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Abstract

Estimating Kullback—Leibler (KL) divergence from samples of two distributions is
essential in many machine learning problems. Variational methods using neural
network discriminator have been proposed to achieve this task in a scalable manner.
However, we noted that most of these methods using neural network discriminators
suffer from high fluctuations (variance) in estimates and instability in training. In
this paper, we look at this issue from statistical learning theory and function space
complexity perspective to understand why this happens and how to solve it. We
argue that the cause of these pathologies is lack of control over the complexity of the
neural network discriminator function space and could be mitigated by controlling
it. To achieve this objective, we 1) present a novel construction of the discriminator
in the Reproducing Kernel Hilbert Space (RKHS), 2) theoretically relate the error
probability bound of the KL estimates to the complexity of the discriminator in
the RKHS space, 3) present a scalable way to control the complexity (RKHS
norm) of the discriminator for a reliable estimation of KL divergence, and 4) prove
the consistency of the proposed estimator. In three different applications of KL
divergence — estimation of KL, estimation of mutual information and Variational
Bayes — we show that by controlling the complexity as developed in the theory, we
are able to reduce the variance of KL estimates and stabilize the training.

1 Introduction

Estimating Kullback—Leibler (KL) divergence from data samples is an essential component in many
machine learning problems including Bayesian inference, calculation of mutual information or
methods using information theoretic objectives. Variational formulation of Bayesian Inference
requires KL divergence computation, which could be challenging when we only have finite samples
from two distributions. Similarly, computation of information theoretic objectives like mutual
information requires computation of KL divergence between the joint and the product of marginals.

KL divergence estimation from samples was studied thoroughly by Nguyen et al. [!] using a
variational technique, convex optimization and RKHS norm regularization, while also providing
theoretical guarantees and insights. However, their technique requires handling the whole dataset
at once and is not scalable. Many modern models need to use KL divergence with large scale data,
and often with neural networks, for example total correlation variational autoencoder (TC-VAE) [2],
adversarial variational Bayes (AVB) [3], information maximizing GAN (InfoGAN) [4], and amortized
MAP [5] all need to compute KL divergence in a deep learning setup. These large scale models have
imposed new requirements on KL divergence estimation like scalability (able to handle large amount
of data samples) and minibatch compatibility (compatible with minibatch-based optimization).

Methods like Nguyen et al. [1] are not suitable in the large scale setup. These modern needs were
later met by modern neural network based methods such as variational divergence minimization
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(VDM) [6], mutual information neural estimation (MINE) [7], and discriminator based KL estimation
with GAN-type objective [&, 5]. A key attribute of these methods is that they are based on updating
a neural-net based discriminator to estimate KL divergence from a subset of samples making them
scalable and minibatch compatible. We, however, noticed that even in simple examples, these methods
exhibited pathologies like unreliability (high fluctuation of estimates) or instability during training
(KL estimates blowing up). Similar observations of instability of VDM and MINE have also been
reported in the literature [8, 9].

Why are these techniques unreliable? In this paper, we attempt to understand the core problem in
the KL estimation using discriminator network. We look at it from the perspective of statistical
learning theory and discriminator function space complexity and draw insights. Based on these
insights, we propose that these fluctuations are a consequence of not controlling the smoothness and
the complexity of the discriminator function space. Measuring and controlling the complexity of
function space itself becomes a difficult problem when the discriminator is a deep neural network.
Note that naive approaches to bound complexity by the number of parameters would neither be
guaranteed to yield meaningful bound [10], nor be easy to implement.

Therefore, we present the following contributions to resolve these challenges. First, we propose a
novel construction of the discriminator function using deep network such that it lies in a smooth
function space, the Reproducing Kernel Hilbert Space (RKHS). By utilizing the learning theory
and the complexity analysis of the RKHS space, we bound the probability of the error of KL-
divergence estimates in terms of the radius of RKHS ball and kernel complexity. Using this bound,
we propose a scalable way to control the complexity by penalizing the RKHS norm. This additional
regularization of the complexity is still linear, (O(m)) in time complexity with the number of data
samples. Then, we prove consistency of the proposed KL estimator using ideas from empirical process
theory. Experimentally, we demonstrate that the proposed way of controlling complexity significantly
improves KL divergence estimation and significantly reduce the variance. In mutual information
estimation, our method is competitive with the state-of-the-art method and in Variational Bayesian
application, our method stabilizes training of MNIST dataset leading to sharp reconstruction.

