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A Background on Gaussian Process Regression

We review some standard results on Gaussian process regression. They will be needed in our proof
in the following, and provide more context to the results in the main text. For a thorough overview
of this subject, see, for example, [34].

Notations The appendix uses the following additional notations: .,& represent inequality up to a
universal constant, � denotes equivalent up to constants. ‖·‖HS denotes the Hilbert-Schmidt norm.

For infinite-dimensional Gaussian process models, the prior draws almost surely fall out of the
corresponding RKHS. Therefore, our posterior analysis will rely on the following result, showing
that the GP prior support can be approximated with increasing accuracy using balls in the RKHS
with increasing norm, in terms of a weaker norm that can be defined on the entire prior support (e.g.,
the sup norm).
Theorem A.1 ([30], Theorem 2.1). Let W be a Borel measurable, zero-mean Gaussian random
element in a separable Banach space (B, ‖ · ‖) with RKHS (H, ‖ · ‖H), and let w0 be contained in
the closure ofH in B. Let τ2

n > 0 be a number such that

φw0
(τn) ≤ nτ2

n, (17)

where

φw0
(τ) = inf

h∈H:‖h−w0‖<τ
‖h‖2H − logP (‖W‖ < τ). (18)

Then, for any CΘ > 1 with e−CΘnτ
2
n < 1/2, the set

Θn = τnB1 + JnH1 (19)

is measurable and satisfy

logN(3τn,Θn, ‖ · ‖) ≤ 6CΘnτ
2
n, (20)

P(W 6∈ Θn) ≤ e−CΘnτ
2
n , (21)

P(‖W − w0‖ < 2τn) ≥ e−nτ
2
n . (22)

In the above B1,H1 are the unit norm balls in the corresponding spaces, and Jn =

−2Φ−1(e−CΘnτ
2
n) where Φ−1 is the inverse CDF of the standard normal distribution.

Our analysis will make use of the following:
Corollary A.1. Fix any w0 ∈ B. Then for any n ∈ N,

(i). Jn ≤ 2
√

2CΘnτ2
n =: Jn.

(ii). there exists w†n ∈ H such that ‖w†n − w0‖ ≤ τn, and

P(‖W − w†n‖ ≤ 2τn) ≥ e−3nτ2
n . (23)

Proof. (i) holds because Φ(t) ≥ 1 − e−t2/2. for (ii), from (17)-(18) we can see that such w†n ∈ H
exists, and we can find w†n so that

‖w†n‖H ≤ 2φw0
(τn) ≤ 2nτ2

n.

(23) follows from thet inequality

− logP (‖W − w†n‖ ≤ 2τn)
(a)

≤ φw†n(τn) ≤ ‖w†n‖2H − logP (‖W‖ < τn)
(b)

≤ 3nτ2
n.

where (a) can be found in Lemma I.28, [34]; and (b) from (17).

Remark A.1. For Gaussian processes the space B is a function space. In the analysis of our al-
gorithms, we require that the norm ‖ · ‖ in the space B is at least equivalent to the sup norm
‖f‖∞ := supx |f(x)|, i.e., ‖f‖∞ . ‖f‖. This requirement is natural for most examples. For
example, the space B is generally chosen to be the continuous function space equipped with the sup
norm.
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Choices of τn Choices of τn will affect the posterior contraction rate. In general, τn is determined
by the ability of RKHS H to approximate the target function w0, and the small-ball probability
logP (‖W‖ ≤ τ) which is usually determined by the metric entropy logN(τ,H1, ‖ ·‖) [34, Lemma
I.30]. For the standard Matérn and RBF kernels and the sup norm as ‖ · ‖, valid choices for τn are
provided in [31], which we review below.
Lemma A.1 (Matérn kernel. Lemma 3-4, [31]). If H is the RKHS corresponding to the Matérn-α
kernel in [0, 1]d, w0 ∈ Cβ([0, 1]d) ∩Hβ([0, 1]d),7 the condition (17) will be satisfied with

τ2
n � n−

2 min(α,β)
2α+d ,

where the constant hidden in � may depend on w0.
Remark A.2. τn above usually determines the posterior contraction rate of GP regression using a
normal likelihood with fixed variance [31]. For any fixed β > 0, it is minimized when we set α = β.
When α > d/2, samples from the the corresponding GP belong to the space Cα[0, 1]d ∩Hα[0, 1]d

with probability 1, for all α < α: see [31, pp. 2104], and [28, pp. 37-38]. Therefore, when α = β >
d
2 , the above lemma applies to w0 in a space that is very slightly smaller than the “sample space” of
the prior. And in this case, τn matches the minimax rate for regression in Hβ([0, 1]d).

The practice of choosing kernel so that the GP sample space (approximately) matches the regularity
of the target function is different from in kernel ridge regression, where the kernel is chosen so
that the corresponding RKHS, a much smaller space than the GP sample space, matches the target
regularity. Still, in all cases we can always invoke the above lemma when w0 has less regularity.
Although the resulted τ2

n may be worse, it is known that using an “over-smoothed” prior does not
lead to worse rates if we allow the noise variance parameter to vary with n [62].

Remark A.3. When w0 = f† ∈ Cβ [0, 1]d ∩ Hβ [0, 1]d with β = d+1
2 , we can invoke the above

theorem with α = d+1
2 and obtain τ2

n � n−1/2. The RKHS of the Matérn-1/2 kernel is norm equiv-
alent to Hβ [28], and Cβ is often referred to as qualitatively having the same degree of regularity
as Hβ (see, e.g., [31]). This is a very basic assumption for regularity, since the eigendecay of the
Matérn-1/2 kernel is λj � j−

d+1
d ; if we further slow down the decaying rate below j−1, Cx will no

longer be trace-class; equivalently, kx will no longer be bounded, contradicting our Assumption 3.3.

The following lemma applies when RKHSH corresponding to the standard RBF kernel k(x, x′) :=
exp(−‖x− x′‖2/2), and f ∈ Aγ,r which is a function space requiring exponential decrease of the
Fourier transform.8

Lemma A.2 (RBF kernel. Lemma 6, 9, [31]). Let f0 be the restriction to [0, 1]d an element of
Aγ,r(Rd). Then

(i). For r > 2 or r = 2, γ ≥ 4, f0 is inH.

(ii). For r ∈ (0, 2), we have

inf
h∈H:‖h−f0‖<τ

‖h‖2H − logP (‖W‖ ≤ τ) ≤ C1 exp

((
log τ−1

)2/r
4γ2/r

)
+ C2

(
log τ−1

)1+d
.

where C1, C2 only depends on d and f0. Consequently, for any r ≥ 1 and w0 ∈ Aγ,r(Rd),
we have

τ2
n �

(log n)2/r

n
.

Remark A.4. The Gaussian process using RBF kernel takes value in the space of real analytic func-
tions, which corresponds to Aγ,r with r = 1 [31]. Therefore, the above lemma applies to all
functions in the “sample space” of the GP prior.
Remark A.5. Finally, note that in the sequel we will always assume that

nτ2
n →∞.

As τn upper bounds the posterior contraction rate in Gaussian process regression, the above will
always holds for infinite-dimensional models of interest; in general, as lim inf nτ2

n > 0 must hold
by (17), we can increase τn by, e.g., a logarithm factor, although for finite-dimensional models the
analysis can be simplified considerably.

7Cβ denotes the Hölder space of order β, and Hβ denotes the Sobolev space of order β.
8The specific form is irrelevant for our purposes; see van der Vaart and van Zanten [31].
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B Analysis of the Quasi-Posterior

In this section we prove Theorem 3.1 and Proposition 3.1. Our proof is similar to the adaptation of
the posterior contraction framework [64] in [18], and involves bounding the log quasi-likelihood on
certain events. However, it is different since in our case, Ên and the GP prior are not constructed
with orthonormal basis in L2(pdata). Moreover, we directly provide guarantee on the true GMM
conditions (1), and do not make additional assumption on the data distribution; whereas [18] ana-
lyzed the estimated GMM conditions constructed from Ên and the empirical data distribution, and
then moved to analyze f under various assumptions about the joint distribution pdata(dz × dx),
including identifiability.

We introduce the following event

Bn(r, L) := An(r) ∩
{
‖Ĉzx − Czx‖ ≤

L√
n

}
∩
{∥∥∥∥S∗zn (f†(X)− Y )

∥∥∥∥
I
≤ L√

n

}
, (24)

where the event An(r) :=
{∥∥C−1/2

zz,ν̄ (Ĉzz − Czz)C−1/2
zz,ν̄

∥∥ ≤ r}. We will then bound the (scaled)
log quasi-likelihood

`n(f) := −2λ

n
log

dΠ(· | D(n))

dΠ
=

∥∥∥∥Ĉ−1/2
zz,ν̄

S∗z (f(X)− Y )

n

∥∥∥∥2

I
(25)

in both directions on the event Bn(r, L).

