
Rethinking Calibration of Deep Neural Networks:
Do Not Be Afraid of Overconfidence

Deng-Bao Wang,1,2 Lei Feng,3 Min-Ling Zhang1,2∗
1School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
2Key Laboratory of Computer Network and Information Integration (Southeast University),

Ministry of Education, China
3College of Computer Science, Chongqing University, Chongqing, 400044, China

wangdb@seu.edu.cn, lfeng@cqu.edu.cn, zhangml@seu.edu.cn

Abstract
Capturing accurate uncertainty quantification of the predictions from deep neural
networks is important in many real-world decision-making applications. A reliable
predictor is expected to be accurate when it is confident about its predictions and
indicate high uncertainty when it is likely to be inaccurate. However, modern
neural networks have been found to be poorly calibrated, primarily in the direction
of overconfidence. In recent years, there is a surge of research on model calibration
by leveraging implicit or explicit regularization techniques during training, which
achieve well calibration performance by avoiding overconfident outputs. In our
study, we empirically found that despite the predictions obtained from these regular-
ized models are better calibrated, they suffer from not being as calibratable, namely,
it is harder to further calibrate these predictions with post-hoc calibration methods
like temperature scaling and histogram binning. We conduct a series of empirical
studies showing that overconfidence may not hurt final calibration performance
if post-hoc calibration is allowed, rather, the penalty of confident outputs will
compress the room of potential improvement in post-hoc calibration phase. Our
experimental findings point out a new direction to improve calibration of DNNs by
considering main training and post-hoc calibration as a unified framework.

1 Introduction

Modern over-parameterized deep neural networks (DNNs) have been shown to be very powerful
modeling tools for many prediction tasks involving complex input patterns [37]. In addition to
obtaining accurate predictions, it is also important to capture accurate quantification of prediction
uncertainty from deep neural networks in many real-world decision-making applications. A reliable
predictive model should be accurate when it is confident about its predictions and indicate high
uncertainty when it is likely to be inaccurate. However, modern DNNs trained with cross-entropy
(CE) loss, despite being highly accurate, have been recently found to predict poorly calibrated
probabilities, unlike traditional models trained with the same objective [4]. The overconfident
predictions of DNNs could cause undesired consequences in safety-critical applications such as
medical diagnosis and autonomous driving. Bayesian DNNs, which indirectly infer prediction
uncertainty through weight uncertainties, have innate abilities to represent the model uncertainty
[2, 16]. But training and inferring those bayesian models are computationally more expensive and
conceptually more complicated than non-bayesian models, and their performance depends on the
form of approximation made due to computational constraints. Therefore, the study on uncertainty
calibration of deterministic DNNs is important for both development practice and the perspective of
understanding DNNs.

Post-hoc calibration addresses the miscalibration problem by equipping a given neural network with
an additional parameterized calibration component, which can be tuned with a hold-out validation
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dataset. Guo et al. [4] experimented with several classical calibration fixes and found that simple
post-hoc methods like Temperature Scaling (TS) [25] and Histogram Binning (HB) [33] are signif-
icantly effective for DNNs. The authors of [10] and [27] proposed to learn linear and non-linear
transformation functions to rescale the original output logits respectively. Gupta et al. [5] proposed
to obtain a calibration function by approximating the empirical cumulative distribution of output
probabilities via splines. Kumar et al. [11] proposed to integrate TS with HB to achieve more stable
calibration performance. Patel et al. [24] proposed a mutual information maximization-based binning
strategy to solve the severe sample-inefficiency issue in HB.

Recently, there is another line of research which presents a possibility of improving the calibration
quality of deterministic DNNs via regularization during training. Guo et al. [4] found that training
DNNs with strong weight decay, which used to be the predominant regularization mechanism
for training neural networks, has a positive impact on calibration. Müller et al. [19] showed
that training models using the standard CE loss with label smoothing [28], instead of one-hot
labels, has a very favourable effect on model calibration. Mukhoti et al. [18] proposed to improve
uncertainty calibration by replacing the conventionally used CE loss with the focal loss proposed in
[14] when training DNNs. It is important to note that CE loss with label smoothing and focal loss
can be considered as standard CE with an additional maximum-entropy regularizer, which means
minimizing these losses is equivalent to minimizing CE loss and maximizing the entropy of the
predicted distribution simultaneously [18, 17]. Following these studies, a recent work [7] explored
several explicit regularization techniques for improving the predictive uncertainty calibration directly.