2 Related Work

Nguyen et al. [1] used variational method to estimate KL divergence from samples of two distribution
using convex risk minimization (CRM). They used the RKHS norm as a way to both measure and
penalize the complexity of the variational function. However, their work required handling all data at
once and solving a convex optimization problem which has time complexity in the order of O(m?)
and space complexity in the order of O(m?) . Ahuja [11] used similar convex formulation in RKHS
space and found it difficult to scale. VDM reformulated the f-Divergence objective using Fenchel
duality and used a neural network to represent the variational function [6]. Although close in concept
to [1], it is scalable since it uses a separate discriminator network and adversarial optimization. It,
however, did not control the complexity of the neural-net function, and faced issues with stability.

One area of modern application of KL-divergence estimation is in computing mutual information,
which is useful in applications such as stabilizing GANs [7]. MINE [7] also optimized a lower bound
to KL divergence (Donsker-Varadhan representation). Similar to VDM, MINE used a neural network
as the dual variational function: it is thus scalable, but without complexity control and is unstable.
Another use of KL divergence is scalable variational inference (VI) as shown in AVB [&]. VI requires
KL divergence estimation between the posterior and the prior, which becomes nontrivial when a
sample based scalable estimation is required. AVB solved it using GAN-type adversarial formulation
and a neural network discriminator. Similarly, [5] used GAN-type adversarial formulation to obtain
KL divergence in amortized inference.

Chen et al. [2] proposed TC-VAE to improve disentanglement by penalizing the KL divergence
between the marginal latent distribution and the product of marginals in each dimension. The KL
divergence was computed by a minibatch-based sampling strategy that gives a biased estimate. Our
work is close to Song et al. [9] who investigated the high variance in existing mutual information
estimators and found that clipping the discriminator output is helpful in reducing variance. In our
work, we take a principled way to connect variance to the complexity of discriminator function
space and constrain it by penalizing its RKHS norm instead. None of the existing works considered
looking at the discriminator function space, connecting its complexity to the unreliable KL-divergence
estimation, or mitigating the problem by controlling the complexity.



3 Reproducing Kernel Hilbert Space

Let  be a Hilbert space of functions f : X — IR defined on non-empty space X. It is a Reproducing
Kernel Hilbert Space (RKHS) if V& € X, the evaluation functional, §,, : H — IR, §, : f — f(z), is
linear and continuous at every f. Every RKHS, #H x, is associated with a unique positive definite
kernel, K : X x X — IR, called the reproducing kernel [12], such that it satisfies:

1.V e X,K(,z) e Hk, 2.Vexe X VfeHk, (f[K(,2)u, = f(x)

RKHS is studied using a specific integral operator. Let £2(dp) be a space of functions f : X — R
that are square integrable with respect to a Borel probability measure dp on X, we denote an integral
operator L : La(dp) = La(dp) [13, 14]: (Lr f)(z) = [, [( (z,y)dp(y). This operator will
be important in constructing a function in RKHS and 1n computmg sample complexity.

4 Problem Formulation and Contribution

GAN-type Objective for KL Estimation: Let p(x) and g(x) be two probability density functions
in space X and we want to estimate their KL divergence using finite samples from each distribution
in a scalable and minibatch compatible manner. As shown in [8, 5], this can be achieved by using a
discriminator function. First, a discriminator f : X — IR is trained with the objective:

fF= arg;pax[Ep(q,) logo(f(x)) + Ey(q) log(1 —o(f(x)))] (D

where o is the Sigmoid function given by o(x) = 7. Then it can be shown [&, 5] that the KL
divergence K L(p(x)||q(x)) is given by: K L(p(z)|lq(x)) = Ep@)[f*(2)]

Sources of Error: Eq. (1) is ambiguous in the sense that it is silent about the discriminator
function space over which the optimization is carried out. Typically, a neural network is used as the
discriminator. This implies that we are considering the space of functions represented by the neural
network of given architecture as the hypothesis space, over which the maximization occurs in eq. (1).
Hence, we must rewrite eq. (1) as