B.1 Bounds on the Quasi-likelihood

Lemma B.1. Conditioned on the event Bn(r, L) for r ∈ (0, 1/2), we have for all f ∈ H

−r(0)
n +

√
1− 2r

1− r
‖C−

1
2

zz Czxf‖I ≤ ‖Ĉ
− 1

2
zz,ν̄Ĉzxf‖I ≤ r(0)

n +

√
1

1− r
‖C−

1
2

zz Czxf‖I , (26)

where

r(0)
n .

(
L√
ν̄n

+
√
ν̄

)
‖f‖H. (27)

Proof. On the event An(r), we have

|‖Ĉ−1/2
zz,ν̄ Czxf‖2I − ‖C

−1/2
zz,ν̄ Czxf‖2I | = |〈Czxf, (C−1

zz,ν̄ − Ĉ−1
zz,ν̄)Czxf〉I |

≤ ‖C1/2
zz,ν̄(C−1

zz,ν̄ − Ĉ−1
zz,ν̄)C

1/2
zz,ν̄‖ · ‖C

−1/2
zz,ν̄ Czxf‖2I

= ‖I − C1/2
zz,ν̄Ĉ

−1
zz,ν̄C

1/2
zz,ν̄‖ · ‖C

−1/2
zz,ν̄ Czxf‖2I

≤ r

1− r
‖C−1/2

zz,ν̄ Czxf‖2I ,

where the last inequality above uses (51) in Lemma B.6. Thus√
1− 2r

1− r
‖C−1/2

zz,ν̄ Czxf‖I ≤ ‖Ĉ
−1/2
zz,ν̄ Czxf‖I ≤

√
1

1− r
‖C−1/2

zz,ν̄ Czxf‖I .

Since ‖C−1/2
zz,ν̄ C

1/2
zz ‖ ≤ 1, the right hand side above is ≤

√
1/(1− r)‖C−1/2

zz Czxf‖I ; for the left
hand side, observe that

‖C−1/2
zz Czxf‖I − ‖C−1/2

zz,ν̄ Czxf‖I ≤ ‖C1/2
zz − C

−1/2
zz,ν̄ Czz‖‖Ef‖I

where we recall E = C−1
zz Czx is bounded by Assumption 3.1. To bound ‖C1/2

zz − C
−1/2
zz,ν̄ Czz‖,

denote by {λi} the eigenvalues of Czz , then the i-th eigenvalue of C1/2
zz − C−1/2

zz,ν̄ Czz is

λ
1/2
i − λi√

λi + ν̄
=

√
λ2
i + λiν̄ −

√
λ2
i√

λi + ν̄

(a)

≤ ν̄/2√
λi + ν̄

≤
√
ν̄/2,
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where (a) follows from the concavity of the square root function. Thus

‖C−1/2
zz Czxf‖I − ‖C−1/2

zz,ν̄ Czxf‖I ≤
√
ν̄‖Ef‖I/2 ≤

√
ν̄‖E‖‖f‖H/2,

and√
1− 2r

1− r

(
‖C−1/2

zz Czxf‖I −
√
ν̄

2
‖E‖‖f‖H

)
≤ ‖Ĉ−1/2

zz,ν̄ Czxf‖I ≤
√

1

1− r
‖C−1/2

zz Czxf‖I .

(28)
Note that on the event Bn(r, L), we have

|‖Ĉ−1/2
zz,ν̄ Ĉzxf‖I − ‖Ĉ

−1/2
zz,ν̄ Czxf‖I | ≤ ‖Ĉ

−1/2
zz,ν̄ ‖‖Ĉzx − Czx‖‖f‖H ≤

L√
nν̄
‖f‖H. (29)

Combining (28) and (29) completes the proof.

Lemma B.2. Conditioned on the event Bn(r, L) for r ∈ (0, 1/2), we have for all f ∈ B that can
be written as f = fh + fe where fh ∈ H, ‖fe‖ ≤ 2τm and for arbitrary m ∈ N,

−r(1)
n,m +

√
1− 2r

1− r
‖E(f − y | z)‖p ≤

√
`n(f) ≤ r(1)

n,m +

√
1

1− r
‖E(f − y | z)‖p, (30)

where `n(f) is defined in (25), and f†m ∈ H is an approximation of f† inH such that ‖f† − f†m‖ ≤
τm, and

r(1)
n,m .

(
L√
ν̄n

+
√
ν̄

)
(‖fh − f†m‖H + 1) + τm. (31)

Proof. Define the random vectors

R := Y − f†(X), E := f†(X)− f†m(X)− fe(X),

so that E(R | Z) = 0, ‖E‖∞ ≤ 2τm. Consider the decomposition√
`n(f) =

∥∥∥∥Ĉ−1/2
zz,ν̄

(
−S
∗
z (R+ E)

n
+ Ĉzx(fh − f†m)

)∥∥∥∥
I

≤
∥∥∥∥Ĉ−1/2

zz,ν̄

S∗z (R+ E)

n

∥∥∥∥
I

+
∥∥∥Ĉ−1/2

zz,ν̄ Ĉzx(fh − f†m)
∥∥∥
I
, (32)

√
`n(f) ≥ −

∥∥∥∥Ĉ−1/2
zz,ν̄

S∗z (R+ E)

n

∥∥∥∥
I

+
∥∥∥Ĉ−1/2

zz,ν̄ Ĉzx(fh − f†m)
∥∥∥
I
. (33)

On the event Bn(r, L), we have∥∥∥∥Ĉ−1/2
zz,ν̄

S∗zR

n

∥∥∥∥
I
≤ ν̄−1/2

∥∥∥∥S∗zRn
∥∥∥∥
I
≤ L(nν̄)−1/2.

And since ∥∥∥∥Ĉ−1/2
zz,ν̄

S∗zE

n

∥∥∥∥2

I
=

1

n2

〈
SzC

−1
zz,ν̄S

∗
zE,E

〉
≤ 1

n2
‖SzC−1

zz,ν̄S
∗
z‖‖E‖22

= ‖Kzz(Kzz + ν̄nI)−1‖︸ ︷︷ ︸
≤1

· 1
n
‖E‖22 ≤ 9τ2

m,

where the last inequality follows from the fact that ‖E‖∞ ≤ ‖E‖ ≤ 3τm, we have∥∥∥∥Ĉ−1/2
zz,ν̄

S∗z (R+ E)

n

∥∥∥∥
I
≤ L(nν̄)−1/2 + 3τm. (34)

For the second term in (32) and (33), recall that by Lemma B.1 we have

−r(0)
n +

√
1− 2r

1− r
‖C−1/2

zz Czx(fh − f†m)‖I ≤ ‖Ĉ−1/2
zz,ν̄ Ĉzx(fh − f†m)‖I

≤ r(0)
n +

√
1

1− r
‖C−1/2

zz Czx(fh − f†m)‖I ,
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where
r(0)
n .

(
L(ν̄n)−1/2 + ν̄1/2

)
‖fh − f†m‖H.

From the triangle inequality ||a| − |b|| ≤ |a− b|, we have

|‖E(f − y | z)‖p − ‖C−1/2
zz Czx(fh − f†m)‖I |

= |‖E(f − f† | z)‖p − ‖E(fh − f†m | z)‖p|
≤ ‖E(fe + f†m − f† | z)‖p
≤ ‖fe + f†m − f†‖∞ ≤ 3τm.

Since r ∈ (0, 1/2), we know
√

1
1−r ≤ 2 and

√
1−2r
1−r ≤ 1. Thus, we have√

1− 2r

1− r
‖E(f − y | z)‖p − r(0)

n − 4τm ≤ ‖Ĉ−1/2
zz,ν̄ Ĉzx(fh − f†m)‖I (35)

≤
√

1

1− r
‖E(f − y | z)‖p + r(0)

n + 6τm. (36)

Plugging (34), (35) and (36) to (32) and (33) completes the proof.

B.2 Proof of Theorem 3.1

Let {mn : n ∈ N} be an increasing sequence to be determined later. We drop the subscript n below
for brevity. Let {Θm : m ∈ N} be defined as in Theorem A.1 with w0 = f†; recall that CΘ can be
set arbitrarily large. In the event Bn(r, L) we fix r = 1/3 and determine L later; both parameters
r, L will be dropped for brevity.

We define the unnormalized quasi-posterior measure as follows:

Π̃(A | D(n)) :=

∫
A

exp
(
− n

2λ
`n(f)

)
Π(df). (37)

Consider the decomposition

E(Π(errn,f | D(n))) ≤ E(Π(errn,f | D(n)) | Bn) + (1− P(Bn))

≤ E

(
Π̃(Θc

m | D(n)) + Π̃(errn,f ∩Θm | D(n))

Π̃(Θ | D(n))
| Bn

)
+ (1− P(Bn))

≤ E

(
Π(Θc

m) + Π̃(errn,f ∩Θm | D(n))

Π̃(Θ | D(n))
| Bn

)
+ (1− P(Bn))

=: (I) + (II),

where the last inequality follows from − n
2λ`n(f) ≤ 0 and the definition of Π̃ in (37).

