure 5, in particular, we explore the structure of our latent space and
how attention influences it. Similarly to recent non-rigid shape autoencoders [10, 35, 4] we can
manipulate the latent vectors to generate new shapes. Specifically, we grab the two latent spaces
output of the encoder by registering a source shape S to two different target shapes T1, T2. Starting
from the left triad, the left most and the right most shape represents the registration of S to T1 and
T2 respectively; the one in the middle is a obtained by linearly interpolating the two latent spaces.
In the middle triad we add a twist to this procedure, namely we locate the latent vectors attending
the most to the upper body of the shape and keep them fixed. A similar procedure is undertaken in
the right triad, but this time focusing on the legs. From this experiments, it follows that our latent
space is not only linearly navigable, meaning that a linear interpolation of the shapes encoded in the
latent space preserve a reasonable semantics, but also, and most interestingly we might say, attention
characterizes this space and directly allow for meaningful alteration, or preservation, of selected
chosen characteristics.

5.3 Results and Applications

In this section we present results and application of our method. In particular, we show state of the
art performance on the shape matching task as well as shape registration.

Matching One of the task we consider is that of matching. Given two generic point clouds we want
to find correspondences between them. Our model approach this task in a natural and elegant way, by
registrating one shape onto the other. It becomes trivial then to obtain correspondences through a
nearest point search. Results are reported in Table 2. Our method consistently outperforms the state
of the art by a solid margin. Furthermore, we notice that our method is endowed with a much greater
ability to generalize. This can be noted on the SHREC’19 dataset, as visualzied in Figures 6. The
quality of our matching enable us to achieve high quality texture transfer as shown in Figures 1 and 7.

Template Registration A classical problem in Computer Graphics is to register a given template,
usually a triangular or polygonal mesh, to some acquired point cloud. This setup is a special instance
our method, in which the point cloud to be given as input to the decoder remains constant. Regarding
our competing methods, even if DiffusionNet and LinInv are not proper registration algorithm, we
can move a template point to the corresponding point (as found by the matching algorithm) on the
input point cloud. This partially explains why, even though performing the worst overall, achieve
lower chamfer distance, since their error is somewhat bound. On the other hand, 3DC is trained
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Table 2: Comparison of the average geodesic error on different datasets. FAUST(1k) is obtained
from FAUST sampling 1k points, FAUST(1k-noise) is obtained as FAUST(1K) but perturbing each
vertex with Gaussian noise. FAUST [7] and SHREC19 [36] have very different sampling densities,
with point clouds ranging from ∼ 5 to ∼ 200 thousand points.

Method FAUST FAUST(1k) FAUST(1k-noise) SHREC19

3DC 0.0776 0.0542 0.0712 0.2138
DiffNet 0.0656 0.0534 0.0985 0.1509
LinInv 0.0942 0.0471 0.0618 0.1284
Our 0.0513 0.0419 0.0510 0.0802

3DCR 0.0485 0.0367 0.0526 0.1935
OurR 0.0369 0.0263 0.0410 0.0615

0 0.16
0

100

3DC
3DCR

DiffNet
LinInv
Our
OurR

Source GT 3DCR DiffNet LinInv OurR

Figure 6: Comparison of different methods on SHREC19 [36]. Left: Each curve shows the
percentage of points (y-axis) with at most a geodesic error (x-axis). Right: Qualitative comparison.
From left to right, the source shape S, the ground truth color transfer to the target geometry T ,
the results of the competitors and our result. The color transfer predictions are paired with the
corresponding error visualizations, from white (error=0) to black (error>0.75).

Table 3: Comparison on the registration task on FAUST [7]. Left: Each curve shows the percentage
of points (y-axis) with at most that geodesic error (x-axis). Right: Table showing for each method:
the mean geodesic error (MGO) of the resulting matching; the Chamfer distance, the maximum and
the mean Euclidean distance (Max EU, Mean EU) between the registered template and the target.

0 0.16
0

100

3DC
3DCR

DiffNet
LinInv
Our
OurR

Method Chamfer Max EU Mean EU MGO

3DC 0.0409 0.2231 0.0723 0.0463
DiffNet 0.0164 1.2942 0.1023 0.0761
LinInv 0.0177 0.3314 0.1044 0.0692
Our 0.0333 0.2299 0.0650 0.0434

3DCR 0.0214 0.1705 0.0445 0.0293
OurR 0.0129 0.1626 0.0306 0.0275

exactly in this fashion. Note also that 3DC is the only method that sees the template shape during the
training phase. Even though we train our method on a different task, we manage to improve on the
state of the art as can be seen in Table 3, without the need for any, altough possible, fine-tuning.

5.4 Unsupervised Registration and Interpolation

One of our main advantages is that we do not require a template. Fixing a common template is
not trivial, if not possible at all, when dealing with very different objects. To show the ability of
our method of dealing with this challenging scenario we trained a model to register pair of shapes
belonging to possibly different object categories of ShapeNet, using the chamfer loss defined in
Section 4.
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Source 3DC 3DCR DiffNet LinInv Our OurR

Figure 7: Qualitative comparison of texture transfer on the SHREC19 [36] dataset. From left to
right, the source shape S, the texture transfer to the target shape T of competitors and our results.

We show in Figure 1 (2nd and 3rd row) two interpolation sequences between two airplanes and
between a chair and a table, showing that our method is able to register different objects preserving
a meaningful correspondence, represented by similar colors. The interpolated reconstructions are
obtained by embedding the outermost shapes in the latent space through the encoder and then using
the linearly interpolated latent vectors and the left-most shape as input to the decoder.

6 Conclusion

We propose the first transformer based architecture to tackle the problem of non–rigid registration.
We introduce a novel surface attention mechanism better suited to exploit the local geometric priors
of the underlying structure. Our method reaches state of the art performance in shape matching and
shape registration without assuming any fixed template, and generalizes also to different and complex
geometries, e.g. handling multiple classes of ShapeNet [8] simultaneously. The attention mechanism
at the core of our architecture has the potential to enforce local control of the interpolation, as seen in
Figure 5.

Limitations and future works. Our method shares a common drawback with most transformed-
based architectures, requiring long training and post-processing time due to the nature of the refine-
ment procedure. Further investigation is needed to explore the possibility to introduce additional
priors on the attention to force a semantically meaningful localization and interpolation behavior.

7 Acknowledgment

This work is supported by the ERC Grant No. 802554 (SPECGEO) and the MIUR under grant
“Dipartimenti di eccellenza 2018-2022”.

10



References
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