= argglax[Ep(I) logo(f(z)) + By log(l — o(f(2)))] 2)

where h is the discriminator function space. Furthermore, we also approximate integrals in eq. (2)
with the Monte Carlo estimate using finite number of samples, say m, from the distribution p and q.

m 1 1
fir = argmax| — 37 logo(f(z)+— Y. log(l—o(f(x;)))] 3
feh x;~p(zi) zj~q(z;)
Similarly, we write KL estimate obtained from, respectively, infinite and finite samples as:
1
KL(f) = By lf(@)], KLu(f)=— 3 [f(@) “
@i~p(wi)

Each of these steps introduce some error in our estimate. We can now start our analysis by first
decomposing the total estimation error as:

KL (fi") = KL(f") = KLm(f3") — KL(f}") + KL(f}") — KL(f) + KL(f;) = KL(f")

Deviation-from-mean error Discriminator induced error Bias

&)
This equation decomposes total estimation error into three terms: 1) deviation from the mean error, 2)
error in KL estimate by the discriminator due to using finite samples in optimization eq. (3), and 3)
bias when the considered function space does not contain the optimal function. Here, we concentrate
on quantifying the probability of deviation-from-mean error which is directly related to observed
variance of the KL estimate.

Summary of Technical Contributions: Since the deviation is the difference between a random
variable and its mean, we can bound the probability of this error using concentration inequality and
the complexity of the function space of f;"*. To use smooth function space, we propose to construct a
function out of neural networks such that it lies on RKHS (Section 5). Then, we bound the probability
of deviation-from-mean error through the covering number of the RKHS space (Section 6.1), then
control complexity (Section 6.2) and prove consistency of the proposed estimator (Section 7).



5 Constructing f in RKHS

The following theorem due to Bach [15] paves a way for us to construct a neural function in RKHS.

Theorem 1. [[/5] Appendix A] A function f € Lo(dp) is in Reproducing Kernel Hilbert Space, H,
if and only if it can be expressed as

Ve e X, f(z) = /W g(w)(z, w)dr(w), (6)

for a certain function g : W — R such that ||g| |%2( dry < 00, Wis a compact space and functions
w > p(x, w) are measurable for all x. The RKHS norm of f satisfies || f||3,,. < ||g| ‘%2((17) and the
kernel K is given by

K1) = /W b, W) (t, w)dr (w) )

Theorem 1 not only gives us a condition when a square integrable function is guaranteed to lie in
RKHS, it also provides us with a recipe to construct a function in RKHS. We construct f using this
theorem where ¢ and g are realized with the neural networks and dr is a probability measure with
Gaussian distribution. We sample w ~ N(0,~1) and pass it through two neural networks, 3 and g,
where 1) takes x and w as two arguments and g takes only w as an argument. More precisely, we
consider 1(x, w) = ¢g(x)Tw, where ¢y is a neural network with parameters, 6. The kernel K, as
defined in eq. (7), can be obtained as:

Kola"#) = [ éula) wuT go(t")dr(w) = v60(c")T du(t") ®
w

where Ey,ar(0,41) [wwT] = yI. We sometimes denote the kernel K by Ky to emphasize that it is a

function of neural network parameters, 6. Furthermore, representation of f as in Theorem 1 provides

us an important upper bound on the RKHS norm of f as || f||3,, < I|g| |2£2( -y Which we will use

later to bound the complexity of the discriminator function space.

Traditionally, kernel K remains fixed and the norm of the function f determines the complexity of
the function space. In our formulation, both the RKHS kernel and the norm of f with respect to the
kernel changes during training since the kernel depends on neural network parameters, §. Therefore,
the challenge is to tease out how neural parameters, 6, affect the deviation-from-mean error in eq. (5).

6 Error Analysis and Control

Assumptions: Before starting our analysis, we list assumptions upon which our theory is based.
Al. The input domains X and W are compact.

A2. The functions ¢ and g are Lipschitz continuous with Lipschitz constants Ly and L, respectively.
A3. Higher order derivatives D% K (z, t) up to some high order v/2 of kernel K exist.