By Assumption 3.2, we can find f†m ∈ H such that ‖f† − f†m‖ ≤ τm and

‖f†m‖2H ≤ inf
h∈H:‖h−f†‖≤τm

‖h‖2H + 1 ≤ mτ2
m + 1. (38)

We first consider the denominator Π̃(Θ | D(n)) in (I). For any f ∈ B with ‖f − f†m‖ ≤ 2τm, using
Lemma B.2 with fh = f†m and fe = f − f†m, we have the following on the event Bn:

√
`n(f) ≤ r(1)

n,m +

√
3

2
‖E(f − y | z)‖p ≤ r(1)

n,m + 4τm,

where r(1)
n,m is defined in (31) and the last inequality follows from that

|E(f − y | z)| ≤ E(|f − f†m| | z) + E(|f†m − f†| | z) ≤ ‖f − f†m‖+ ‖f†m − f†‖ ≤ 3τm.
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Plugging fh − f†m = 0 into the definition of r(1)
n,m yields

`n(f) .
L2

ν̄n
+ ν̄ + τ2

m, if Bn and ‖f − f†m‖ ≤ 2τm hold. (39)

Thus, on the event Bn, we have for some fixed constant C1 > 0,

Π̃(Θ | D(n)) ≥
∫
{f∈Θ:‖f−f†m‖≤2τm}

exp
(
− n

2λ
`n(f)

)
Π(df)

≥ Π({‖f − f†m‖ ≤ 2τm}) · exp

(
−C1n

λ

(
L2

ν̄n
+ ν̄ + τ2

m

))
(23)
≥ exp

(
−3mτ2

m −
C1n

λ

(
L2

ν̄n
+ ν̄ + τ2

m

))
. (40)

Now we consider the numerators in (I). First by Theorem A.1 we have Π(Θc
m) ≤ exp(−CΘmτ

2
m),

where CΘ is any constant such that e−CΘmτ
2
m ≤ 1/2, to be determined later. Thus,

Π(Θc
m)

Π̃n(Θ | D(n))
≤ exp

(
−
(
CΘ − 3− C1n

mλ

)
mτ2

m +
C1n

2λ

(
L2

ν̄n
+ ν̄

))
. (41)

We now turn to the Π̃(errn,f ∩ Θn) term in the numerators of (I). Noting that for non-negative
numbers, a ≥ b − c implies 2a2 ≥ b2 − 2c2, and by Lemma B.2, on the event Bn, for any f ∈
errn,f ∩Θm we have

`n(f) ≥ 1

4
‖E(f − y | z)‖2p −

(
r(1)
n,m

)2 ≥ Mε2n
4
−
(
r(1)
n,m

)2
. (42)

Recalling that when f ∈ Θm, we can write f = fh + fe, where fh ∈ JmH1 and ‖fe‖ ≤ τn. In
view of (17), (18) and (38), we find ‖f†m‖2H ≤ mτ2

m + 1. From Corollary A.1 and (31), we know(
r(1)
n,m

)2
.

(
L2

ν̄n
+ ν̄

)
· (‖fh‖2H + ‖f†m‖2H + 1) + τ2

m

.

(
L2

ν̄n
+ ν̄

)
·
(
(CΘ + 1)mτ2

m + 1
)

+ τ2
m. (43)

Combining (40), (42) and (43), we know there is a fixed constant C2 > C1 such that the following
holds on the event Bn,

Π̃(Θm ∩ errn,f | D(n))

Π̃(Θ | D(n))
≤ exp

(
−Mnε2n

8λ
+ Γ1mτ

2
m + Γ2

(
L2

ν̄n
+ ν̄

))
, (44)

where
Γ1 := 3 +

C2n

mλ
,

Γ2 := 1 + (CΘ + 1)mτ2
m +

C2n

2λ
.

Setting CΘ = 4 + 2C1, εn = τm, m = λ =
√
n, ν̄ = L/

√
n, L = min{mτ2

m, γn} where γn →∞
is a sequence with arbitrarily slow growth, we can verify that there exists an M > 0 such that both
(41) and (44) converges to zero by noting that as n→∞, mτ2

m →∞, τ2
m → 0. Hence, the term (I)

converges to zero.

Next, we shall show that (II) tends to zero as n → ∞. This is equivalent to verify that the right
hand sides of (47), (48) and (49) tend to zero. Since L → ∞, we know (48) and (49) will vanish.
The following inequality shows that (47) also vanishes.

ν̄n− logN(ν̄) = L
√
n− logN(ν̄) ≥

√
n− logO

(√
n

L

)
→∞,

where the inequality follows from the fact N(ν̄) = O(ν̄−1) (see [65, Proposition 3]).
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B.3 Proof of Proposition 3.1

We follow the choice of parameters (except for r, which will be set to 1/max{3, L}) as in Theo-
rem 3.1 to show that

Π
({
f : lim

n→∞
PD(n)

(∣∣∣√`n(f)− ‖E(f − y | z)‖p
∣∣∣ > δ

)
= 0, ∀δ > 0

})
= 1.

From (17) and (18) we can see that for any τm that satisfies the condition of Theorem A.1, τ̃m ≥
τm will also satisfy it. Thus we choose τ̃m := max{τm,

√
2(CΘm)−1 logm} and define Θ̃m

accordingly. Then by Theorem 3.1 and the Borel-Cantelli Lemma, the set

S := {f ∈ B : there exists Mf > 0 such that f ∈ Θ̃m for every m > Mf} (45)

has prior probability 1 since
∑
m≥1 e

−CΘmτ̃
2
m ≤

∑
m≥1m

−2 <∞.

For f ∈ S and m > Mf , by Lemma B.2, we know the following holds on the event Bn(r, L):

−r(1)
n,m +

√
1− 2r

1− r
‖E(f − y | z)‖p ≤

√
`n(f) ≤ r(1)

n,m +

√
1

1− r
‖E(f − y | z)‖p,

with m =
√
n, ν̄ = L/

√
n as in Theorem A.1, the above becomes

r(1)
n,m .

(
L√
ν̄n

+
√
ν̄

)
(‖fh − f†m‖H + 1) + τ̃m .

√
L

n
(
√
mτ̃2

m + 1) + τ̃m .
√
Lτ̃m.

Since the growth of L can be arbitrarily slow, and τ̃m → 0, we have limn→∞ r
(1)
n,m = 0. Note that

r := 1/max{3, L} → 0, from (47), (48) and (49), it can be verified that limn→∞ P(Bn(r, L)) = 1.
Combining with the above inequality, we know that

lim
n→∞

PD(n)

(∣∣∣√`n(f)− ‖E(f − y | z)‖p
∣∣∣ > δ

)
= 0, ∀f ∈ S, δ > 0.

B.4 Auxiliary Results

In this section, we collect several auxiliary results used in our proofs.
Lemma B.3. For r ∈ (0, 1), define

An(r) := {‖C−1/2
zz,ν̄ (Ĉzz − Czz)C−1/2

zz,ν̄ ‖ ≤ r}. (46)

Then when ν̄ ≤ supz k(z, z) =: κ2, and r ≥
√
κ2/(ν̄n) + κ2/(3ν̄n), we have

1− P(An(r)) ≤ 4N(ν̄) exp

(
− ν̄nr2

2κ2(1 + r/3)

)
, (47)

where N(ν̄) := Tr(CzzC
−1
zz,ν̄) is the effective dimension of Czz .

Proof. This is Lemma 1 in [33], with δ = 0 (in their notation).

The following lemma is a standard concentration result on the operator Czx. See, e.g., Caponnetto
and De Vito [65], Fukumizu [66], De Vito et al. [67]. We will give its proof for completeness.
Lemma B.4. If supx k(x, x) ≤ κ2 and supz k(z, z) ≤ κ2, then for any δ ∈ (0, 1), we have for any
constant C > 0,

1− P
(
‖Ĉzx − Czx‖ ≤

C√
n

)
≤ 2 exp

(
− C

4κ2

)
. (48)

Proof. Define the random variable ξ := k(x, ·) ⊗ k(z, ·). It is easy to verify that ξ is a Hilbert-
Schmidt operator from H to I, and Ex,zξ = Czx. Note that ‖ξ‖HS =

√
k(x, x)k(z, z) ≤ κ2 and

E‖ξ‖2HS ≤ κ4. From Proposition 2 in [65], we conclude that for any δ ∈ (0, 1),

P
(
‖Ĉzx − Czx‖HS ≤

4κ2

√
n

log
2

δ

)
≥ 1− δ.

Finally, this lemma can be proved by a simple algebra and the fact that ‖ · ‖ ≤ ‖·‖HS.

