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A Background on Gaussian Process Regression

We review some standard results on Gaussian process regression. They will be needed in our proof
in the following, and provide more context to the results in the main text. For a thorough overview
of this subject, see, for example, [34]].

Notations The appendix uses the following additional notations: <, 2 represent inequality up to a
universal constant, < denotes equivalent up to constants. ||-||zs denotes the Hilbert-Schmidt norm.

For infinite-dimensional Gaussian process models, the prior draws almost surely fall out of the
corresponding RKHS. Therefore, our posterior analysis will rely on the following result, showing
that the GP prior support can be approximated with increasing accuracy using balls in the RKHS
with increasing norm, in terms of a weaker norm that can be defined on the entire prior support (e.g.,
the sup norm).

Theorem A.1 ([30]], Theorem 2.1). Let W be a Borel measurable, zero-mean Gaussian random

element in a separable Banach space (B, || - ||) with RKHS (H, || - ||%), and let wg be contained in
the closure of H in B. Let 72 > 0 be a number such that
Puy () < 177, an
where
Puwo (T) inf hll3, —log P(IW]| < 7). (18)

heH:||h—wol|<T

Then, for any Co > 1 with e=Conmi < 1/2, the set

O, =181+ J,H1 (19)
is measurable and satisfy
log N (37,0, || - ||) < 6Cont?, (20)
B(W ¢ 0,) < e 0", 1)
B(|W — wol < 27,) = ™", (22)

In the above Bi,Hi are the unit norm balls in the corresponding spaces, and J, =
—2@71(6709"73) where ®~1 is the inverse CDF of the standard normal distribution.

Our analysis will make use of the following:
Corollary A.1. Fix any wy € B. Then for anyn € N,

(i). J, <2/2Cent? =: Jp.

(ii). there exists w), € H such that ||w], — wol|| < 7,,, and

P(|W — wl|| < 27,) > e 3. (23)

Proof. (i) holds because ®(t) > 1 — e~*"/2. for (ii), from (T7)-(T8) we can see that such w], €
exists, and we can find w}; so that

[w] I3 < 20, (7a) < 2077

(23)) follows from thet inequality

(a) (b)

—log P(|W —wl| < 2m) < 6,1 () < [w] |3, —log P(|W|| < 7) < 3nry.
where (a) can be found in Lemma 1.28, [34]; and (b) from (T7). O
Remark A.1. For Gaussian processes the space B is a function space. In the analysis of our al-
gorithms, we require that the norm || - || in the space B is at least equivalent to the sup norm
Iflleo := sup, |f(x)], ie, [|fllo S |IfIl- This requirement is natural for most examples. For

example, the space B is generally chosen to be the continuous function space equipped with the sup
norm.
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Choices of 7,, Choices of 7,, will affect the posterior contraction rate. In general, 7,, is determined
by the ability of RKHS H to approximate the target function wq, and the small-ball probability
log P(||W|| < 7) which is usually determined by the metric entropy log N (7, H1, || ||) [34, Lemma
1.30]. For the standard Matérn and RBF kernels and the sup norm as || - i i are
provided in [31]], which we review below.

Lemma A.1 (Matérn kernel. Lemma 3-4, [31]]). If H is the RKHS corresponding to the Matérn-a
kernel in [0,1]%, wo € CP([0,1]%) N HP(]0,1]%),| the condition will be satisfied with

9 2 min(a,B)
Tn =n  2a+d

where the constant hidden in < may depend on wy.

Remark A.2. T, above usually determines the posterior contraction rate of GP regression using a
normal likelihood with fixed variance [31]]. For any fixed 5 > 0, it is minimized when we set o« = f3.
When o > d/2, samples from the the corresponding GP belong to the space C2[0, 1]¢ N H2[0, 1]¢
with probability 1, for all @ < «: see [31} pp. 2104], and [28] pp. 37-38]. Therefore, when oo = 5 >
%, the above lemma applies to wy in a space that is very slightly smaller than the “sample space” of

the prior. And in this case, 7,, matches the minimax rate for regression in ([0, 1]%).

The practice of choosmg kernel so that the GP sample space (approx1mately) matches the regularity
of the target function is different from in kernel ridge regression, where the kernel is chosen so
that the corresponding RKHS, a much smaller space than the GP sample space, matches the target
regularity. Still, in all cases we can always invoke the above lemma when wq has less regularity.
Although the resulted 72 may be worse, it is known that using an “over-smoothed” prior does not
lead to worse rates if we allow the noise variance parameter to vary with n [62].

Remark A.3. When wo = ff € C#[0,1]9 N HP[0,1]¢ with 8 = %t1, we can invoke the above
theorem with o = %! and obtain 72 < n~1/2. The RKHS of the Matérn-1/2 kernel is norm equiv-

alent to H” [28], and C? is often referred to as qualitatively having the same degree of regularity
as HP (see, e.g., [31]]). This is a very basic assumption for regularity, since the eigendecay of the

Matérn-1/2 kernel is A ;< jf%; if we further slow down the decaying rate below j’l, C, will no
longer be trace-class; equivalently, k, will no longer be bounded, contradicting our Assumption[3.3]

The following lemma applies when RKHS # corresponding to the standard RBF kernel k(z, 2') :=
exp(—||z — 2'||?/2), and f € AY" which is a function space requiring exponential decrease of the
Fourier transform

Lemma A.2 (RBF kernel. Lemma 6, 9, [31]). Let fy be the restriction to [0,1]¢ an element of
AVT(RY). Then

(i). Forr>2orr=2,v>4, foisin H.
(ii). Forr € (0,2), we have

4,72/7“

_ /r
log ™ 1)2 1+d
inf hl2, —log P(|W] < 7)< C 7( Cs (log 71 .
nere i Ibll3 —log PIW]| < 7) < lexp< +Cs (log ")

where Cy,Co only depends on d and fy. Consequently, for any r > 1 and wy € AV"(R%),
we have 2/

1 T
72 o dogn)™"

n

Remark A.4. The Gaussian process using RBF kernel takes value in the space of real analytic func-
tions, which corresponds to AY" with » = 1 [31l]. Therefore, the above lemma applies to all
functions in the “sample space” of the GP prior.

Remark A.5. Finally, note that in the sequel we will always assume that

nT2 — o0.
As T, upper bounds the posterior contraction rate in Gaussian process regression, the above will
always holds for infinite-dimensional models of interest; in general, as lim inf m',% > 0 must hold

by (I7), we can increase 7, by, e.g., a logarithm factor, although for finite-dimensional models the
analysis can be simplified considerably.