Assumptions A1l is satisfied in our experiments since we consider a bounded set in R” and R” as
our domains. Similarly, A2 is satisfied since we enforce Lipschitz continuity of ¢ and g by using
spectral normalization [16]. Assumption A3 is a bit subtle. By the definition of K in eq.(8), higher
order derivative of K exists if and only if higher order derivative of ¢g exists. This is readily satisfied
by deep networks with smooth activation functions, and is true everywhere except at origin for
ReLU activation. Using the boundedness of the input domain and Lipschitz continuity, we show the
following proposition which will be useful later in the error bounds.

Proposition 1. Under the assumptions Al, A2, we have sup Ky(z,t) < oo and ||g| |2£2(d7) < 00.

x,t

6.1 Bounding the Error Probability of KL. Estimates

Bounding the probability of deviation-from-mean error (eq. (5)) is tricky since, in our case, the kernel
is not fixed and we are also optimizing over them. We bound it in two steps: 1) we derive a bound for
a fixed kernel, 2) we take supremum of this bound over all the kernels parameterized by 6.

For a fixed kernel, we first bound the probability of deviation-from-mean error in terms of the covering
number in Lemma 1. We then use an estimate of the covering number of RKHS due to [14] to relate
the bound to kernel Ky in Theorem 2, identifying the role of neural networks in this error bound.



Lemma 1. Let f3] be the optimal discriminator function in an RKHS H k which is bounded by M
with respect 1o ||.||o . Let K Ly (f37 ) = =5, fir (ws) and KL(f}} ) = Ep) L7, (%)) be the
estimate of KL divergence from m samples and that by using the true distribution p(x) respectively.
Then the probability of error at some accuracy level, €, is lower-bounded as:

m€2

74\/5)63413(—@)

where N'(Hk ,n) denotes the covering number of an RKHS space H yc with disks of radius 1, and

Sk = sup K(x,t) which we refer to as kernel complexity.
x,t

Prob.(|K L (fif,) — KL(fi{, )| <€) 2 1 = 2N (Hk,

Proof Sketch. We cover RKHS with discs of radius n = 1 \/EST( Within this radius, the deviation
does not change too much. So, we can bound deviation probability at the center of disc and apply
union bound over all the discs. To bound deviation probability at the center, we apply Hoeffding’s
inequality and applying union bound simply leads to counting number of discs which is exactly the

covering number. See supplementary materials for the full proof. O

Lemma | bounds the probability of error in terms of the covering number of the RKHS space. Note
that the radius of the disc is inversely related to Sk which indicates how complex the RKHS space
defined by the kernel Ky is. Here Ky depends on the neural network parameters 6. Therefore, we
denote Sk as a function of 6 as Sk (¢) and term it kernel complexity. Next, we use Lemma 2 due to
[14] to obtain an error bound in estimating KL divergence with finite samples in Theorem 2.

Lemma 2 ([14]). Let K : X x X — R be a C* Mercer kernel and the inclusion I : Hg — C(X)
be the compact embedding defined by K to the Banach space C(X). Let Br be the ball of radius R
in RKHS Hy. Then¥n > 0, R > 0,v > n, we have

RC,\ ™
) )

n
where N gives the covering number of the space I (Bg) with discs of radius 1, and n represents the
dimension of the input space X. C,, is given by C,, = Cs\/||-Zs|| where £ is a linear embedding

from square integrable space Ly(dp) to the Sobolev space H"/?, ||.2,|| denotes operator norm and
C is a constant.

A (I (Br). 1) < (

To prove Lemma 2 [14], the RKHS space is embedded in the Sobolev Space H"/? using ., and then
the covering number of the Sobolev space is used. Thus the norm of .Z; and the degree of Sobolev
space, /2, appears in the covering number of a ball in H . In Theorem 2, we use Lemma 1 and 2 to
bound the estimation error of KL divergence.

Theorem 2. Let K L(f]}) and K L,,(f}}) be the estimates of KL divergence obtained by using true
distribution p(x) and m samples respectively as described in Lemma 1, then the probability of error
in the estimation at the error level € is given by:

Prob.(IK L (£7) — KL(F)| < ) > 1 — 2exp

<4chv Sp|fp|> N _ me? ]
€

402

where Cp\/Sp||-Lp|| = supCs+/ Sk (8)||Zsl|, i.e. Cp, Sy, 2, correspond to a kernel for which the
Ko

bound is maximum.