22



Lemma B.5. Assume that f†(x)−y is a Λ-subexponential random variable and supz k(z, z) ≤ κ2,
then there exists a universal constant c1 such that for all C > 0,

1− P
(∥∥∥∥S∗zn (f†(X)− Y )

∥∥∥∥
I
≤ C√

n

)
≤ 2 exp

(
− C

c1Λκ

)
. (49)

Proof. Define the random variable ξ := k(z, ·)(f†(x) − y). Since f†(x) − y is Λ-subexponential,
we know

(
E|f†(x)− y|p

)1/p ≤ c0Λp for all p ≥ 1 for some universal constant c0 (See, e.g.,
Proposition 2.7.1 in Vershynin [68]). Recall that the Stirling’s formula

√
2πnn+ 1

2 e−n ≤ n!, we
know E‖ξ‖nI = Ek(z, z)

n
2 |f†(x)− y|n ≤ cn!(cΛκ)n for some universal constant c. Thus, from the

fact that Eξ = E(k(z, ·)E(f†(x)− y | z)) = 0 and Proposition 2 in [65], it has

P
(∥∥∥∥S∗zn (f†(X)− Y )

∥∥∥∥
I
≤ 4cκΛ√

n
log

2

δ

)
≥ 1− δ.

The final conclusion follows by a simple algebra.

Lemma B.6. On the event An(r), we have

‖C1/2
zz Ĉ

−1
zz,ν̄C

1/2
zz ‖ ≤ ‖C

1/2
zz,ν̄Ĉ

−1
zz,ν̄C

1/2
zz,ν̄‖ ≤

1

1− r
, (50)

‖C1/2
zz,ν̄(C−1

zz,ν̄ − Ĉ−1
zz,ν̄)C

1/2
zz,ν̄‖ ≤

r

1− r
. (51)

Proof. (50) is Eq. (19) in [33], with (in their notation) z = 1. For (51), note that

‖C1/2
zz,ν̄(C−1

zz,ν̄ − Ĉ−1
zz,ν̄)C

1/2
zz,ν̄‖ = ‖I − C1/2

zz,ν̄(Czz,ν̄ − (Czz − Ĉzz))−1C
1/2
zz,ν̄‖

= ‖I − (I − C−1/2
zz,ν̄ (Czz − Ĉzz)C−1/2

zz,ν̄ )−1‖.

Define D := C
−1/2
zz,ν̄ (Czz − Ĉzz)C−1/2

zz,ν̄ . Then on the event An(r), the right hand side above is

‖(I −D)−1 · (−D)‖ ≤ ‖(I −D)−1‖‖D‖ ≤ 1

1− r
· r,

where the last inequality uses the fact that ‖D‖ ≤ r on A(r), and that ‖(I − D)−1‖ ≤ (1 −
‖D‖)−1.
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C Analysis of the Approximate Inference Algorithm

C.1 Proof of the Double Randomized Prior Trick

C.1.1 A Function-Space Equivalent to Proposition 4.1

We first claim that Proposition 4.1 is equivalent to the following function-space version, the proof
of which is deferred to Section C.1.3:

Proposition C.1. Let H̃, Ĩ be finite-dimensional RKHSes with kernels kx, kz , respectively,

g0 ∼ GP(0, λν−1k̃z), f0 ∼ GP(0, k̃x), ỹi ∼ N (yi, λ).

Then the optima f∗ of

min
f∈H̃

max
g∈Ĩ
L(f, g) :=

n∑
i=1

(
(f(xi)− ỹi)g(zi)−

g(zi)
2

2

)
− ν

2
‖g − g0‖2Ĩ +

λ

2
‖f − f0‖2H̃ (52)

follows the posterior distribution (6), with the kernels k̃x, k̃z .

Proof of the equivalence. Observe that (52) is exactly the same as (14) when the random feature
parameterization φ 7→ g(z;φ) is injective,9 in which case we have ‖φ‖2 = ‖g(·;φ)‖Ĩ . Otherwise,
observe that on the subspace

Φs := span{φz,m(z′) : z′ ∈ Z},

‖φ‖2 = ‖g(·;φ)‖Ĩ always holds: this follows by definition of k̃z when φ is a finite linear combi-
nation of the φ’s, and the general case follows by continuity (note that Ĩ is already defined by k̃z).
Clearly any g − g0 ∈ Ĩ can be parameterized with some φ in this subspace, so the optima of (52)
is a valid candidate solution for (14). On the other hand, for any φ− φ0 outside the aforementioned
subspace, we have ‖φ−φ0‖2 > ‖g(·;φ)− g(·;φ0)‖Ĩ . Therefore, the optimal φ of (14) must satisfy
‖φ − φ0‖2 = ‖g(·;φ) − g(·;φ0)‖Ĩ , and thus solves (52). As a similar result also holds for f , we
conclude that the two objectives are equivalent.

Remark C.1. The non-injective setting above justifies the formal analysis of (16) in the main text.
We also remark that any parameter θ, φ visited by the SGDA algorithm on (14) or (16) (starting from
θ0, φ0) satisfies

θ − θ0 ∈ Θs, φ− φ0 ∈ Φs.

Thus ‖φ−φ0‖2 = ‖g(·;φ)− g(·;φ0‖Ĩ (and similarly for θ), and from the perspective of the SGDA
algorithm, the objectives (52) and (14) are always the same. This can be proved by induction. Take
φ for example; clearly φ = φ0 satisfies the above. For φ` obtained at the `-th step of SGDA, we
have

φ` − φ0 = (1− ν)(φ`−1 − φ0) + V >` φz,m(Z),

where V` ∈ Rn is independent of φ`. Thus φ` − φ0 ∈ Φs by definition of Φs and the inductive
hypothesis.

C.1.2 Matrix Identities

We list two identities here that will be used in the derivations.

Lemma C.1. Let U,C, V, S be operators between appropriate Banach spaces, λ ∈ R \ {0}, then

(λI + UCV )−1 = λ−1(I − U(λC−1 + V U)−1V ), (53)

S(S∗S + λI)−1 = (SS∗ + λI)−1S. (54)

Proof. Recall the Woodbury identity:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

9Most random feature models, such as the random Fourier feature model, satisfies this property almost
surely.
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Then, we have
(λI + UCV )−1 = λ−1I − λ−2U(C−1 + λ−1V U)−1V

= λ−1(I − U(λC−1 + V U)−1V ).

And,
S(S∗S + λI)−1 = S(λ−1I − λ−2S∗(λ−1SS∗ + I)−1S)

= λ−1(S − SS∗(SS∗ + λI)−1S)

= (SS∗ + λI)−1S.

C.1.3 Proof of Proposition C.1

Define Y = (y1, . . . , yn), Ỹ = (ỹ1, . . . , ỹn). We rewrite the objective as

L(f, g) =

(
〈nĈzxf − S∗z Ỹ , g〉Ĩ −

1

2
〈nĈzzg, g〉Ĩ −

ν

2
‖g − g0‖2Ĩ

)
+
λ

2
‖f − f0‖2H̃

= n

(
〈Ĉzxf − n−1S∗z Ỹ , g〉Ĩ −

1

2
〈Ĉzz,ν̄ g, g〉Ĩ + ν̄〈g, g0〉Ĩ −

ν̄

2
‖g0‖2Ĩ

)
+
λ

2
‖f − f0‖2H̃,

where Sz, Ĉzx, Ĉzz are now defined w.r.t. the approximate kernels. The optimal g∗ for fixed f is

g∗(f) = Ĉ−1
zz,ν̄(Ĉzxf − n−1S∗z Ỹ + ν̄g0). (55)

Plugging g∗ back to the objective, we have

L(f, g∗(f)) =
n

2
〈g∗, Ĉzz,ν̄g∗〉Ĩ +

λ

2
‖f − f0‖2H̃ −

nν̄

2
‖g0‖2Ĩ ,

∂fL = nĈxzĈ
−1
zz,ν̄Ĉzz,ν̄g

∗ + λ(f − f0)

= nĈxzĈ
−1
zz,ν̄(Ĉzxf − n−1S∗z Ỹ + ν̄g0) + λ(f − f0).

Setting ∂fL to zero, we obtain

f∗ = (nĈxzĈ
−1
zz,ν̄Ĉzx + λI)−1(nĈxzĈ

−1
zz,ν̄(n−1S∗z Ỹ − ν̄g0) + λf0). (56)

Since
(nĈxzĈ

−1
zz,ν̄Ĉzx + λI)−1 = (n−1S∗xSzĈ

−1
zz,ν̄S

∗
zSx + λI)−1

= (S∗xLSx + λI)−1

(53)
= λ−1(I − S∗x(λL−1 + SxS

∗
x)−1Sx︸ ︷︷ ︸

defined as C

), (57)

we can rewrite f∗ as
f∗ = λ−1C(ĈxzĈ−1

zz,ν̄(S∗z Ỹ − νg0) + λf0).