7C# denotes the Holder space of order 3, and H? denotes the Sobolev space of order 3.
8The specific form is irrelevant for our purposes; see van der Vaart and van Zanten [31]].
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B Analysis of the Quasi-Posterior

In this section we prove Theorem [3.1] and Proposition 3.1} Our proof is similar to the adaptation of
the posterior contraction framework [64] in [[18]], and involves bounding the log quasi-likelihood on

certain events. However, it is different since in our case, En and the GP prior are not constructed
with orthonormal basis in Lo (pgata). Moreover, we directly provide guarantee on the true GMM
conditions @, and do not make additional assumption on the data distribution; whereas [[18] ana-

lyzed the estimated GMM conditions constructed from E,, and the empirical data distribution, and
then moved to analyze f under various assumptions about the joint distribution pgaiq(dz X dx),
including identifiability.

We introduce the following event

Bur. )= A0 { 1€~ Cuall < = 0 {HS X)—Y)Isjﬁ}, 24)

where the event A, (r) {Hszlf C..— C..) z;f” < r} We will then bound the (scaled)
log quasi-likelihood

(25)

in both directions on the event B,,(r, L).

B.1 Bounds on the Quasi-likelihood

Lemma B.1. Conditioned on the event By, (r, L) for r € (0,1/2), we have for all f € H

—r0 4 \/ ||czz Coofllz <1C5Cfllz < + \/ HCZZ C.ofllz,  (26)
" 5 (

Proof. On the event A, (1), we have

~A—1/2 —1/2 A
NCZP O fI2 — 1C P Cu fIE = Can f, (CF, — C2) Can f)z]
1/2 1/2 —1/2
<||CH2(Cl, = C)CHA - I P Can f 2
1/2 1/2 1/2
= |1 - CACoLCA N - ICE PO fII2

ZZIJ ZZV

T —1/2
102 Caa 11,

where the last inequality above uses (31)) in Lemma[B.6] Thus

1-2r A 1 -
T 1020 Can fllz < NICZCocflz < (| 71O Cuc Iz

Since ||C’ZZI£2 1/2|| < 1, the right hand side above is < 4/1/(1 ||C’;Z1 /2 C.o f|lz; for the left
hand side, observe that

where

) 1l o

9
S

IN

ICZ2Confllz — |CL 2 Con fllz < |CL2 = CLMPCLL|ES |2

where we recall E = C_!C,, is bounded by Assumption To bound HC’l/ i Cz_zll/,ZC
denote by {\;} the eigenvalues of C,, then the i-th elgenvalue of C’;f — szll/,QCZZ is

)\1/2_ Ai . \/)\?-l—)\iﬁ— \/)\12 (2) 17/2 < \6/2
' e VAi+ 7 EVAYE S ’
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where (a) follows from the concavity of the square root function. Thus

IG5 2Csn fllz = 1C2 0 Cus flz < VEIES2/2 < VEI BN Flle/2.
and
1-—

Vi (.
1-— (”szl/QCzwf”I - 7||E||Hf||7'l < ||(j,z,zl/2 ZﬂifHI < ﬁ”czzl/zczwfnz
(28)

Note that on the event B, (r, L), we have
N ~ a _ ~ L
NCZPCuflz = 1CZ P Cuflz) S NCZ NG — Coalllfllne < —2=lIf Il (29)
vV nr

Combining (28) and (29) completes the proof. O

Lemma B.2. Conditioned on the event Bn(r7 L) for r € (0,1/2), we have for all f € B that can
be written as f = f, + fe || < 27, and for arbitrary m € N,

\/ IIEf y 1 2)p < Ve (f) <), +\/ IE(F =y 2l GO

where €,,(f) is defined in (25), and f}, € H is an approximation of f1 in H such that ||fT — f} | <
T, and

L
005 (= 4 V7) (U = fll + 1)+ 7 an

Proof. Define the random vectors

R:=Y — f{(X), E:=f1(X)~ fl(X) = fe(X),

sothat E(R | Z) =0, || E||oc < 27,,. Consider the decomposition

o S*(R+E) -
() = ’ c’ (—() + Caalfi — fL))
n z
12 SHRAE N
<|onp e E) el - s, (32)
1285 (R+E
OES zz{éz(T ezt et - o, (33)
On the event B,,(r, L), we have
AZ—leéQS:R §571/2 S:R §L(m7)71/2.
Soon iz no iz
And since
re1/2S2E ||

zZz,V zz,U

1 x 1 —1 g

z
1
= [ Ke (K + ond) ||| B3 < 97,

<1

where the last inequality follows from the fact that || F||o < ||E|| < 37, we have

1255 (R+ E)

CLY < L(no) ™2 + 37, (34)

z
For the second term in (]32]} and (33), recall that by Lemma[B.T] we have

0 4 \/ ||c-1/2cm fn= iz S NCZ P Cou( i — f1)Iz
H ||C_1/QCZ£E fh - f;r@)”Ia

n
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where
r® < (Lom) 24+ 012) |1 = fh e
From the triangle inequality ||a| — |b|| < |a — b|, we have
IECS =y | 2)llp = 1CZ2Cua(fn = 1)zl
= I1ECS = fT 1 2)llp — IE(fn — £, [ 2)]l,]
<|E(fe + fh =T 12,
< er + fyTn - er”oo < 37—m-

Since r € (0,1/2), we know ,/ﬁ—r < 2 and % < 1. Thus, we have

HlEf v 2)p — O —dr, <O Cou(fn — [z (35)

</ l—_rllE(f —y 12l +r +67m.  (36)

Plugging (34), (33) and (36) to (32) and (33)) completes the proof. O

B.2 Proof of Theorem 3.1

Let {m,, : n € N} be an increasing sequence to be determined later. We drop the subscript n below
for brevity. Let {©,, : m € N} be defined as in Theorem-w1th wo = fT; recall that Cg can be
set arbitrarily large. In the event B, (r, L) we fix r = 1/3 and determine L later; both parameters
r, L will be dropped for brevity.

We define the unnormalized quasi-posterior measure as follows:

[] (n)y . _n
(4 D) = [ exp (= g5ta() ). @)
Consider the decomposition
E(I(err, s | D™)) < E(Il(erry, | D ”)) | Bn) + (1 = P(Bn))
(n)
<E +H(errnf06)m|D )\Bn + (1 —P(B)
e | D)
<E e I:Ierrnj06m|D )|Bn + (1 —P(B.))
(e | D)

(D +
where the last inequality follows from —2%£,,(f) < 0 and the definition of I in (37).
By Assumption[3.2] we can find f{, € H such that || /T — f,|| < 7,,, and

IFnlGe <, it Rl 1 < mrg, 41 (38)

We first consider the denominator IT1(© | D)) in (I). For any f € B with || f — f§ || < 27,,, using
Lemrnawith fn=f1 and f. = f — f1 , we have the following on the event B,,:

é — 'Szlzn + \/>||IE f y | Z ||;U < Tnlzn + 4Tm?
where r( ), is defined in (3T) and the last 1nequa11ty follows from that
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Plugging f, — fI = 0 into the definition of r''), yields

L2
() < —+ + 72, if Byand ||f — £l || < 27, hold. (39)

Thus, on the event B,,, we have for some fixed constant C'; > 0,

fi(e | D™) > / exp (— 5= alf)) THF)