Proof. We prove this in two steps: First we obtain an error bound for a fixed kernel space and apply
supremum over all 6. For any RKHS # ., , with fixed kernel Ky, we have

<4RCS SK(9)||$S||>2:_m62‘| (10)
€

Prob.(|KLm(f7’_7K8) - KL(f,TKe)| >e€) <2exp e

We prove this error bound as follows. Lemma 2 gives the covering number of an RKHS ball of radius
R, which we apply to Lemma 1. We fix the radius of discs to ) = — — in Lemma | and substitute

VSk
C, = Cs+/]|Z5(0)]| to obtain eq.(10).



Since we are continuously changing 6 during training, the kernel also changes. Hence, to find the
upper bound over all possible kernels, we take the supremum over all kernels.

Prob. (K L (f5) = KL(f5)| = ©) < sup Prob(|K L) = KLU, )l 2 ) (D)

<4Rop\/sp|zp|> v mﬂ 12
€

< 2exp

4M?

where S, = Sk (0,) and .2, = Lk (0,), i.e, S, and .Z), correspond to kernel complexity and
Sobolev operator norm corresponding to optimal kernel Ky, that extremizes eq. (11). Theorem
statement readily follows from eq. (12) O

Theorem 2 shows that the error increases exponentially with the radius of the RKHS space,
R, complexity of the kernel Sk (6,), and the norm of the Sobolev space embedding opera-
tor ||-%,||. The Sobolev embedding operator, .%,, is a mapping from Ls(dp) to the Sobolev
space H"/2. Tt can be shown [14] that the operator norm can be bounded as ||.%,|| <
P(X) X ja1<v /2 s:gz{(DgKgp (x,t))%, where p is the measure of the input space X. Therefore,

the norm ||.%, || directly measures smoothness of Ky, while Sk (6,,) only depends on the supremum
value of Ky, . C) is a constant not depending on S, %}, or R, and it is always finite (see [14, 17]
for more details). S, and .Z), are related to ¢, y through the kernel Ky . S, is defined as S, = sup

x,t

K(z,t) = sup v¢} (x)¢o, (t), so it is directly related to the network ¢y, . We show that this is
x,t P

finite due to Lipschitz constraint on ¢y, as described in Assumption A2 (see Supplementary material
for proof). ., is upper bounded as follows: ||.Z,[| < p(X) 3, <, /2 sup (DK, (2,1))% =
- z,teX

P(X) X aj<u/2 SUP (Dg'ygbg; (z)¢o, (t))? where D is a differentiation operator. Therefore, .Z), is
- z,teEX

finite if the higher order derivatives of ¢g, exist and are finite.

6.2 Complexity Control

From Theorem 2, we see that the error probability could be decreased by decreasing R, ||.Z,|| and
Sk (0,). Using argument similar to the proof of Proposition 1, we can show that the Lipschitz
constraint on ¢y also affects Sk and may affect ||.%,||. In our experiments, however, we fix the
Lipschitz constraints during optimization and do not change Sk and ||.Z},|| dynamically. Here, we
focus on the norm, R from Theorem 2. From Theorem!, we know that the RKHS norm is upper
bounded by the norm of function g as || |3, < ||g] |2£2( dr)- We have access to finite approximation

of ||g] |%2 (4r) DY construction and hence, we can use it to penalize the complexity during optimization.

To obtain the optimal discriminator f;, we optimize the following objective with an extra penalization
of the upper bound, i.e. ||g]|.,(4-) on the RKHS norm of f:

1 1 A
fir = argmax— 3" loga(f(@)+— S log(l = o(f(2) = 2llgllE,ary (13

fen zi~p(xy) zj~q(zy)

The regularization term prevents the radius of RKHS ball from growing, maintaining a low error
probability. Optimization of eq. (13) w.r.t. neural network parameters 6 allows dynamic control of
the complexity of the discriminator function on the fly in a scalable and efficient way. Note that,
computation of ||g|| z,(4r) requires randomly sampling w ~ N(0,~1I) and passing through neural
network g independent of the data x;, x;. Therefore, if the computational complexity of optimization
is O(m), it will remain the same after incorporating this additional term, i.e. regularization does not
increase asymptotic time complexity which is linear with the number of samples, m.