Clearly, f∗ is a Gaussian process. Suppose f∗(x∗) ∼ N (S∗µ
′, S∗C′S∗∗), then

µ′ = λ−1C nĈxzĈ−1
zz,ν̄(n−1S∗zY ) = λ−1(I − S∗x(λL−1 + SxS

∗
x)−1Sx)S∗xLY

= λ−1S∗x(I − (λL−1 + SxS
∗
x)−1SxS

∗
x)LY

= S∗x(λL−1 + SxS
∗
x)−1Y.

The RHS above matches the posterior mean (9) (with kx, kz replaced by their random feature ap-
proximations) since SxS∗x = Kxx and

S∗µ
′ = S∗S

∗
x(λL−1 + SxS

∗
x)−1Y = K∗x(λL−1 +Kxx)−1Y = K∗x(λ+ LKxx)−1LY.

As Ỹ − Y, g0 and f0 are independent, the covariance operator of f∗ is

C′ = λ−1C(ĈxzĈ−1
zz,ν̄(nλĈzz + λνI)Ĉ−1

zz,ν̄Ĉzx + λ2I)λ−1C

= λ−1C(λnĈxzĈ−1
zz,ν̄Ĉzx + λ2I)λ−1C (57)

= C.
In view of (57), we know

S∗C′S∗∗ = S∗S
∗
∗ − S∗S∗x(λL−1 + SxS

∗
x)−1SxS

∗
∗

= K∗∗ −K∗x(λL−1 +Kxx)−1Kx∗,

which matches the posterior covariance matrix (10) with replaced kernels.

25



C.1.4 Discussion of KernelIV [7]

The KernelIV estimator [7] is motivated as a kernelized generalization for 2SLS. Its first stage
consists of estimating the conditional expectation operator E, restricted on H; we can see from
Theorem 1 therein that their estimator Enλ coincides with our choice of Ên = Ĉ−1

zz,ν̄Ĉzx. Thus when
the domain of the response variable Y = R, their second-stage objective reduces to

Ên(f) :=
1

n

n∑
i=1

(ỹi − 〈f, Ê∗nk(z̃i, ·)〉H)2 + λ̄‖f‖2H

≡ 〈f, (ĈxzĈ−1
zz,ν̄ĈzzĈ

−1
zz,ν̄Ĉzx + λ̄I)f〉H +

〈
f, ĈxzĈ

−1
zz,ν̄

S∗z̃ Ỹ

n

〉
H

+ λ̄‖f‖2H (58)

where in the last equality we have dropped the quadratic term about Ỹ as it is independent of f .
Comparing with the kernelized DualIV objective (3), (58) is only different in their use of sep-
arate samples (z̃i, ỹi),10 and the replacement of Ĉ−1

zz,ν̄ in (3) with the asymptotically equivalent
Ĉ−1
zz,ν̄ĈzzĈ

−1
zz,ν̄ . The similarity between the two objectives is also supported by previous report that

empirically, the resulted estimators perform similarly [20].

(58) has an optimization-based equivalent form, similar to (4) to (3). Indeed, using a similar argu-
ment to Appendix C.1.3, we can see that

〈f, ĈxzĈ−1
zz,ν̄ĈzzĈ

−1
zz,ν̄Ĉzxf〉H =

1

n

n∑
i=1

(2g(z̃i)f(x̃i)− g(z̃i)
2)− 2ν̄‖g‖2I ,

where g = Ĉ−1
zz,ν̄Ĉzxf solves

max
g∈I

1

n

n∑
i=1

(2g(z̃i)f(x̃i)− g(z̃i)
2)− ν̄‖g‖2I (59)

which is equivalent to the KRR objective. Following this we can see that

Ên(f) ≡ 1

n

n∑
i=1

(2g(z̃i)f(x̃i)− g(z̃i)
2 + f(x̃i)h(z̃i))− 2ν̄‖g‖2I + λ̄‖f‖2H, (60)

where h = Ĉ−1
zz,ν̄

S∗z̃ Ỹ
n represents b̂n in (2). However, note the different regularizers on g in (60) and

(59) above, which is due to the replacement of Ĉ−1
zz,ν̄ with Ĉ−1

zz,ν̄ĈzzĈ
−1
zz,ν̄ in (58); consequently, the

objective Ên no longer has a minimax formulation, and it is less clear whether a GDA-like algorithm
will converge to the expected optima.

Finally, we note that Mastouri et al. [56] provides additional discussions on the difference between
the kernelIV estimator and the kernelized dualIV estimator.

C.2 Assumptions used in Proposition 4.2

The analysis in the subsequent subsections relies on the following assumptions on the random feature
expansion. We only state them for x for conciseness; the requirements for z are similar.

The following assumption holds for, e.g., random Fourier features [48].
Assumption C.1.

sup
x,x′∈X

∣∣∣kx(x, x′)− k̃x,m(x, x′)
∣∣∣ p→ 0, as m→∞, (61)

The following assumption may be relaxed to require supx k̃x,m(x, x) to have finite higher-order
moments; we use this for simplicity.

Assumption C.2. There exists a constant κ̃ > 0 such that maxm∈N supx∈X k̃x,m(x, x) ≤ κ̃.
10Note that ỹi here refers to the separate batch of unperturbed samples (see [7]), as opposed to the perturbed

samples in the main text; we also assume that the two set of samples have the same sample size for simplicity.
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C.3 Analysis of Random Feature Approximation

We recall the following facts: for A,B ∈ Rn×n,
‖A‖ ≤ ‖A‖F ≤

√
n‖A‖, A−1 −B−1 = A−1(B −A)B−1.

Lemma C.2. For allm ∈ N, let kx,m be a random feature approximation to kx such that (61) holds,
and let k̃z,m be an approximation to kz satisfying a similar requirement as above. Then the random
feature-approximated posterior Πm(f(x∗) | D(n)) = N (µ̃, S̃) satisfies

lim
m→∞

sup
x∗∈X l

‖µ− µ̃‖2 = 0, lim
m→∞

sup
x∗∈X l

‖S̃ − S‖F = 0,

for any fixed training data (X,Y, Z), l ∈ N, and λ, ν > 0. In the above, µ̃ and S̃ are defined as

µ̃ = K̃∗x(λI + L̃K̃xx)−1L̃Y,

S̃ = K̃∗∗ − K̃∗xL̃(λI + K̃xxL̃)−1K̃x∗,

L̃ = K̃zz(K̃zz + νI)−1,

and the Gram matrices are defined using k̃x,m and k̃z,m.

Proof. Define

εm = max

(
sup

x,x′∈X

∣∣∣k(x, x′)− k̃x,m(x, x′)
∣∣∣ , sup
z,z′∈Z

∣∣∣k(z, z′)− k̃z,m(z, z′)
∣∣∣) .

By assumption εm
p→ 0. For S̃ we consider the decomposition

‖S̃ − S‖ ≤ ‖K̃∗∗ −K∗∗‖
+ ‖K̃∗x −K∗x‖‖L̃‖‖(λI + K̃xxL̃)−1K̃x∗‖
+ ‖K∗x‖‖L̃− L‖‖(λI + K̃xxL̃)−1K̃x∗‖
+ ‖K∗xL‖‖(λI + K̃xxL̃)−1 − (λI +KxxL)−1‖‖K̃x∗‖
+ ‖K∗xL(λI +KxxL)−1‖‖K̃x∗ −Kx∗‖

=: (I) + (II) + (III) + (IV) + (V).

In the following, we use O(·) and Op(·) to represent the asymptotic behaviour when m → ∞.
Since n and l are fixed, the operator norms of the matrices K∗x, L,Kxx are O(1). Observe that
‖Kzz− K̃zz‖ ≤

√
nεm. By the triangle inequality, the inequality ‖ ·‖ ≤ ‖ ·‖F and the boundedness

of k̃x,m and k̃z,m, we have ‖K̃∗x‖ = O(1). Both O(·) terms above are independent of x∗. Finally,
recall that ‖L‖ = ‖Kzz(Kzz + νI)−1‖ ≤ 1 and similarly ‖L̃‖ ≤ 1. Using these facts, we have

(I) ≤ ‖K̃∗∗ −K∗∗‖F ≤ lεm → 0.

(II) ≤
√
lnεm · 1 · λ−1 ·O(1)→ 0.

‖L̃− L‖ = ‖Kzz(Kzz + νI)−1 − K̃zz(K̃zz + νI)−1‖ → 0.

≤ ‖Kzz − K̃zz‖ · ν−1 + ‖K̃zz(K̃zz + νI)−1‖‖(Kzz − K̃zz)(Kzz + νI)−1‖
≤ 2
√
nεm · ν−1 → 0.

(III) ≤ O(1) · ‖L̃− L‖ · λ−1O(1)→ 0

(IV) = O(1) · ‖(λI + K̃xxL̃)−1‖‖K̃xxL̃−KxxL‖‖(λI +KxxL)−1‖
≤ O(1) · λ−2 · (‖K̃xx −Kxx‖‖L̃‖+ ‖Kxx‖‖L̃− L‖)→ 0.

(V) = O(1) ·
√
lnεm → 0.