In this paper, we conduct an empirical study showing that despite the predictions obtained from
the regularized models are well calibrated, they suffer from worse calibratable, namely, it is harder
to further improve the calibrate performance with post-hoc calibration methods like temperature
scaling and histogram binning. We found that the regularization works by simply aligning the average
confidence of the whole dataset to the accuracy with some specific regularization strengths, and cannot
achieve fine-grained calibration. The comparison results show that when post-hoc calibration methods
are allowed, the standard CE loss yields better calibration performance than those regularization
methods. The extended experiments demonstrate that regularization will make DNNs lose the
important information about the hardness of samples, which results in compressing the room of
potential improvement by post-hoc calibration. Based on the experimental findings, we raise a natural
question: can we design new loss functions in the opposite direction of these regularization methods
to further improve the calibration performance? To this end, we propose inverse focal loss, and
empirically found that it can learn more calibratable models in some cases compared with the CE
loss, though it causes severer overconfidence problem without post-hoc calibration. Most importantly,
our findings show that overconfidence of DNNs is not the nightmare in uncertainty qualification
and point out a new direction to improve the calibration of DNNs by considering main training and
post-hoc calibration as a unified framework.

2 Preliminaries

Let Y = {1, ...,K} denote the label space and X = Rd denote the feature space. Given a sample
(x, y) ∈ X × Y sampled from an unknown distribution, a learned neural network classifier fθ :
X →∆K can produce a probability distribution for x on K classes, where ∆K denotes the K − 1
dimensional unit simplex. Here we assume fθ as a composition of a non-probabilistic K-way
classifier gθ and a softmax function σ, i.e. fθ = gθ ◦ σ. For a query instance x, fθ gives its
probability of assigning it to label i as exp(gθi (x))∑K

k=1 exp(gθk(x))
, where gθi (x) denotes the i-th element of the

logit vector produced by gθ. Then, ŷ := arg maxi f
θ
i (x) can be returned as the predicted label and

p̂ := maxi f
θ
i (x) can be treated as the associated confidence score.

Expected Calibration Error (ECE) For a well-calibrated model, p̂ is expected to represent the true
probability of correctness. Formally, a perfectly calibrated model satisfies P(ŷ = y|p̂ = p) = p for
any p ∈ [0, 1]. In practice, ECE [20] is a commonly used calibration metric from finite samples. It
works by firstly grouping all samples (let n denote the number of samples) into M equally interval
bins {Bm}Mm=1 with respect to their confidence scores, then calculating the expected difference
between the accuracy and average confidence: ECE =

∑M
m=1

|Bm|
n |acc(Bm)− avgConf(Bm)|.

Temperature Scaling By scaling the logits produced by gθ with a temperature T , the sharpness
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of output probabilities can be changed. Formally, after adding TS, the new prediction confidence
can be expressed as: p̂ = maxi

exp(gθi (x)/T )∑K
k=1 exp(gθk(x)/T )

. The temperature softens the output probability
with T > 1 and sharpens the probability with T < 1. As T → 0, the output probability collapses
to one-hot vector. As T → ∞, the output probability approaches to a uniform distribution. After
training of the model, T can be tuned on a hold-out validation set by optimization methods.

Histogram Binning is a non-parametric calibration approach. Given an uncalibrated model, all
the prediction confidences of validation samples can be divided into mutually exclusive N bins
{Bn}Nn=1 according to a set of intervals {In}N+1

n=1 which partitions [0, 1]. Each bin is assigned a
confidence score η, which can be simply set to the corresponding accuracy of samples in each bin. If
the uncalibrated confidence p̂ of a query instance falls into bin Bn, then the calibrated confidence
is ηn. The bins can be chosen by two simple schemes: equal size binning (uniformly partitioning
the probability interval in [0, 1]) and equal mass binning (uniformly distributing samples over bins).
Note that although the HB scheme is simple to implement and was demonstrated to achieve good
calibration results in some datasets, it makes the predictor only produce very sparse confidence
distribution, and compromises the many legitimately confident predictions.