7 Variance and Consistency of the Estimate

7.1 Variance Analysis

Theorem 2 gives an upper bound on the probability of error. Intuitively, the variance and probability
of error behave similarly for many distributions, i.e. higher variance might indicate higher probability
of error. Below we quantify this intuition for a Gaussian distributed estimate:
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Figure 1: a) Top scatter plot compares KL divergence estimates between a method using Neural network
discriminator without complexity control (red) and that using RKHS discriminator with compelxity control
(blue); b) In the bottom, we show the effect of varying the regularization parameter A on bias and variance while
using the RKHS discriminator with complexity control as in eq.(13).

Theorem 3. Let X = K L,,(f;}) be the estimated KL divergence using m samples as described in
Theorem 2. Assuming that X follows a Gaussian distribution X ~ N (u,s?), we can obtain an upper
bound on the standard deviation of the estimate as follows:

€

¢ <

2n

er}“l[—zlexp { (4RC” 5p|$p> - ﬂi} +1}

where erf is the Gauss error function and is a monotonic function.

Theorem 3 suggests that by decreasing I?, the radius of the RKHS ball, the variance of the estimate
could be decreased. Experimentally, we observe that the variance decreases as we penalize the RKHS
norm more, consistent with the spirit of Theorem 3.

Note that Theorem 3 makes a strong assumption that the estimate is distributed as a Gaussian
distribution. While it gives us good intuition about the decay of variance as the complexity increases,
it is natural to inquire about the validity of this type of relation in a more general sense without
assumption on the probability distribution of the estimate. To make a general statement, the key
idea is to understand how the cumulative distribution function (CDF) is related to the variance. To
clarify this point further, let’s look at the eq.(33) in the proof of Theorem 3 in supplementary material:

2n

1-®, (n+e€) <2exp (W) - % . This equation connects the CDF to the

variables like Sy, R, £, of the discriminator function space without assuming anything about the
shape of the distribution. For a Gaussian distribution, we plug in CDF of a Gaussian distribution,

®,(2) =1 {1 + erf( f\_/g)} and obtain the result of Theorem 3. For any other distribution, we

can carry out similar analysis. A key factor that determines the behavior between the variance and
the discriminator complexity is how variance appears in the CDF expression. For example, in both
Gaussian distribution and in exponential distribution, we know that the relation between CDF function
and variance is inversely related. We believe that as long as this inverse type of relation between
CDF and variance holds, we can obtain statements like Theorem 3 for other distributions as well.
This leads to a key insight: similar to the Gaussian case, the decaying behavior of the variance with
decreasing complexity holds as long as the estimate is distributed such that its CDF function has
inverse relation with the variance.
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Figure 2: Comparing our method with CPC [19], convex risk minimization(NWJ) [1] and SMILE [9] regarding
mutual information estimation between two variables.

7.2 Consistency of Estimates

In eq.(13), we use a regularized objective to obtain an optimal discriminator instead of an unregular-
ized objective as in eq.(3). It is important to show that the estimator of KL divergence obtained by
using this regularized objective is consistent and approaches the true estimate in the limiting case as
the number of data samples grows to infinity. In the following theorem, we show this.

Theorem 4. Let f* and f™ be optimal discriminators as described in eq. (1) and eq. (13) respectively,
and the KL estimate is given by KL(f) = Ey)[f(z)], KLn(f) =L > vimp(an) Lf (2)]. Then,
in the limiting case as m — 0o, |K L, (fi") — KL(f*)| — 0 in probability.

Proof Sketch. The difference between the true KL divergence and the estimated KL divergence can
be divided into three terms as shown in eq. (5). We assume that our function space is rich enough to
contain the true solution, driving bias to zero. From Theorem 2, we see that in the limiting case of
m — 0, the deviation-from-mean error goes to 0. Therefore, the key step that remains to be shown is
that the discriminator induced error (second term in eq.(5)) also goes to 0 as m — oo.