{feo:llf—fhll<2rm}

Cin [ L?
—f . s S 2
> ({17 = Sl < 200 (- 52 (£ 47472 ) )
2
ex (—3mT§L—Cl71<%+u+ni>). (40)
A \n

Now we consider the numerators in (I). First by Theorem we have I1(0¢,) < exp(—Cemt2),
where C'g is any constant such that e~Commy, < 1/2, to be determined later. Thus,

H(@fn) Cl’I'L 2 C’ln L2 _
- < - = — I — e - .
(0] D) = exp ( (Co 3 Y ) mr,, + ( + v 41)

We now turn to the TI(err,, ; N ©,,) term in the numerators of (I). Noting that for non-negative
numbers, a > b — ¢ implies 2a% > b% — 2¢2, and by Lemma [B.2} on the event B,,, for any f €
erry, r N ©,, we have

2
60 2 B~y 12— ()7 = 2 = (40,7 2)

Recalling that when f € ©,,, we can write f = f}, + fe, where f, € J_Hi and ||f.|| < 7. In
view of (I7), (I8) and (38), we find || f],||2, < m72 + 1. From Corollaryand (3T), we know
1) \2 < L 2 T2 2
(rn,m) S\ on + 7 ) - (I fnllz + 1l +1) + 70

2
< (% + 1/) ((Co +1)mr2 +1) + 72, (43)

vn

Combining (@0), (@2) and (@3), we know there is a fixed constant C > C such that the following
holds on the event B,,,

(0, Nerr, ; | D™) Mné? 9 L
L ’ < Skl N it 44
H(@|D(")> =~ €xp 8)\ + 1m7—m+ 2 D’I’L+V 9 ( )
where o
n
Iy =34 =
1 + m)\ )
C
Ty :=1+ (Co 4 1)m72 + QL;

Setting Co = 4 + 2C1, €, = Ty, m = A = \/n, ¥ = L/y/n, L = min{m72,,v,} where 7,, — oo
is a sequence with arbitrarily slow growth, we can verify that there exists an M > 0 such that both
(@) and (@) converges to zero by noting that as n — oo, m72, — oo, 72, — 0. Hence, the term (1)
converges to zero.

Next, we shall show that (II) tends to zero as n — oo. This is equivalent to verify that the right
hand sides of @7), (@8) and (@9) tend to zero. Since L — oo, we know (@8) and [@9) will vanish.
The following inequality shows that (@7) also vanishes.

Vn—logN(u)sz—logN(z/)Z\f—logO(\éﬁ>—>oo,

where the inequality follows from the fact N (7) = O(v~1) (see [65, Proposition 3]).
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B.3 Proof of Proposition

We follow the choice of parameters (except for r, which will be set to 1/ max{3, L}) as in Theo-
rem[3.]]to show that

({7 1im Pooo (Ve lF) ~ 1B~y [ 2)ls| > 8) =0, va>0}) = 1.

From (I7) and (I8) we can see that for any 7, that satisfies the condition of Theorem [A.1] 7,,, >

Tm Will also satisfy it. Thus we choose 7, = max{7,,/2(Com)~1logm} and define O,
accordingly. Then by Theorem [3.1and the Borel-Cantelli Lemma, the set

S := {f € B : there exists M; > 0 such that f € ©,, for every m > M} (45)
has prior probability 1 since >, -, e=Comn < Doz M2 < 00

For f € S and m > My, by Lemma [B.2} we know the following holds on the event B, (r, L):

1—
—rm T II]E(f yl2)ly < < T A T IES =y 1 2)llp,

withm = /n,v = L/ \/ﬁ as in Theorem the above becomes
L L
ri S =+ V7 ) (Ifn = flll + 1) + T S/ = (VM2 + 1) + o S V.
vVvn n
Since the growth of L can be arbitrarily slow, and 7,,, — 0, we have lim,, rﬁl m = 0. Note that

r:=1/max{3, L} — 0, from @7), @8) and @9), it can be verified that lim,,_, IP(B (r,L)) =
Combining with the above inequality, we know that

lim Poe (|VE(F) — B =y | 2)],] > 6) =0, vfes.s>o0.

B.4 Auxiliary Results

In this section, we collect several auxiliary results used in our proofs.
Lemma B.3. Forr € (0, 1), define

An(r) == {||C (Con — C)C P < ) (46)

Then when v < sup, k(z,z) =: k%, and r > \/x2/(vn) + k2/(30n), we have

2

1= P(An(r)) < AN (%) exp (_M) , 47

where N (7) := Tr(C,.CL';) is the effective dimension of C...
Proof. This is Lemma 1 in [33]], with 6 = 0 (in their notation). O

The following lemma is a standard concentration result on the operator C',,.. See, e.g., Caponnetto
and De Vito [65]], Fukumizu [66], De Vito et al. [67]]. We will give its proof for completeness.
Lemma B.4. Ifsup, k(z,z) < k2 and sup, k(z, 2) < k2, then for any § € (0, 1), we have for any
constant C > 0,

A C C
P (|G — Cuall < —= ) < 2exp [~ |- 48
(1 1< 5) 2o (- 5) @)
Proof. Define the random variable £ := k(z,-) ® k(z,-). It is easy to verify that £ is a Hilbert-
Schmidt operator from H to Z, and E, .§ = C.,. Note that ||{|lus = /k(x,z)k(z,2) < k? and

E||¢||%g < x*. From Proposition 2 in [65], we conclude that for any § € (0, 1),

R 42 2
]P zx — Yzx S 71 rs Z ]. - 6
(16 = el = 1063

Finally, this lemma can be proved by a simple algebra and the fact that || - || < ||||gs- O
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Lemma B.5. Assume that f1(x) —y is a A-subexponential random variable and sup, k(z, z) < k2,

then there exists a universal constant ¢y such that for all C' > 0,

St c ¢
IP’(Hn(f (X)-Y) I§ﬁ> < 2exp (ClM>~ (49)

Proof. Define the random variable ¢ := k(z,-)(fT(x) — y). Since fT(x) — y is A-subexponential,
we know (E|fT(z) — y[?) p < coAp for all p > 1 for some universal constant ¢y (See, e.g.,

Proposition 2.7.1 in Vershynin [68]). Recall that the Stirling’s formula 2rnntie < n!, we
know E||¢||% = Ek(z,2) % |fT(x) —y|™ < en!(cAk)™ for some universal constant ¢. Thus, from the

fact that E¢ = E(k(z, )E(fT(x) — y | 2)) = 0 and Proposition 2 in [63], it has

STt 4erk A 2

The final conclusion follows by a simple algebra. O

Lemma B.6. On the event A, (1), we have

A 1
||01/QCZZ l/Ozl,éQH < H zz zzll/ ;ézu” < m: (50)
|CCsty - C2) 0l < T 51)