3 Regularization in Neural Networks for Calibration

In recent years, there is a surge of research on model calibration by leveraging implicit or explicit
regularization techniques during training of DNNs, which makes better calibrated predictions by
avoiding the overconfident outputs. In this section, we firstly review three representative regularization
methods and then empirically show their improvements on ECE compared with the baseline.

Label Smoothing is widely used as a means to reduce overfitting of DNNs. The mechanism of LS
is simple: when training with CE loss, the one-hot label vector y is replaced with soft label vector
ỹ, whose elements can be formally denoted as ỹi = (1− ε)yi + ε/K,∀i ∈ {1, ...,K}, where ε > 0
is a strength coefficient. Müller et al. [19] demonstrated that label smoothing implicitly calibrates
DNNs by preventing the networks from becoming overconfident. Let Lce denote the CE loss, then
the following equation holds:

Lce(ỹ,fθ) = (1− ε)Lce(y,fθ) + εLce(u,fθ) (1)

This can be simply proved. Therefore, minimizing CE loss between smoothed labels and the model
outputs is equivalent to adding a confidence penalty term, i.e., a weighted CE loss between the
uniform distribution u and the model outputs, to the original CE loss.

Lp Norm in the Function Space is one of the explicit regularization methods for calibration investi-
gated by the recent work [7]. For a real number p ≥ 1, the Lp Norm of a vector z with dimension
n can be expressed as: ‖z‖p = (

∑n
i=1 |zi|p)1/p. By adding Lp Norm of logits gθ with a weighting

coefficient α into final objective function, i.e. LLp(y,fθ) = Lce(y,fθ) + α
∥∥gθ∥∥

p
, the function

complexity of neural networks can be directly penalized during training.

Focal Loss is originally proposed to address the class imbalance problem in object detection. By
reshaping the standard CE loss through weighting loss components of all samples according to how
well the model fits them, focal loss focuses on fitting hard samples and prevents the easy samples from
overwhelming the training procedure. Formally, for classification tasks where the target distribution
is one-hot encoding, it is defined as: Lf = −(1− fθy )γ log fθy , where γ is a predefined coefficient.
Mukhoti et al. [18] found that the models learned by focal loss produce output probabilities which
are already very well calibrated. Interestingly, they also showed that focal loss is an upper bound of
the regularized KL-divergence, which can be expressed formally as follows:

Lf ≥ KL(y||fθ)− γH(fθ) (2)

where H(p) denotes the entropy of distribution p. This upper bound property shows that replacing
the CE loss with focal loss has the effect of adding a maximum-entropy regularizer.

3.1 Empirical Comparison

We conduct a comparison study of the above regularization methods on four commonly used datasets.
We train ResNet-32 [6] models on SVHN [21], CIFAR-10/100 [9] and train a 8-layer 1D-CNN
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Table 1: Comparison results (mean±std) of ECE (%) with M = 15 and predictive accuracy (%)
over 5 random runs. The values with underline in first row represent the chosen coefficients of each
regularization method on four datasets according to the ECE on test data.

Cross-Entropy Label Smoothing L1 Norm Focal Loss
0.01/0.05/0.09/0.09 0.01/0.05/0.01/0.01 1/3/5/5