It can be shown if we can prove that the optimal discriminator in eq. (13) approaches the optimal
discriminator in eq. (2). To prove this, we show that the argument being maximized by f;"* approaches
the argument being maximized by f; in the limiting case. To show this, we need to show that the
function space, log o f, is Glivenko Cantelli [ 18], which we prove in following steps:

1. We show that f is Lipschitz continuous by definition and due to Lipschitz continuity of ¢y. Then
we show that log o f is Lipschitz continuous if f is Lipschitz continuous.

2. Then we show that for a class of functions with Lipschitz constant L, the metric entropy, log IV,
can be obtained in terms of L and entropy number of the bounded input space, X.

3. Since the metric entropy does not grow with the number of samples m, we show that % log N — 0
which lets us show that log o f belongs to Glivenko Cantelli class of functions by using Theorem
2.4.3 from [18]. See supplementary material for the complete proof. O

8 Experimental Results

We present results on three applications of KL divergence estimation: 1. KL estimation between
simple Gaussian distributions, 2. Mutual information estimation, 3. Variational Bayes. In our
experiments, the RKHS discriminator is constructed with ) and g networks as described in Section
5, where the network ) is very close to a regular neural network. In two experiments, we compare
our results with the models using regular neural net discriminator to ensure that the difference in
performance between RKHS and regular neural network is not due to architectural difference. Our
code is publicly available at https://github.com/sandeshgh/Reliable-KL-estimation


https://github.com/sandeshgh/Reliable-KL-estimation
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Figure 3: (a) Comparison of MNIST digit reconstruction using AVB autoencoder model [8]. Trace of KL
divergence and reconstruction loss in AVB model with Neural network discriminator (b) and RKHS discriminator
in (c).

KL Estimation between Two Gaussians We assume that we have finite sets of samples from
two distributions. We further assume that we are required to apply minibatch based optimization.
We consider estimating KL divergence between two Gaussian distributions in 2D, where we know
the analytical KL divergence between the two distributions as the ground truth. We consider three
different pairs of distributions corresponding to true KL divergence values of 1.3, 13.8 and 38.29,
respectively and use m = 5000 samples from each distribution to estimate KL in the finite case. We
repeat the estimation experiments with random initialization 30 times and report the mean, standard
deviation, scatter and box plots.

Fig. 1 top row compares the estimation of KL divergence with regular neural net and RKHS discrimi-
nator with complexity control based on eq. (13). With our proposed RKHS discriminator, the KL,
estimates are significantly more reliable and accurate: error reduced from 0.5 to 0.04, 5.8 to 1.07 and
60.6 to 9.7 and variance reduced from 0.2 to 0.002, 223 to 4.4 and 3521 to 33 for true KL 1.3, 13.8
and 38.29 respectively. In Fig. 1 bottom row, we investigate our complexity control method on the
effect of varying the regularization parameter A = \o/m. As expected, increasing regularization
parameter penalizes more on the RKHS norm and therefore reduces variance. This is consistent
with our theory. Regarding bias, however, as we increase the A, the bias decreases and then starts to
increase. Hence, one needs to strike a balance between bias and variance while choosing A.

Mutual Information Estimation Computation of mutual information is a direct use case of KL,
divergence computation. We replicate the experimental setup of [20, 9] to estimate mutual information
between (z, y) drawn from 20-d Gaussian distributions, where the mutual information is increased by
step size of 2 from 2 to 10. We compare the performance of our method with traditional KL divergence
computation methods like contrastive predictive coding (CPC) [19], convex risk minimization (NWJ)
[1] and SMILE [9]. In Fig.2, our method with RKHS discriminator (with A = le=®) performs better
than CPC [19] and NW]J [1], and is competitive with the state-of-the-art, SMILE [9]. In the bottom
row, we also show the effect of regularization parameter A in our method. Similar to the previous
experiment, increasing the regularization parameter decreases the variance and increases the bias. It
is consistent with our theoretical insights about the effect of reducing RKHS norm on variance.