Proof. (50) is Eq. (19) in [33], with (in their notation) z = 1. For (51)), note that
=~ GO = I = CL(Canp = (Coe = ) ' CLL

( zZz, v zZz,V zZz,V

= HI - (I - szl,éz(czz - ézz)c.;zl,léz) 1”

[feisA(e;

Define D := C_, 1/2(sz - CA’ZZ)CAP. Then on the event A,,(r), the right hand side above is

zz,U zz,U

(7= D)™ - (=D))< (7 = D)D) < -

.7"

where the last inequality uses the fact that ||[D|| < 7 on A(r), and that ||(I — D)7 < (1 —
1Dl O

23



C Analysis of the Approximate Inference Algorithm

C.1 Proof of the Double Randomized Prior Trick
C.1.1 A Function-Space Equivalent to Proposition 4.1]

We first claim that Proposition [4.1]is equivalent to the following function-space version, the proof
of which is deferred to Section

Proposition C.1. Let H,T be finite-dimensional RKHSes with kernels k., k., respectively,
9o ~ GPO, k), fo ~ GP(0,ka), Gi ~ N (yi, ).
Then the optima f* of

N2
minmox £(7,9)i= 3 () = ) = L35 ) = Dlg — alls + 17 - ol )

n
feH geT =1

follows the posterior distribution (6), with the kernels by, k.

Proof of the equivalence. Observe that is exactly the same as (I4) when the random feature
parameterization ¢ — g(z; ¢) is injectivel’|in which case we have ||¢[l2 = ||g(; ¢)||z. Otherwise,
observe that on the subspace

1= span{¢, (') : 2’ € Z},

lélla = llg(-; @)|l5 always holds: this follows by definition of k, when ¢ is a finite linear combi-
nation of the ¢’s, and the general case follows by continuity (note that 7 is already defined by k).

Clearly any g — go € Z can be parameterized with some ¢ in this subspace, so the optima of (52)
is a valid candidate solution for (I4). On the other hand, for any ¢ — ¢, outside the aforementioned
subspace, we have [|¢ — ¢oll2 > [|g(-; #) — g(-; ¢o)||z. Therefore, the optimal ¢ of (T4) must satisfy
lo — doll2 = [lg(-; ¢) — g(-; ¢o) |+, and thus solves (52). As a similar result also holds for f, we
conclude that the two objectives are equivalent. [

Remark C.1. The non-injective setting above justifies the formal analysis of (T6)) in the main text.
We also remark that any parameter 6, ¢ visited by the SGDA algorithm on (T4)) or (I6) (starting from
0o, Po) satisfies

0700 6937 QZS*(ZSO 6(I)s~

Thus ||¢ — ¢oll2 = ||g(; &) — g(+; ¢ol|+ (and similarly for ), and from the perspective of the SGDA
algorithm, the objectives (52) and @ﬁ are always the same. This can be proved by induction. Take
¢ for example; clearly ¢ = ¢ satisfies the above. For ¢, obtained at the ¢-th step of SGDA, we

have

d)é - QSO = (1 - V)(¢€—1 - QSO) + ‘/€T¢z,m(Z)a
where V, € R"™ is independent of ¢,. Thus ¢y — ¢g € P, by definition of ®, and the inductive
hypothesis.

C.1.2 Matrix Identities

We list two identities here that will be used in the derivations.
Lemma C.1. Let U, C,V, S be operators between appropriate Banach spaces, A € R\ {0}, then

N4+ UCV) t=XxYT-UNC 4+ VU) V), (53)
S(S*S 4+ A7t = (S5 + A\I)7!S. (54)
Proof. Recall the Woodbury identity:
(A+UcV)t=At—A"WU(C Tt +vATIU) VAL

“Most random feature models, such as the random Fourier feature model, satisfies this property almost
surely.
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Then, we have
N +UCV) P =X T -2 2u( Tt avo) Ty

=\ HI-UWNCTH+VU)TY).

And,
S(S*S+ M)t =S\ - A2 (ATISST + 1) 7LS)

= A71(S = SS*(SS* + AI)7LS)
= (S5 + \I)7LS.

C.1.3 Proof of Proposition[C.1]

Define Y = (y1,...,Yn), Y = (U1, ., TUn). We rewrite the objective as

. - 1, - v A
£ = ((0Ccf = SEF.0)z = 3 0Cuctilz — Flo = a0l ) + 315 ~ ol

) s 1. ) v A
= ﬂ(<0zxf —n7'SYY )7 — =(Can 9, 9)7 + {9, 90)7 — 2||90||21> + §||f — foll%,

[\

where S, C’zm, C’zz are now defined w.r.t. the approximate kernels. The optimal ¢g* for fixed f is
g (f) = ct (émf—n—ls;f/w%). (55)

zZz,U

Plugging g* back to the objective, we have

\ ]
L(F.9" (D) = 5o Corog)z + 515 = foll% = T llgol

3

= néLZ A_z,ﬂ(ézwf - ’I’L_l;S:Y + 1790) + A(f - fO)
Setting ¢ L to zero, we obtain
fr = (nCe.CyCon + M) T (nCra O (n 1 SEY — g0) + Afo). (56)

Since
(nCu:C 5 Cop + M) = (n71838.C 58, + AI)
= (SILS, + )t
D11 - s + 5,50 718,), 57)

defined as C

we can rewrite f* as o )
Fr=0710(C0CL 5 (S2Y = vgo) + Afo)-
Clearly, f* is a Gaussian process. Suppose f*(z,) ~ N (S.p’, SxC'S¥), then
@ =A"1CnC,.Cll(nT SIY) = NI — SE(ALTY + 5,55) 71 S,)SELY
=A1SH(I — (AL + 8,857 S, SHLY
=SE(ALT 4+ 8,857y
The RHS above matches the posterior mean () (with k,, k. replaced by their random feature ap-
proximations) since 5,55 = K, and
S = 8.8 AL+ 8,507 = K,y AL 4+ Koo)'V = Kop(A+ LK) 'LY.
AsY -, go and fy are independent, the covariance operator of f* is
C' = A1C(Co Ol (nAC. + M) CL L Clp + NPDNTIC
= A7lC(nC,.0h oy + 220N D e
In view of (57), we know
S.C'S: =8.8% — 8. St AL™' 4+ 5,55)71S, 5"
= Ko = Ky AL+ Kpp) 7 K,
which matches the posterior covariance matrix (T0) with replaced kernels.
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C.1.4 Discussion of KernellV [7]

The KernellV estimator [[7] is motivated as a kernelized generalization for 2SLS. Its first stage
consists of estimating the conditional expectation operator F, restricted on H; we can see from

Theorem 1 therein that their estimator E'Y coincides with our choice of En = CA'Z_Z%DCA’M. Thus when
the domain of the response variable ) = R, their second-stage objective reduces to

Eall) i= 1 30— (. Bak(n ) + A

N - N oA SIY _
= <f7 (Clzczzl,ﬂczzczzl,f/czm + AI)f>H =+ <f7 Cﬂ?zczzl,ﬂ n > + AHf”%—[ (58)
H

where in the last equality we have dropped the quadratic term about Y as it is independent of f.
Comparing with the kernelized DuallV objective (3), (38) is only different in their use of sep-

arate samples (fz'i,gji) and the replacement of CA';Z%,; in (@) with the asymptotically equivalent
C *1—C'ZZC';Z17,;. The similarity between the two objectives is also supported by previous report that

22,0
empirically, the resulted estimators perform similarly [20].