SVHN
ECE 3.03±0.16 1.84±0.19 1.85±0.04 1.01±0.21

Accuracy 95.00±0.27 95.21±0.23 95.29±0.13 94.77±0.19

CIFAR-10
ECE 6.43±0.22 2.72±0.32 2.93±0.39 3.00±0.26

Accuracy 90.46±0.23 90.09±0.41 90.06±0.59 87.84±0.17

CIFAR-100
ECE 19.53±0.36 2.27±0.48 8.07±0.44 2.34±0.35

Accuracy 64.64±0.43 63.73±0.67 63.07±0.29 60.36±0.44

20 Newsgroups
ECE 20.82±0.93 5.85±0.64 13.31±0.56 3.82±0.51

Accuracy 72.85±0.89 72.81±0.26 73.61±0.80 59.17±1.81

model on 20Newsgroups [13], using the standard CE loss and the above regularized losses respec-
tively, with state-of-the-art learning policy settings (see implementation details in Appendix). For
Norm regularization, we use L1 Norm, which has been shown effective for calibration despite
its simple form [7]. Table 1 shows the comparison of these methods. Note that for each of the
above three regularization methods, there is a coefficient, i.e., ε, α and γ, controlling the strength
of regularization. We conduct experiments using these methods with the following coefficient set-
tings: {0.01, 0.03, 0.05, 0.07, 0.09} for label smoothing, {0.001, 0.005, 0.01, 0.05, 0.1} for L1 Norm
and {1, 3, 5, 7, 9} for focal loss. And we choose the best coefficient for each method and dataset,
according to their ECE directly on test data.

From the results of Table 1, it is obvious that the regularization methods significantly decrease
the ECE on all datasets, compared with the standard CE loss. The prediction accuracy results are
also reported. When the strength coefficients of L1 Norm and focal loss are large, their predictive
performances are harmed. Especially, L1 Norm fails on CIFAR-100 and 20Newsgroups when
α ≥ 0.05, thus α is chosen from {0.001,0.005,0.01} on these two datasets.

4 Does Regularization Really Help Calibration?

As shown by the above empirical results, the regularization methods do help the calibration of DNNs
during training, especially alleviate the overconfidence issue caused by the standard CE loss. In this
section, we empirically investigate their calibration performance when integrating them with post-hoc
calibration. After training, we use the post-hoc methods TS and HB to further calibrate the output
probabilities. For TS, we simply search the best temperature in the temperature pool {0.01,0.02...,10}
on the validation set (see data splits in Appendix). For HB, we use equal size binning scheme on
the top-1 prediction of all classes with bin number set as 15. The experimental details used in this
section are the same with those in Section 3.

Comparison Results Table 2 shows the comparison results of ECE with the help of TS and HB.
We can see that: (1) The standard CE loss achieves the best calibration performance on most cases.
(2) The searched temperatures of models trained with the CE loss are significantly higher than
those of other losses, which indicates that CE loss causes higher predictive confidences. These
results demonstrate that despite the regularized models can produce better calibrated predictions, it
is harder to further improve them with post-hoc calibration methods after main training. In other
words, the penalty of confident predictions will compress the room of potential improvement by
post-hoc methods. We also conduct experiments on CIFAR-10 and CIFAR-100 using a deeper model
ResNet-110 and similar comparison results are obtained (see Appendix Table A).

Coefficient Sensitivity Figure 1(a), 1(b) and 1(c) illustrate the ECEs of these three regularization
methods with varied coefficient strengths. As we can see, since the complexity of the used datasets are
different, the best coefficients of these methods markedly vary across the datasets, and a small change
on these coefficients may cause large ECE increase. This means that we need to carefully choose the
coefficient of each method when employing them on new datasets, to achieve good calibration. We can
also observe that for SVHN, on which the accuracy is highest among four datasets, the regularization
methods obtain lowest ECE with small coefficients. For CIFAR-100 and 20Newsgroups, on which the

4



Table 2: Comparison results (mean±std) of ECE (%) with M = 15 over 5 random runs. The
coefficients of the regularization methods on each dataset are same with those in Table 1. N/N and
H/H indicate that the average ECE of regularization methods are higher and lower than standard CE,
where N and H are based on two-sample t-test at 0.05 significance level.

Cross-Entropy Label Smoothing L1 Norm Focal Loss
0.01/0.05/0.09/0.09 0.01/0.05/0.01/0.01 1/3/5/5

SVHN

with TS 0.72±0.26H 1.35±0.11N 1.22±0.08N 0.80±0.22N
Temperature 1.82 H 1.11H 1.12H 1.10
with HB 0.68±0.22H 0.70±0.21N 0.73±0.20N 0.96±0.14N

CIFAR-10

with TS 0.95±0.19H 2.54±0.11N 2.71±0.36N 1.39±0.28N
Temperature 2.51 H 0.96H 0.95H 0.76
with HB 0.74±0.15H 0.94±0.21N 1.16±0.54N 1.65±0.31N