Moreover, the converges above are all independent of the choice of x∗. Thus we have

sup
x∗∈X l

‖S̃ − S‖F ≤ l sup
x∗∈X l

‖S̃ − S‖ → 0.

Using a similar argument we have
sup
x∗∈X l

‖µ̃− µ‖2 → 0.
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C.4 Analysis of the Optimization Algorithm

Algorithm 1: Modified randomized prior algorithm for approximate inference.
Input: Hyperparameters ν, λ ∈ R. Random feature models θ 7→ f(·; θ), ϕ 7→ g(·;ϕ).
Result: A single sample from the approximate posterior
Initialize: draw θ0 ∼ N (0, I), ϕ0 ∼ N (0, λν−1I), Ỹ ∼ N (Y, λI);
for `← 1, . . . , L− 1 do

θ̂` ← θ`−1 − η`∇̂θLrf(θ`−1, ϕ`−1, θ0, ϕ0);
ϕ̂` ← ϕ`−1 + η`∇̂ϕLrf(θ`−1, ϕ`−1, θ0, ϕ0);
θ`+1 ← ProjBf (θ̂`);
ϕ`+1 ← ProjBg (ϕ̂`);

end
return f(·; θL)

For the purpose of the analysis we consider the standard SGDA algorithm as outlined in Algorithm 1.
In the algorithm Lrf denotes the objective in (14), and ProjB denotes the projection into the `2-norm
ball with radiusB, and ∇̂Lrf represents a stochastic (unbiased) approximation of the gradient∇Lrf .
In the following, we will suppress the dependency of Lrf on θ0, ϕ0 for simplicity.

Concretely, we introduce the notations

Φf :=
1√
m

φx,m(x1)>

...
φx,m(xn)>

 ∈ Rn×m, Φg :=
1√
m

φz,m(z1)>

...
φz,m(zn)>

 ∈ Rn×m,

where we recall X := (x1, . . . , xn) and Z := (z1, . . . , zn) are the training data.

Observe that Φfθ = f(X; θ),Φgϕ = g(Z;ϕ), we can rewrite the objective (14) as

Lrf(θ, ϕ) = θ>Φ>f Φgϕ− Ỹ >Φgϕ−
1

2
ϕ>Φ>g Φgϕ−

ν

2
‖ϕ− ϕ0‖22 +

λ

2
‖θ − θ0‖22. (62)

We additionally define

Li(θ, ϕ) = n

(
θ>Φ>f EiΦgϕ− Ỹ >EiΦgϕ−

1

2
ϕ>Φ>g EiΦgϕ

)
− ν

2
‖ϕ− ϕ0‖22 +

λ

2
‖θ − θ0‖22,

where Ei := eie
>
i and {ei}i∈[n] is the standard orthogonal basis of Rn. We can see that

Lrf(θ, ϕ) =
1

n

∑
i∈[n]

Li(θ, ϕ).

Therefore, the stochastic gradient in Algorithm 1 can be defined as

∇̂Lrf(θ, ϕ) := ∇LI(θ, ϕ) =
∑
i∈[n]

∇Li(θ, ϕ)1i=I , (63)

where I is a random variable sampled from the uniform distribution of the set [n].

In practice we run the algorithm concurrently on J sets of parameters, starting from independent
draws of initial conditions {θ(j)

0 , φ
(j)
0 }; moreover, the projection is not implemented, and there are

various other modifications to further improve stability, as described in Appendix D.2.

The following lemma is a convergence theorem of Algorithm 1 under the choice of stochastic gra-
dient defined in (63).
Lemma C.3. Fix an m ∈ N. Denote by θ∗ the optima of (14) and take η` := 1

µ(`+1) with µ =

min{λ, ν}. Then for any ε, B1, B2, B3 > 0, there existBf , Bg > 0 such that whenL = Ω(δ−1ε−2),
the approximate optima θL returned by Algorithm 1 satisfies

P ({‖θL − θ∗‖2 > ε} ∩ En) ≤ δ,
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where

En :=

{
‖θ0‖2 + ‖ϕ0‖2 ≤ B1, ‖Ỹ ‖2 ≤ B2, sup

z∈Z
k̃z,m(z, z) + sup

x∈X
k̃x,m(x, x) ≤ B3

}
,

and k̃·,m denotes the random feature-approximated kernel. The randomness in the statement above
is from the sampling of the initial values θ0, ϕ0, the gradient noise.

Proof. Recall from (56) that θ∗ is a sum of bounded linear transforms of θ0, ϕ0 and Ỹ0. Thus on
the event En the norm of the optima ‖θ∗‖2 is bounded. Similarly, ‖ϕ∗‖2 is also bounded on En by
(55). We choose Bf and Bg to be their maximum values on the event En.

Notice that Lrf is strongly-convex in θ, and strongly-concave in ϕ, so it has the unique stationary
point (θ∗, ϕ∗). We will then bound ‖θ` − θ∗‖22 + ‖ϕ` − ϕ∗‖22. Let σf , σg be the minimal constants
such that ‖∇θLi(θ, ϕ)‖22 ≤ σ2

f , ‖∇ϕLi(θ, ϕ)‖22 ≤ σ2
g for all i ∈ [n], ‖θ‖2 ≤ Bf and ‖ϕ‖2 ≤ Bg .

Introducing the notation B := max{Bf , Bg}, so we have ‖θ‖2, ‖ϕ‖2 ≤ B. Define

r` = E
[
‖θ` − θ∗‖22 + ‖ϕ` − ϕ∗‖22

]
.

We want to know how r` contracts. We first make a stochastic gradient step on θ` with step size η`,
i.e., θ̂`+1 := θ` − η`∇̂θLrf(θ`, ϕ`) with ∇̂Lrf defined in (63). Then,

E[‖θ̂`+1 − θ∗‖22 | θ`, ϕ`] ≤ ‖θ` − θ∗‖22 − 2η`〈θ` − θ∗,∇θL(θ`, ϕ`)〉+ η2
`σ

2
f ,

where the expectation is taken with respect to the randomness of the gradient. For the above inner
product term, we have that

〈θ` − θ∗,∇θLrf(θ`, ϕ`)〉 = 〈θ` − θ∗,∇θLrf(θ`, ϕ`)−∇θLrf(θ
∗, ϕ∗)〉

= λ‖θ` − θ∗‖22 + 〈θ` − θ∗,Φ>f Φg(ϕ` − ϕ∗)〉.

Next, we consider the gradient step on ϕ` with step size η`, i.e., ϕ̂`+1 := ϕ` + η`∇̂ϕLrf(θ`, ϕ`).
Then, we have that

E[‖ϕ̂`+1 − ϕ∗‖22 | θ`, ϕ`] ≤ ‖ϕ` − ϕ∗‖22 + 2η`〈ϕ` − ϕ∗,∇ϕLrf(θ`, ϕ`)〉+ η2
`σ

2
g .

We similarly deal with the inner product term:

〈ϕ` − ϕ∗,∇ϕLrf(θ`, ϕ`)〉 = 〈ϕ` − ϕ∗,∇ϕLrf(θ`, ϕ`)−∇ϕLrf(θ
∗, ϕ∗)〉

= −〈ϕ` − ϕ∗, (Φ>g Φg + νI)(ϕ` − ϕ∗)〉+ 〈ϕ` − ϕ∗,Φ>g Φf (θ` − θ∗)〉
≤ −ν‖ϕ` − ϕ∗‖22 + 〈ϕ` − ϕ∗,Φ>g Φf (θ` − θ∗)〉,

Combining the above results, we have

r`+1 ≤ E[‖θ̂`+1 − θ∗‖22 + ‖ϕ̂`+1 − ϕ∗‖22 | θ`, ϕ`] ≤ (1− 2µη`)r` + η2
` (σ2

f + σ2
g),

where we have set µ := min{ν, λ}, and the first inequality follows from the fact that the projection
onto a convex set is a contraction map, i.e., ‖ProjB(x)− ProjB(y)‖ ≤ ‖x− y‖.

Let σ2 = σ2
f + σ2

g and η` = ξ
`+1 for some ξ > 1

2µ , by induction we have

r` ≤
cξ
`+ 1

, where cξ = max

{
r0,

2ξ2σ2

2µξ − 1

}
.

Specifically, taking ξ = µ−1, we have

r` ≤
1

`+ 1
max

{
r0,

2σ2

µ2

}
. (64)

We now track the constants we have used in (64). Note that on the event En,

r0 ≤ 2
(
‖θ0‖22 + ‖θ∗‖22 + ‖ϕ0‖22 + ‖ϕ∗‖22

)
≤ 4(B2

1 +B2).