Adversarial Variational Bayes Variational Bayes requires KL divergence estimation. When we
do not have access to analytical form of the posterior/prior distributions, but only have access to the
samples, we need to estimate KL divergence from samples. Adversarial Variational Bayes (AVB) [§]
presents a way to achieve this using a discriminator network. We adopt this setup and demonstrate
that the training becomes unstable if we do not constrain the complexity of the discriminator. First, we



Epoch 100 200 300 400 500 600 700 800 900
NNet 49.64 43.25 4752 4429 5131 5245 1489 1575 2619
RKHS 37.58 33.18 31.46 31.39 3036 29.37 28.17 28.18 28.17

Table 1: FID score (smaller the better) at different epochs of training between the reconstruction
(using respective discriminator in VAE) and the ground truth.

train AVB on MNIST dataset with a simple neural network discriminator architecture. As the training
progresses, the KL divergence blows up after about 500 epochs (Fig. 3(b)) and the reconstruction
starts to get worse (Fig. 3(a)). We modify the same architecture according to our construction such
that the discriminator lies in the RKHS and then penalize the RKHS norm as in eq. (13). It stabilizes
the training for a large number of epochs as shown in Fig. 3(c) and the reconstruction does not
deteriorate as the training progresses, resulting into sharp reconstruction (Fig. 3(a)). To make this
comparison more precise and quantitative, we compute FID score between reconstruction and the
ground truth after each epoch as tabulated in Table 1. In the earlier epochs, the FID score ( and
the reconstruction in Fig.3(a)) is okay even for the neural net discriminator, However, this score is
worse than using the RKHS discriminator, where the scores are in the range of 30-40 upto epoch 400.
For the neural network discriminator, the score increases (worsens) in the mid epochs and becomes
completely unstable with FID score shooting up to 262 at epoch 900. On the other hand, for the
RKHS discriminator, the score steadily and smoothly decreases as the epoch increases reaching the
best 28.17 at epoch 900. This experiment demonstrates that the proposed RKHS discriminator with
norm regularization is both reliable and effective in terms of standard metric like FID.

We want to clarify that this instability in training neural net discriminator is present if we use a basic
discriminator architecture. It does not mean that there exists no other method to design a stable
neural net discriminator. In fact, AVB [8] presents a discriminator that adds additional inner product
structure to stabilize the discriminator training. Our point here is that we can stabilize the training by
ensuring that the discriminator lies in a well behaved function space (the RKHS) and controlling its
complexity, consistent with our theory.

9 Limitations, Discussion and Conclusion

Limitations: The proposed construction of neural function in RKHS exhibits good properties of
both the deep learning and kernel methods. However, it requires constructing two separate deep
networks, 1 and g. It makes our model a bit bulky and also requires more parameter due to additional
g. Moreover, currently our RKHS discriminator’s output is scalar; generalizing this function to
a multivariate output could make our model bulkier and increase parameters even more. Second
limitation is the requirement of higher order derivative of kernel K in assumption A3. While this
requirement is satisfied if smooth activation function is used in ¢y, for activations like ReL.U or
LeakyReLU, the derivatives exist everywhere except at the origin. In these cases, we need to carefully
investigate if we can use subgradients to define operator norm ||-%||.

Discussion and Conclusion: We have shown that using a regular neural network as a discriminator
in estimating KL divergence results in unreliable estimation if the complexity of the function space is
not controlled. We then showed a solution by constructing a discriminator function in RKHS space
using neural networks and penalizing its complexity in a scalable way. Although the idea to use
RKHS norm to penalize complexity is not new (see for example [1]), it is not clear how to use this idea
directly on the function f. In traditional kernel methods, algorithms often do not work with RKHS
function f directly, but rather work with kernel matrix, K by using, for example, the Representer
Theorem [21]. In the case of big data, working with the big kernel matrix is computationally
expensive although some methods have been proposed to speed up the computation, like Random
Fourier Feature [22]. We propose a different view by directly constructing a function in RKHS space,
which led us to scalable algorithm while incorporating the advantages of neural networks. Moreover,
our representation could also be seen as an improvement over RFF by using neural basis, 1), instead of
Fourier basis. The idea of constructing a neural-net function in RKHS and complexity control could
also be useful in stabilizing GANs in general. Currently, the most successful way to stabilize GANs
is to enforce smoothness by gradient penalization [23, 24, 25]. On the light of the present analysis,
gradient penalty could also be thought as a way to control the complexity of the discriminator.
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