(58) has an optimization-based equivalent form, similar to () to (3). Indeed, using a similar argu-
ment to Appendix [C.1.3] we can see that

n

U, CasClsCon Ol Cua P = S 2020 f(E0) — 9(20)%) — 229l

i=1
where g = C‘;;DCA’ZI f solves
1 n
- 29(%:) f(&:) — 9(2:)%) — vl|gl1 59
I;lggn;( 9z f (@) — 9(z)%) - vllgllZ (59)
which is equivalent to the KRR objective. Following this we can see that
N 1 N N - N - _ <
Elf) = > 29G)f(E) - 9(z) + f(E)h(Z) - 20]glF + Al fIl3 (60)
i=1

where h = ¢} 2= represents by in (2). However, note the different regularizers on ¢ in (60) and

ZZ,W

(39) above, which is due to the replacement of C’;Zl,f, with C’;ZI’DC'ZZC' ~.'» in (58)); consequently, the

2z,

objective £, 0 longer has a minimax formulation, and it is less clear whether a GDA-like algorithm
will converge to the expected optima.

Finally, we note that Mastouri et al. [56] provides additional discussions on the difference between
the kernellV estimator and the kernelized duallV estimator.

C.2 Assumptions used in Proposition[4.2]

The analysis in the subsequent subsections relies on the following assumptions on the random feature
expansion. We only state them for = for conciseness; the requirements for z are similar.

The following assumption holds for, e.g., random Fourier features [48]].
Assumption C.1.

sup kg (z,2") — kg m(x,2") 50, asm — oo, (61)
z,x'eX

The following assumption may be relaxed to require sup, k »(z,z) to have finite higher-order
moments; we use this for simplicity.

Assumption C.2. There exists a constant & > 0 such that max,en Sup ¢ y l%mm(a:, x) < K.

!Note that §j; here refers to the separate batch of unperturbed samples (see [7]]), as opposed to the perturbed
samples in the main text; we also assume that the two set of samples have the same sample size for simplicity.
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C.3 Analysis of Random Feature Approximation

We recall the following facts: for A, B € R**",

Al < |Allp < ValAll, A™H = B™'=ATH(B - A)B™.
Lemma C.2. Forallm € N, let k, ,, be a random feature approximation to k, such that (61)) holds,
and let I%Zm be an approximation to k, satisfying a similar requirement as above. Then the random
feature-approximated posterior IL,,,(f(z.) | D"™) = N (i1, S) satisfies

lim sup [[g—/fl2=0, lim sup ||S—S|r=0,
m— o0

M0 gx e X1 zreX!
for any fixed training data (X,Y, Z), | € N, and \,v > 0. In the above, [i and S are defined as
fi = Koo\ + LEK,,) ' LY,
S = Kiw = Koo L + Ko L)™' Ko,
L=K..(K..+vI)",

and the Gram matrices are defined using l~cx7m and l%zm.

Proof. Define

).

, sup ‘k‘(z,z’) —l;:Z?m(z,z’)

€y, = Max ( sup ‘k‘(m,x’) — kpm(z, ")
z,2'€Z

T,z €X
By assumption €, 0. For S we consider the decomposition
1S = S|| < [ Kuu — K|
1K = Ko [[[ILIAT + Ko L) K|
Kl = LI + Koo L) R
Ko LA+ Koo D)™ = (M + Koo L) ™| Ko
+ [ Ko LT + Koy L) 7Kg — K|
=:(I) + (1) + (II0) + (IV) + (V).

In the following, we use O(-) and O,(-) to represent the asymptotic behaviour when m — oo.
Since n and [ are fixed, the operator norms of the matrices K., L, K, are O(1). Observe that

K. — K..|| < \/ném. By the triangle inequality, the inequality || - || < || - || and the boundedness
of kg and k ,,,, we have || K, || = O(1). Both O(-) terms above are independent of =*. Finally,
recall that || L|| = ||K.. (K., +vI)~!|| < 1 and similarly ||L|| < 1. Using these facts, we have

(D) < || Kuw — Kia||lF <l — 0.
(1) < Vine, -1-X71-0(1) = 0.
|E— L] = | KoK+ vD) ™ — Ron(Re + D)7 0.

< Kae — Boal - v 4 | Roa (B 4 0D) [ (Ko — Bo) (e + D)7
<2Vne, -vt = 0.

(I < 0(1) - ||L - L|| - A"to(1) = 0

(IV) = O(1) - |\ + KoL) 1Ko L — Kow LI + Koo L)Y
<O) - A2 (|Kee = Kaoll| LI + | Kz |I1L = LIJ) — 0.

(V) =0(1) - Vinen, — 0.

Moreover, the converges above are all independent of the choice of z*. Thus we have

sup ||S—=S|r <1 sup ||S -S| — 0.
z*eX! z*eX!

Using a similar argument we have

sup ||@ — pll2 = 0.
z*eX!
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C.4 Analysis of the Optimization Algorithm

Algorithm 1: Modified randomized prior algorithm for approximate inference.

Input: Hyperparameters v, A € R. Random feature models 6 — f(+;0), ¢ — g(-; ).
Result: A single sample from the approximate posterior
Initialize: draw 6y ~ N(0,1), 0 ~ N (0, \v™11),Y ~ N (Y, A]);
for/—1,...,L—1do

Or < 001 = 0eVo Lt (001,001,060, 90);

Gp < po—1+ nl?cpﬁrf(ef—lv ©we—1,60,%0);

Oc1 < Projp, (00);

Pet1 < Projp (&0);
end
return f(-;6;)

For the purpose of the analysis we consider the standard SGDA algorithm as outlined in Algorithm([T]
In the algorithm £,¢ denotes the objective in (T4)), and Proj 5 denotes the projection into the ¢3-norm

ball with radius B, and VL represents a stochastic (unbiased) approximation of the gradient VL.

In the following, we will suppress the dependency of L.+ on 6y, ¢q for simplicity.

Concretely, we introduce the notations

1 ¢z,m(x1)—r 1 ¢Z,m(zl)T
Opi= — : eR™ P, = — : e R™™,
\/m . g \/ﬁ .
¢x,m($n)—r (bz,ﬂ%(zn)—r
where we recall X := (z1,...,2,) and Z := (21, ..., 2z,) are the training data.