Recall that the definition of σ2 is

σ2 = max
i∈[n],‖θ‖2,‖ϕ‖2≤B

‖∇θLi(θ, ϕ)‖22 + max
i∈[n],‖θ‖2,‖ϕ‖2≤B

‖∇ϕLi(θ, ϕ)‖22 =: (I) + (II).
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For the first term, we have

(I) = max
i∈[n],‖θ‖2,‖ϕ‖2≤B

‖λ(θ − θ0) + nΦ>f EiΦgϕ‖22

≤ max
i∈[n],‖θ‖2,‖ϕ‖2≤B

(
2λ2‖θ − θ0‖22 + 2n2‖Φ>f EiΦgϕ‖22

)
≤ 4λ2(B2 +B2

1) + 2n2B2
3B

2.

Similarly, for the second term, we have

(II) = max
i∈[n],‖θ‖2,‖ϕ‖2≤B

‖n(θ>Φ>f EiΦg − Ỹ >EiΦg − Φ>g EiΦgϕ)− ν(ϕ− ϕ0)‖22

≤ 4n2B2
3B

2 + 2n2B2
2B

2 + 4ν2(B2 +B2
1).

Thus, we know that

σ2 ≤ 8(λ2 + ν2)(B2 +B2
1) + 6n2B2

3B
2 + 2n2B2

2B
2 =: C̃.

Taking Lδ = δ−1ε−2 max{4B2
1 + 4B2, C̃µ−1} and η` = 1

µ(`+1) , by (64), we know that

P(‖θL − θ∗‖2 > ε) ≤ ε−2E‖θL − θ∗‖22 ≤ ε−2r` ≤ δ.

C.5 Proof of Proposition 4.2

By Lemma C.2, for any ε1 > 0 we have

lim
m→∞

P
({

sup
x∗∈X l

‖µ̃− µ‖2 > ε1

}
∪
{

sup
x∗∈X l

‖S̃ − S‖F > ε1

})
= 0, (65)

where the randomness is from the sampling of random feature bases.

Fix an arbitrary set of ε1 > 0, δ0 > 0. Then we can find m ∈ N such that the event in (65)
has probability smaller than δ0. Combining Assumption C.2 with the fact that θ0, φ0, Ỹ0 are now
Gaussian random variables with fixed dimensionality, for any δ1 > 0, we can choose B1, B2, B3

such that the event En defined in Lemma C.3 has probability 1− δ1. Thus for any ε2 > 0, when the
number of iteration steps exceeds Ω(δ−1

1 ε−2
2 ), we have

P(‖θ̂m − θ∗m‖2 > ε2) ≤ P({‖θ̂m − θ∗m‖2 > ε2} ∩ En) + P(Ecn) ≤ 2δ1, (66)

where θ̂m denotes the approximate optima returned by Algorithm 1 after Ω(δ−1
1 ε−2

2 ) iterations, θ∗m
denotes the exact optima of the minimax objective, and the randomness is from the gradient noise
as well as the perturbations f0, g0, Ỹ . Thus we have

E‖θ̂m − θ∗m‖2 ≤ ε2 + 2δ1(E‖θ̂m‖2 + E‖θ∗m‖2) ≤ ε2 + 4δ1B.

From the choice ofB in Lemma C.3, we can see that δ1B ≤ E(‖θ∗m‖·(1−1En)), and thus converges
to 0 as δ1 → 0. Therefore, E‖θ̂m − θ∗m‖2 converges to 0, and for any x∗ ∈ X l,

E sup
x∗∈X l

‖f(x∗; θ̂m)− f(x∗; θ∗m)‖2 = E sup
x∗∈X l

‖φx,m(x∗)>(θ̂m − θ∗m)‖2

≤ l
√
κ̃ · E‖θ̂m − θ∗m‖2 → 0,

where the expectation is taken with respect to the gradient noise, perturbations, and random feature
draws. Hence, the mean and covariance of f(x∗; θ̂m) converges to that of f(x∗; θ∗m) as intended,
and we know that the following holds with probability at least 1− δ0

sup
x∗∈X l

max
{
‖E(f(x∗; θ̂m))− E(f(x∗; θm))‖2, ‖Cov(f(x∗; θ̂m))− Cov(f(x∗; θm))‖F

}
≤ ε1

Combining this with (65) completes the proof.
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D Implementation Details, Experiment Setup and Additional Results

D.1 Hyperparameter Selection

We follow the strategy in previous work [e.g., 7, 20] and select hyperparameters by minimizing the
observable first or second stage loss, depending on which part they directly correspond to.

For the first stage, the loss is

Lv1 = Tr(Kxx − 2Kxx̃L+Kx̃x̃L
>L) = Ef∼GP(0,k)‖f(X)− Lf(X̃)‖22

where L := Kzz̃(Kz̃z̃ + νI)−1, and tilde indicates the held-out data. From the above equality we
can see that a Monte-Carlo estimator for L1 can be constructed with the following procedure:

(i). Draw f ∼ GP(0, kx).
(ii). Perform kernel ridge regression on the dataset {(z̃i, f(x̃i))}.

(iii). Return the mean squared error on the dataset (X,Z).

This procedure can also be implemented for the NN-based models.

For the second stage, the loss
∑n
i=1 d̂n(Ênf, b̂) can be computed directly, for both the closed-form

quasi-posterior and the random feature approximation. For the approximate inference algorithm, as
we can see from (15) that the dual functions {g(·;ϕ(k))} are samples from Gaussian process poste-
riors centered at the needed point estimates Ênf(·; θ(k)), instead of the point estimates themselves,
we train separate validator models to approximate the latter. The validator models have the architec-
ture to the dual functions used for training, and follow the same learning rate schedule. The validator
models are trained before estimating the validation statistics, and we run SGD until convergence to
ensure an accurate estimate.

D.2 Details in the Approximate Inference Algorithm

To draw multiple samples from the quasi-posterior efficiently, our algorithm runs J SGDA chains in
parallel, with different perturbations {(Ỹ (j), f

(j)
0 , g

(j)
0 ) : j ∈ [J ]}. While the convergence analysis

works with the extremely simple Algorithm 1, in practice we extend it to improve stability and
accelerate convergence:

(i). we employ early stopping based on the validation statistics;
(ii). before the main optimization loop we initialize the dual parameters at the approximate optima

arg minϕ Lrf(f
(j), g(·;ϕ)), by running SGD until convergence;

(iii). in each SGDA iteration, we use K1 > 1 GD steps on g and one GA step for f ;

(iv). after every K2 epochs, we fix θ(j) and train the dual parameters ϕ(j) for one epoch.

All the above choices are shown to improve the observable validation statistics. We fix K1 =
3,K2 = 2 which are determined on the 1D datasets using the validation statistics.

D.3 1D Simulation: Experiment Setup Details

In constructing the datasets, let f̃0 denote the sine, step, abs or linear (f̃0(x) = x) function; we then
set f0 = f̃0(4 · (2x− 1)) if f̃0 is sine, abs or linear, 1{2x−1<0} + 2.5 · 1{2x−1≥0} otherwise. These
choices are made to maintain similarity with previous work [5, 6], which used the same transformed
step function and defined x so that it has a range of approximately [−4, 4].

For 2SLS and the kernelized IV methods, we determine λ and ν following D.1. To improve stability,
we repeat the procedures on 50 random partitions of the combined training and validation set, and
choose the hyperparameters that minimize the average loss. The hyperparameters are chosen from a
log-linearly scaled grid consisting of 10 values in the range of [0.1, 30]. We note that the occasional
instability of hyperparameter selection is also reported in [20]. For BayesIV, we run the MCMC
sampler for 25000 iterations, discard the first 5000 iterations for burn in, and take one sample out
of every 80 consecutive iterations to construct the approximate posterior. For bootstrap we use 20
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samples. In both cases we verify that further increasing the computational budget does not improve
the final performance.

We normalize the dataset to have zero mean and unit variance. For all kernel methods we set the
kernel bandwidth using the median trick.

Finally, we provide details in the run time measurement in Table 1: BayesIV is evaluated on a
machine with an i9-9900k processor (8 cores, 16 threads; 5.0 GHz) and 64GB RAM; the closed-
form quasi-posterior is evaluated on a machine with two Xeon E5-2620v4 processors (total 16 cores,
32 threads; 3.0 GHz) and 220GB RAM; the approximate inference method is evaluated on the same
machine, with a GeForce GTX 1080Ti GPU. The use of different machines is because BayesIV
requires a Windows environment; it should not put BayesIV into disadvantage, as it only makes
efficient use of 4 CPU cores. For all methods, the reported runtime excludes non-computational tasks
such as data preparation and JIT compilation. For the approximate inference algorithm, we report
the runtime for the optimal hyperparameters; runtime for suboptimal hyperparameters is typically
lower due to early stopping. As a single run of the algorithm does not fully utilize the GPU, we
run 6 experiments in parallel and report the elapsed time divided by 6. This is a realistic evaluation
setting, since in practice all methods require multiple runs for hyperparameter selection, and will
benefit from parallelization whenever possible.