CIFAR-100

with TS 1.35±0.19H 1.37±0.27N 3.92±0.21N 2.14±0.42N
Temperature 2.19 H 1.04H 1.24H 0.97
with HB 1.27±0.27H 2.01±0.22N 1.56±0.44N 1.83±0.30N

20 Newsgroups

with TS 3.11±0.33H 5.22±0.60N 2.71±0.25H 3.77±0.41N
Temperature 4.18 H 1.06H 1.48H 0.89
with HB 2.52±0.47H 2.67±0.82N 2.61±0.95N 3.16±0.97N
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Figure 1: (a-c): ECE (%) with M = 15 of regularization methods with controlled regularization
strength. (d): Best coefficients of regularization methods with respect to ECE with controlled training
data size.

accuracy is relatively lower, the regularization methods need larger coefficients for better calibration.
Based on this observation, we conduct another experiment for investigating the correlation between
the regularization coefficients and accuracy. We learn networks on CIFAR-10 by controlling training
data size, which leads to varied predictive accuracies, and choose the best coefficient for each
case. Here, ε, α and γ are chosen from {0.01, 0.02, ..., 0.25}, {0.01, 0.02, ..., 0.1} and {1, 3, 5, 7, 9}
respectively. Figure 2(d) shows that with the increase of training data size, which results in increase
of predictive accuracy, the best coefficients of the regularization methods keep decreasing.

Reliability Diagram We use reliability diagram to visually represent the gap between predictive
confidence and accuracy of each method. Due to the space limitation, here we only present the
diagrams of CIFAR-10, and the rest figures are presented in Appendix. We can see that these visual
results are similar with the comparison results of ECE reported in Table 2. Although the gap between
confidence and accuracy is large when using the standard CE loss, it can be significantly diminished
after using TS. However, the improvements of TS for the regularization methods are not obvious.
Most importantly, no matter whether TS is used or not, the regularization methods suffer from
overconfidence on samples which have high predictive uncertainty, especially on label smoothing and
L1 Norm, which contradicts the traditional view. Combining with the observation in Figure 2(d), it is
indicated that the regularization methods work by simply aligning the average predictive confidence
of the whole dataset to the accuracy with some specific regularization strengths, and does not produce
fine-grained calibration with respect to the difference of samples.

Impact of Validation Size We also wonder how does the validation data size impact the post-hoc
calibration. Figure 3 shows the ECE results with controlled validation data size. We can see that
quite low ECE can be obtained with only a small size of validation data when using TS, which offers
high efficiency for practice development. Relatively, HB needs more validation samples to obtain
better calibration performance. Nevertheless, the standard CE loss stably achieves better calibration
across varied validation data size with both TS and HB.
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Figure 2: Reliability diagrams of each methods (after TS calibration) on CIFAR-10. The results are
chosen from one of the 5 random runs of Table 1. Darker color of bars indicates that more samples
are assigned with the corresponding confidence intervals.
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Figure 3: ECE (%) (after post-hoc calibration) with of regularization methods with controlled
validation data size.

5 From Calibrated to Calibratable: A Closer Look

The results reported in above section show the degradation of regularization methods when integrating
them with post-hoc calibration methods, which indicates that though regularization helps DNNs
obtain well-calibrated predictions, it makes these predictions worse calibratable. In this Section, we
further investigate this phenomenon by a series of illustrative experiments. We firstly attempt to
empirically understand the reason of the calibration degradation from the view of information loss.
Then, we propose an inverse form of focal loss to give a closer look at the correlation between the
loss functions used in training and the calibration performance. The implementation details used in
this section are also the same with those in Section 3.