Observe that ® 0 = f(X;6), .0 = g(Z; ), we can rewrite the objective (14) as
~ 1 v A
Les(0,0) =0T @[ Dyp—Y Dy — incp;cpg(p - 5”@ — ol + §||9 — 0ol13-

We additionally define

(62)

- 1 v A
Li(0,¢) =n (9%}&@9@ ~ VI EB®yp — 2¢T<I>;Ei<1>g<p> =3l =wollz + 5110 = boll,

where F; := eie;r and {e; };¢[n) is the standard orthogonal basis of R™. We can see that
1
»Crf(07§0) = ﬁ Z 51(9780)
i€[n]
Therefore, the stochastic gradient in Algorithm|[T]can be defined as
VL0, 0) = VLz(0,0) = Y VL0, 0)Li—1,
i€[n]

where 7 is a random variable sampled from the uniform distribution of the set [n].

(63)

In practice we run the algorithm concurrently on J sets of parameters, starting from independent

draws of initial conditions {9(()j ), (béj )}; moreover, the projection is not implemented, and there are

various other modifications to further improve stability, as described in Appendix [D.2]

The following lemma is a convergence theorem of Algorithm [I]under the choice of stochastic gra-

dient defined in (63).

Lemma C.3. Fix an m € N. Denote by 0* the optima of and take 1, = m with u =
min{\, v}. Then forany e, By, Bz, B3 > 0, there exist By, By > 0 such that when L = Q(6~'e2),

the approximate optima 0y, returned by Algorithm|[I] satisfies
P({ll6r —"[l2 > e} N En) <6,

28



where

B, {||90||2 + ligolla < Bu, [z < B, sup (2, 2) + SUp Ko (1, 7) < 33} ,
z€Z rzeX

and l;,,m denotes the random feature-approximated kernel. The randomness in the statement above
is from the sampling of the initial values 0y, g, the gradient noise.

Proof. Recall from (36) that 6* is a sum of bounded linear transforms of 6y, ¢y and Y,. Thus on
the event F,, the norm of the optima ||0*||5 is bounded. Similarly, ||¢* |2 is also bounded on F,, by
(33). We choose By and By to be their maximum values on the event E,,.

Notice that £, is strongly-convex in 6, and strongly-concave in ¢, so it has the unique stationary
point (6%, ¢*). We will then bound ||6, — 0*||3 + ||ps — ©*||3. Let o, 0, be the minimal constants
such that ||V L (0, ¢)||3 < O’J%, VoLi(0,0)|5 < o2 foralli € [n],||0]l < By and [[¢]l2 < By.

Introducing the notation B := max{By, By}, so we have ||0]|2, ||¢|l2 < B. Define
re =E |00 — 0713 + lwe — " [I3] -
We want to know how 7, contracts. We first make a stochastic gradient step on 6, with step size 7,
ie., Opp1 := 0 — VoLt (0, p¢) with VL, defined in (63). Then,
E[|[0041 — 07113 | 02, 0c] < [10c — 0713 — 2m¢(0e — 0, Vo L (0, 00)) + 107,

where the expectation is taken with respect to the randomness of the gradient. For the above inner
product term, we have that

(00 — 0%, Vo Lyt (00, 00)) = (00 — 0°, Vo Lyt (00, 00) — VoLt (0%, 0%))
= A6 — 0%[|3 + (0, — 6%, @ Dy (pr — ©*)).

Next, we consider the gradient step on ¢, with step size 7y, i.e., Pr+1 = @ + m@wﬁrf(ﬁg, we)-
Then, we have that

Elllger1 — @*[13 | 02, 0e] < lloe — 0* 115+ 2ne{0e — 0%, Vo Lot (6o, 00)) + 70
We similarly deal with the inner product term:
(0o = @" Vo Lit(0o,00)) = (e — ©" VoLt (00, 00) — Vo Leg (0%, 07))
—(pe — ", (B By + vI)(pr — 7)) + (00 — ©*, Dy (0 — 67))
—vlee = "3 + (pe — ¢*, g By (00 — 0%)),
Combining the above results, we have
res1 < Elll0er1 — 0713 + 1Gers — @113 | 02, 0] < (1 — 2ume)re + 07 (0F + 02),

where we have set u := min{v, A}, and the first inequality follows from the fact that the projection
onto a convex set is a contraction map, i.e., ||Projz(xz) — Projg(y)|| < ||z — y||-

IA

Leto? = 0} 4 o7 and 1y = 5 for some & > 3, by induction we have

+1
2 2 2
re < C—g, where ¢ = max { 79, 570 .
+1 2ué —1
Specifically, taking € = p~t, we have
1 20?2
re < €+1max{ro,:2}. (64)

We now track the constants we have used in (64). Note that on the event E,,,
ro < 2 (1063 + 107113 + llwol3 + ll¢"[13) < 4(B} + B?).

Recall that the definition of o2 is

2 2 2
o = max VoL;(0, + max VoL;(0, =: (I) + (II).
ie[n],\|9|\27|\<PH2SBH oLilf: 22 ie[nLH@IIz,IIszSB” oLil6,@)llo = () + (D
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For the first term, we have

I = max MO —0y) +nd} E;®,0|>
D= g [AE = 00) s Ei2yells

S e, i 2220 — Bo[|3 + 2n%| @] Ei®, 0|3
z‘e[n],uenz,nwnzg( 16— 6oll2 12 E;®yll3)

< 4X*(B? + B}) + 2n*B3 B>
Similarly, for the second term, we have

)= i (0@} Ei®y — YT E®, — ) E;®q0) — v(p — 0o)|3

< 4n’B3iB% + 2n*’B3B* + 4*(B* + BY).
Thus, we know that
0? < 8(\? 4 v?)(B? + BY) + 6n*B2B? + 2n°B3B* =: C.

Taking Ls; = 6 ‘e 2 max{4B} + 4B2,Cp~'} and ny = by (64), we know that

(e+1)’

P(||0r — 0%||2 > €) < e 2E||f — 0*||2 < e 2r, < 4.

O
C.5 Proof of Proposition[d.2]
By Lemma|[C.2} for any ¢; > 0 we have
lim P ({ sup ||& — pll2 > 61} U { sup ||S —S||F > 61}> =0, (65)
Mmoo z* X! TrEX!

where the randomness is from the sampling of random feature bases.