D.4 1D Simulation: Full Results and Visualizations

Full results are reported in Table 3-4. As we can see, the gap in CI coverage between bootstrap and
the quasi-posterior consistently appears across all datasets, and is most evident in the small-sample
setting or when Matérn kernels are used instead of the RBF kernel.

We provide the following visualizations:

(i). We visualize the quasi-posterior and the bootstrap predictive distribution on all datasets, us-
ing the nonparametric kernel that best matches the smoothness of the target function. This
amounts to Matérn-3/2 for abs and step, and RBF for sin and linear.11 Results for α = 0.5
are plotted in Figure 3, and α = 0.05 in Figure 4. We can see that

• The credible intervals produced by our method shrink when N or α increases, correctly
reflecting the increased amount of available information in training data. Their width
also has the same order of magnitude as bootstrap, when α = 0.5 (i.e., when bootstrap is
more reliable).

• When the instrument strength is weak (α = 0.05), our method is significantly more
robust than bootstrap, especially when the sample size is smaller.

• On the step dataset where Assumption 3.2 is violated, our method still provides good
coverage.

(ii). We plot the quasi-posterior using over-smoothed kernels on the abs dataset, which include the
RBF kernel and the Matérn-5/2 kernel, in Figure 5 (b-c).

• We can see that both kernels produce CIs with good coverage, and the CIs have similar
(albeit slightly smaller) width comparing with the Matérn-3/2 kernel. This is consistent
with previous results on GP regression using oversmoothed priors [62]; the slight shrink
in CI width could be attributed to the fact that the abs function is smoother than C0 in
most regions.

(iii). We plot the approximate quasi-posterior using the approximate inference algorithm in Figure 5
(d).12 Comparing Figure 5 (c) and (d), we can see that the approximate and exact quasi-
posterior are visually similar.

11None of the kernels match the discontinuous step function, so we use the least smooth one; for the linear
function, we skip the linear kernel, since numerical study of quasi-posteriors using low-dimensional parametric
models exists in literature [16].

12We use 400 random Fourier feature basis to approximate the RBF kernel. Regularization hyperparameters
are determined using the closed-form validation statistics, and optimization hyperparamaters are determined by
grid search following the setting of the lower-dimensional demand experiment below.
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(a) sin, bootstrap (b) sin, quasi-Bayes

(c) abs, bootstrap (d) abs, quasi-Bayes

(e) step, bootstrap (f) step, quasi-Bayes

(g) linear, bootstrap (h) linear, quasi-Bayes

Figure 3: 1D datasets: visualizations of predictive distribution with α = 0.5. Dot indicates the
training data, and “ols” indicates biased regression predictions using KRR. Shade indicates 95% CI.

(a) sin, bootstrap (b) sin, quasi-Bayes

(c) abs, bootstrap (d) abs, quasi-Bayes

(e) step, bootstrap (f) step, quasi-Bayes

(g) linear, bootstrap (h) linear, quasi-Bayes

Figure 4: 1D datasets: visualizations of predictive distribution with α = 0.05. Best viewed when
zoomed. Due to the hyperparameter selection procedure, the CIs do not always shrink as N in-
creases.
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(a) Matérn-3/2 kernel (b) Matérn-5/2 kernel (c) RBF, closed form (d) RBF, RF approx

Figure 5: 1D datasets: visualization of the quasi-posterior on the abs dataset using various models.
We fix N = 1000, α = 0.5.

D.5 Demand Simulation: Experiment Setup Details

All variables in the dataset are normalized to have zero mean and unit variance. For BayesIV, we
run the MCMC sampler for 50000 iterations, discard the first 10000 samples as burn in, and take
every 80th sample for inference. For the kernelized methods, hyperparamater selection follows the
1D experiments. For the NN-based methods, implementation details are discussed in Appendix D.2;
for both our method and bootstrap, we draw J = 10 samples from the predictive distribution.

We select hyperparameters by applying the procedure in Appendix D.1 to a fixed train / validation
split, since on this dataset we observe little variation in its results. Hyperparameters include λ, ν,
and the learning rate schedule (initial learning rate η0 and period of learning rate decay τ ). The
learning rate is adjusted by multiplying it by a factor of 0.8 every τ iterations. We fix the optimizer
to Adam, and train until validation statistics no longer improves.

For the lower-dimensional setup, we select λ and ν from a log-linearly scaled grid of 10 values, with
the range of [5 × 10−3, 5] and [0.05, 1], respectively. The ranges are chosen based on preliminary
experiments using the range of [0.1, 30]. We determine η from {5 × 10−4, 10−3, 5 × 10−3, 1 ×
10−2, 5×10−2}, and τ from {80, 160, 320, 640}. We fix the batch size at 256. The NN architecture
consists of two fully-connected layers, with 50 hidden units and the tanh activation. We also exper-
imented with NNs with 3 hidden layers or with ReLU activation, and made this choice based on the
validation statistics.

For the image-based setup, the range of λ and η follows the above. For ν, τ we consider ν ∈
[1, 100], τ ∈ {640, 1280, 2560, 5120}, based on preliminary experiments. We fix the batch size at
80. The network architecture is adapted from [4], and consists of two 3 × 3 convolutional layers
with 64 filters, followed by max pooling, dropout, and three fully-connected layers with 64, 32 and
1 units.

Following the setup in all previous work, we use a uniform grid on [5, 30]× [0, 10]× {0, . . . , 6} as
the test set.

Computational cost We report the typical training time for a single set of hyperparameters, ex-
cluding JIT compilation time, on a GeForce GTX 1080Ti GPU. In the lower-dimensional exper-
iments, training takes around 25 minutes for a single set of hyperparameters when N = 103, or
around 30 minutes when N = 104; in both cases 6 experiments can be carried out in parallel on a
single GPU. In the image experiment, training takes around 7.5 hours.

The time cost reported above is for the optimal hyperparameter configuration; experiments using
suboptimal hyperparameters usually take a shorter period of time due to early stopping. It can also
be improved by switching to low-precision numerical operations, or with various heuristics in the
hyperparameter search (e.g., using a smaller J in an initial search).

D.6 Demand Simulation: Full Results and Visualizations

Results in the large-sample settings are presented in Table 5. We only include 2SLS for comparison,
since the time complexity of the other baselines is too high. The results are consistent with the
discussion in the main text.

We plot the predictive distributions for all methods in Figure 7, on the same cross-section as in the
main text, for N = 1000. (We omit the plot for N = 104 and the image experiment, since in
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those settings bootstrap and the quasi-posterior have similar behaviors.) As we can see, all non-
NN baselines except BayesIV produce overly smooth predictions, presumably due to the lack of
flexibility in these models. Note that the visualizations only correspond to an intersection of the true
function f(x0, t0, s), with x0, t0 fixed; the complete function has the form of x · s · ψ(t), ignoring
the less significant terms, and thus may incur a large norm penalty in the less flexible RKHSes. The
issue is further exacerbated by the discrepancy between the training and test distributions: the former
is non-uniform due to confounding. As we can see from Figure 6, in the region where t is close to 5,
the data is scarce for most values of x, which may explain the reason that the RBF-based methods
fail to provide good coverage around t = 5 (and s = 3, x = 17.5, as used in the visualizations), and
the reason that both NN-based methods assign higher uncertainty around this location.

BayesIV has a different failure mode: as it employs additive regression models for both stages
p(x | z), p(y | x), it approximates this cross-section relatively well. However, as the true structural
function does not have an additive decomposition, its prediction in other regions can be grossly
inaccurate; we plot one such cross-section in Figure 8(a).

When implemented with the NN model, bootstrap CIs are more optimistic in regions with more
training data, although the difference is often insignificant. The difference in out-of-distribution
regions is more significant, where bootstrap is often less robust. An example is provided in Figure 8.

Table 5: Deferred results on the demand design. Results are averaged over 20 trials for the low-
dimensional experiment, and 10 trials for the image experiment.

Setting Low-dimensional, N = 104 Image, N = 5× 104

Method BS-2SLS BS-NN QB-NN BS-2SLS BS-NN QB-NN

NMSE .371± .003 .014± .003 .020± .002 .559± .008 .168± .027 .138± .037
CI Cvg. .024± .005 .944± .009 .957± .008 .112± .005 .892± .022 .909± .017
CI Wid. .014± .002 .136± .015 .203± .013 .132± .039 .636± .027 .597± .024

Figure 6: Demand experiment: scatter plot of 104 samples from the training data distribution p(x, t |
s = 4). The dashed line indicates the cross-section used in Figure 2.
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(a) BS-Linear (b) BS-Poly (c) BS-RBF (d) QB-RBF

(e) BayesIV (f) BS-NN (g) QB-NN

Figure 7: Demand experiment: visualizations of the predictive distributions for N = 1000, on the
same cross-section as in Figure 2.

(a) BayesIV (b) BS-NN (c) QB-NN

Figure 8: Demand experiment: visualizations of the predictive distributions for N = 1000 on a
out-of-distribution cross-section, obtained by fixing t = 9, s = 6 and varying x.
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