Fix an arbitrary set of e, > 0,00 > 0. Then we can find m € N such that the event in (63)

has probability smaller than §g. Combining Assumption with the fact that 6y, ¢, Yy are now
Gaussian random variables with fixed dimensionality, for any 6; > 0, we can choose B1, By, B3
such that the event E,, defined in Lemrna has probability 1 — §;. Thus for any ez > 0, when the
number of iteration steps exceeds (7 ‘e, *), we have

P([|0m = 0l > €2) < P({[|0m — 0}, [l > €2} N Ey) +P(Ey) < 261, (66)
where ém denotes the approximate optima returned by Algorithm!after Qo7 162_ 2) iterations, 0},
denotes the exact optima of the minimax objective, and the randomness is from the gradient noise
as well as the perturbations fy, gg, Y. Thus we have
E[|m — O5,ll2 < €2 + 261 (El|0m |2 + E[|6},[12) < €2 + 46, B

From the choice of B in Lemmal|C.3] we can see that 61 B < E(||0};, |- (1—1g, )), and thus converges
to 0 as §; — 0. Therefore, E||0,,, — 67,||2 converges to 0, and for any z* € X',

E sup [[f(@";0m) = f(@"505,)ll2 =B sup [ dum(@)T (Om — 05,2
TreX! z*eX!
< VR Efm — O5ll2 = 0,
where the expectation is taken with respect to the gradient noise, perturbations, and random feature

draws. Hence, the mean and covariance of f(x*;0,,) converges to that of f(z*;67,) as intended,
and we know that the following holds with probability at least 1 — Jg

sup maX{IIE(f(Z‘*; Om)) = E(f(@";0m))ll2. [|Cov(f (z*; 0,)) — Cov(f(a; 9m))IIF} <ea

z*eX!

Combining this with (63)) completes the proof.
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D Implementation Details, Experiment Setup and Additional Results

D.1 Hyperparameter Selection

We follow the strategy in previous work [e.g., 7, 20] and select hyperparameters by minimizing the
observable first or second stage loss, depending on which part they directly correspond to.

For the first stage, the loss is
Loy =Tr(Kpp — 2K L+ Kiz LTL) = Epgpon | f(X) — LA(X)|3

where L := K,z (Kz; + vI )*1, and tilde indicates the held-out data. From the above equality we
can see that a Monte-Carlo estimator for L; can be constructed with the following procedure:

(i). Draw f ~ GP(0, k).
(ii). Perform kernel ridge regression on the dataset {(Z;, f(Z;))}.

(iii). Return the mean squared error on the dataset (X, Z).

This procedure can also be implemented for the NN-based models.

For the second stage, the loss Z?:l dAn(En 7 l;) can be computed directly, for both the closed-form
quasi-posterior and the random feature approximation. For the approximate inference algorithm, as
we can see from (T3)) that the dual functions {g(-; ¢©(*))} are samples from Gaussian process poste-
riors centered at the needed point estimates E,, f (-;0()), instead of the point estimates themselves,
we train separate validator models to approximate the latter. The validator models have the architec-
ture to the dual functions used for training, and follow the same learning rate schedule. The validator
models are trained before estimating the validation statistics, and we run SGD until convergence to
ensure an accurate estimate.

D.2 Details in the Approximate Inference Algorithm

To draw multiple samples from the quasi-posterior efficiently, our algorithm runs J SGDA chains in

parallel, with different perturbations {(¥?), £, 9§’) : j € [J]}. While the convergence analysis
works with the extremely simple Algorithm [I] in practice we extend it to improve stability and
accelerate convergence:

(1). we employ early stopping based on the validation statistics;
(i1). before the main optimization loop we initialize the dual parameters at the approximate optima
argmin, L(f), g(-; ), by running SGD until convergence;
(iii). in each SGDA iteration, we use K; > 1 GD steps on g and one GA step for f;

(iv). after every K epochs, we fix #) and train the dual parameters /) for one epoch.

All the above choices are shown to improve the observable validation statistics. We fix K1 =
3, K5 = 2 which are determined on the 1D datasets using the validation statistics.

D.3 1D Simulation: Experiment Setup Details

In constructing the datasets, let fo denote the sine, step, abs or linear ( fo(x) = x) function; we then
set fo = fo(4- (2x — 1)) if fy is sine, abs or linear, 172,10} + 2.5 - 1{2,_1>0) otherwise. These
choices are made to maintain similarity with previous work [5, 6], which used the same transformed
step function and defined x so that it has a range of approximately [—4, 4].

For 2SLS and the kernelized IV methods, we determine A and v following[D.I} To improve stability,
we repeat the procedures on 50 random partitions of the combined training and validation set, and
choose the hyperparameters that minimize the average loss. The hyperparameters are chosen from a
log-linearly scaled grid consisting of 10 values in the range of [0.1, 30]. We note that the occasional
instability of hyperparameter selection is also reported in [20]. For BayesIV, we run the MCMC
sampler for 25000 iterations, discard the first 5000 iterations for burn in, and take one sample out
of every 80 consecutive iterations to construct the approximate posterior. For bootstrap we use 20
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samples. In both cases we verify that further increasing the computational budget does not improve
the final performance.

We normalize the dataset to have zero mean and unit variance. For all kernel methods we set the
kernel bandwidth using the median trick.

Finally, we provide details in the run time measurement in Table [I} BayesIV is evaluated on a
machine with an 19-9900k processor (8 cores, 16 threads; 5.0 GHz) and 64GB RAM; the closed-
form quasi-posterior is evaluated on a machine with two Xeon E5-2620v4 processors (total 16 cores,
32 threads; 3.0 GHz) and 220GB RAM; the approximate inference method is evaluated on the same
machine, with a GeForce GTX 1080Ti GPU. The use of different machines is because BayesIV
requires a Windows environment; it should not put BayesIV into disadvantage, as it only makes
efficient use of 4 CPU cores. For all methods, the reported runtime excludes non-computational tasks
such as data preparation and JIT compilation. For the approximate inference algorithm, we report
the runtime for the optimal hyperparameters; runtime for suboptimal hyperparameters is typically
lower due to early stopping. As a single run of the algorithm does not fully utilize the GPU, we
run 6 experiments in parallel and report the elapsed time divided by 6. This is a realistic evaluation
setting, since in practice all methods require multiple runs for hyperparameter selection, and will
benefit from parallelization whenever possible.

D.4 1D Simulation: Full Results and Visualizations

Full results are reported in Table[3]4} As we can see, the gap in CI coverage between bootstrap and
the quasi-posterior consistently appears across all datasets, and is most evident in the small-sample
setting or when Matérn kernels are used instead of the RBF kernel.

We provide the following visualizations:

(i). We visualize the quasi-posterior and the bootstrap predictive distribution on all datasets, us-
ing the nonparametric kernel that best matches the smoothness of the target function. This
amounts to Matérn-3/2 for abs and step, and RBF for sin and linear Results for o« = 0.5
are plotted in Figure 3| and o = 0.05 in Figure[d We can see that

* The credible intervals produced by our method shrink when N or « increases, correctly
reflecting the increased amount of available information in training data. Their width
also has the same order of magnitude as bootstrap, when o = 0.5 (i.e., when bootstrap is
more reliable).

e When the instrument strength is weak (o = 0.05), our method is significantly more
robust than bootstrap, especially when the sample size is smaller.

* On the step dataset where Assumption is violated, our method still provides good
coverage.

(ii). We plot the quasi-posterior using over-smoothed kernels on the abs dataset, which include the
RBF kernel and the Matérn-5/2 kernel, in Figure [5|(b-c).

e We can see that both kernels produce CIs with good coverage, and the CIs have similar
(albeit slightly smaller) width comparing with the Matérn-3/2 kernel. This is consistent
with previous results on GP regression using oversmoothed priors [62]; the slight shrink
in CI width could be attributed to the fact that the abs function is smoother than C? in
most regions.

(iii). We plot the approximate quasi-posterior using the approximate inference algorithm in Figure[3]
(d){'*| Comparing Figure [5| (c) and (d), we can see that the approximate and exact quasi-
posterior are visually similar.

""None of the kernels match the discontinuous step function, so we use the least smooth one; for the linear
function, we skip the linear kernel, since numerical study of quasi-posteriors using low-dimensional parametric
models exists in literature [|L6]].

"2We use 400 random Fourier feature basis to approximate the RBF kernel. Regularization hyperparameters
are determined using the closed-form validation statistics, and optimization hyperparamaters are determined by
grid search following the setting of the lower-dimensional demand experiment below.
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Figure 3: 1D datasets: visualizations of predictive distribution with o = 0.5. Dot indicates the
training data, and “ols” indicates biased regression predictions using KRR. Shade indicates 95% CI.
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Figure 4: 1D datasets: visualizations of predictive distribution with o = 0.05. Best viewed when
zoomed. Due to the hyperparameter selection procedure, the CIs do not always shrink as N in-

creases.
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Figure 5: 1D datasets: visualization of the quasi-posterior on the abs dataset using various models.
We fix N = 1000, a = 0.5.

D.5 Demand Simulation: Experiment Setup Details

All variables in the dataset are normalized to have zero mean and unit variance. For BayesIV, we
run the MCMC sampler for 50000 iterations, discard the first 10000 samples as burn in, and take
every 80th sample for inference. For the kernelized methods, hyperparamater selection follows the
1D experiments. For the NN-based methods, implementation details are discussed in Appendix[D.2}
for both our method and bootstrap, we draw J = 10 samples from the predictive distribution.

We select hyperparameters by applying the procedure in Appendix to a fixed train / validation
split, since on this dataset we observe little variation in its results. Hyperparameters include A, v,
and the learning rate schedule (initial learning rate 7y and period of learning rate decay 7). The
learning rate is adjusted by multiplying it by a factor of 0.8 every 7 iterations. We fix the optimizer
to Adam, and train until validation statistics no longer improves.

For the lower-dimensional setup, we select A and v from a log-linearly scaled grid of 10 values, with
the range of [5 x 1073, 5] and [0.05, 1], respectively. The ranges are chosen based on preliminary
experiments using the range of [0.1,30]. We determine 7 from {5 x 107%,1073,5 x 1073,1 x
1072,5 x 1072}, and 7 from {80, 160, 320, 640}. We fix the batch size at 256. The NN architecture
consists of two fully-connected layers, with 50 hidden units and the tanh activation. We also exper-
imented with NNs with 3 hidden layers or with ReLU activation, and made this choice based on the
validation statistics.

For the image-based setup, the range of A and 7 follows the above. For v,7 we consider v €
[1,100], 7 € {640,1280,2560,5120}, based on preliminary experiments. We fix the batch size at
80. The network architecture is adapted from [4]], and consists of two 3 X 3 convolutional layers
with 64 filters, followed by max pooling, dropout, and three fully-connected layers with 64, 32 and
1 units.

Following the setup in all previous work, we use a uniform grid on [5, 30] x [0,10] x {0,...,6} as
the test set.

Computational cost We report the typical training time for a single set of hyperparameters, ex-
cluding JIT compilation time, on a GeForce GTX 1080Ti GPU. In the lower-dimensional exper-
iments, training takes around 25 minutes for a single set of hyperparameters when N = 102, or
around 30 minutes when N = 10%; in both cases 6 experiments can be carried out in parallel on a
single GPU. In the image experiment, training takes around 7.5 hours.

The time cost reported above is for the optimal hyperparameter configuration; experiments using
suboptimal hyperparameters usually take a shorter period of time due to early stopping. It can also
be improved by switching to low-precision numerical operations, or with various heuristics in the
hyperparameter search (e.g., using a smaller .J in an initial search).

D.6 Demand Simulation: Full Results and Visualizations

Results in the large-sample settings are presented in Table[5] We only include 2SLS for comparison,
since the time complexity of the other baselines is too high. The results are consistent with the
discussion in the main text.

We plot the predictive distributions for all methods in Figure on the same cross-section as in the
main text, for N = 1000. (We omit the plot for N = 10* and the image experiment, since in
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those settings bootstrap and the quasi-posterior have similar behaviors.) As we can see, all non-
NN baselines except BayesIV produce overly smooth predictions, presumably due to the lack of
flexibility in these models. Note that the visualizations only correspond to an intersection of the true
function f(xo, to, s), with xg, to fixed; the complete function has the form of x - s - ¥(t), ignoring
the less significant terms, and thus may incur a large norm penalty in the less flexible RKHSes. The
issue is further exacerbated by the discrepancy between the training and test distributions: the former
is non-uniform due to confounding. As we can see from Figure[6] in the region where ¢ is close to 5,
the data is scarce for most values of x, which may explain the reason that the RBF-based methods
fail to provide good coverage around ¢ = 5 (and s = 3,z = 17.5, as used in the visualizations), and
the reason that both NN-based methods assign higher uncertainty around this location.

BayesIV has a different failure mode: as it employs additive regression models for both stages
p(x | z),p(y | x), it approximates this cross-section relatively well. However, as the true structural
function does not have an additive decomposition, its prediction in other regions can be grossly
inaccurate; we plot one such cross-section in Figure [§(a).

When implemented with the NN model, bootstrap CIs are more optimistic in regions with more
training data, although the difference is often insignificant. The difference in out-of-distribution
regions is more significant, where bootstrap is often less robust. An example is provided in Figure[S]

Table 5: Deferred results on the demand design. Results are averaged over 20 trials for the low-
dimensional experiment, and 10 trials for the image experiment.

Setting Low-dimensional, N = 10* Image, N = 5 x 10*
Method BS-2SLS BS-NN QB-NN BS-2SLS BS-NN QB-NN

NMSE 371 £.003 .014£.003 .0204£.002 .559 4+.008 .168 +£.027 .138 +.037
CICvg. .0244.005 .944+£.009 .957+.008 .1124.005 .892+.022 .909+.017
CIwid. .014£.002 .136=£.015 .203+.013 .1324.039 .636+.027 .597+.024

Figure 6: Demand experiment: scatter plot of 10* samples from the training data distribution p(z, t |
s = 4). The dashed line indicates the cross-section used in Figure
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Figure 7: Demand experiment: visualizations of the predictive distributions for N = 1000, on the
same cross-section as in Figure
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Figure 8: Demand experiment: visualizations of the predictive distributions for NV = 1000 on a
out-of-distribution cross-section, obtained by fixing t = 9, s = 6 and varying x.
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