5.1 Information Loss of Regularized Models

ECE among Epochs We start by investigating the ECEs of temperature-scaled outputs over epochs
during model training. To avoid the impact of the bias of validation data, we directly search the
best temperature on test data in each training epoch. We denote the corresponding ECE with this
searched temperature as optimal ECE, which is the lower bound of ECE with temperatures searched
on validation data. Figure 4 shows the curves of optimal ECE during epochs using label smoothing
with different smoothing coefficients. We can observe that the optimal ECE rises after some learning
epochs: On SVHN and CIFAR-10, it starts to significantly rise around the 10th epoch, and on
CIFAR-100 and 20Newsgroups, it tends to rise after 100 and 50 epochs, where the learning rate drops
by a factor of 10. Another observation is that larger smoothing strength ε results in worse calibration
performance and more remarkable (also earlier) ECE rising. According to the memorization effect
[35], DNNs usually learn easy samples at the early stage of training and tend to fit the hard ones later.
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Figure 4: Curves of optimal ECE (%) during learning epochs using label smoothing with different
coefficients. Dark colors show the mean results of 5 random runs and light colors show the ranges
between minimal and maximum results of 5 runs.
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Figure 5: Histograms of maximum logits produced from models trained with different methods.
Different colors of bars represent distributions of samples with different learned epochs. The first row
and second row are results of CIFAR-10 and CIFAR-100 respectively.

Therefore, a simple conjecture for the ECE rising is that after some learning epochs, DNNs start to
fit hard samples, at the same time the regularizer would penalize the confidences of easy samples,
which makes the predictive confidences of those easy and hard samples difficult to be distinguished.
Similar phenomenon is also observed when using L1 Norm (see Appendix Figure A(a-d)) except
20Newsgroups dataset, on which large norm coefficient will hurt the calibration. For focal loss (see
Appendix Figure A(e-h)), the optimal ECEs trained with large regularization strengths keep high
without the remarkable rising.

Histogram of Logits We use histograms to visualize what the patterns of model outputs learned
with different methods look like. Before that, we define learned epoch 2 of an individual training
sample as the epoch, since which the sample can be correctly classified till the final learning epoch.
As we mentioned above, DNNs usually learn hard samples after easy ones, hence the learned epoch
of a sample can be used to indicate its corresponding hardness degree to be learned. Based on this,
we want to investigate if the samples with different hardness degrees can be distinguished by model
itself after training. To this end, we record the learned epochs of all training samples of CIFAR-10
and CIFAR-100 during training and statistic the distributions of their maximum logit outputs (i.e.
maxi g

θ
i (x)). As shown in Figure 5, the logits of models trained with the standard CE loss cover much

larger ranges, and the regularization methods compress the distributions too tight without distinction
between samples with different learned epochs, especially in label smoothing and L1 Norm. This
visual observation further confirms that the regularization of DNNs works by only penalizing the
confidence of the whole dataset to a low level with a specific regularization strength. This will result
in loss of the important information about the hardness of samples as an undesirable side effects, and
compress the room of potential improvement by post-hoc calibration. On the contrary, models trained

2This concept is inspired by the related work [30], in which the authors qualify a sample as unforgettable if
it is learned at some epoch and experience no forgetting events during training.
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Figure 6: (a): Visual representation of focal loss, CE loss and inverse focal loss. (b): Predictive
accuracies (%) of different methods. (c): ECEs (%) with M = 15 of different methods without
post-hoc calibration. (d): Searched temperatures on validation data. (e-f): ECEs (%) with M = 15 of
different methods with the help of post-hoc calibration.

with the standard CE loss manage to preserve this information to a certain extent during training,
hence achieve better results after post-hoc calibration.

5.2 Is Cross-Entropy the Best for Calibration?

Based on our experimental findings, one natural question is that can we design some loss functions
in the opposite direction of these regularization methods to further improve the calibration? For
label smoothing and Lp Norm, we can simply set the regularization coefficients of these methods as
negative values. However, we empirically found this will cause extremely low predictive accuracies
even failures of training using only very small weighting coefficients. Fortunately, we can design an
inverse version of focal loss without prediction degradation by mimicking the original focal loss3.
Recall the form of focal loss, we see that it works by assigning larger weights to the samples with
smaller confidences. This makes the optimizer pay more attention to those hard samples when
updating model parameters. Actually, this weighting scheme also implicitly exists in the standard CE
loss, and this can be expressed by the gradients of CE loss function w.r.t. model parameters θ:

∂Lce(y,fθ(x))

∂θ
= − 1

fθy (x)
∇θfθy (x) (3)

where the factor term 1
fθy (x)

indicates that samples with smaller confidences are weighted larger in
gradient calculation. Opposite to the principle of focal loss, we propose inverse focal loss as follows:

Lf̄ = −(1 + fθy )γ̄ log fθy (4)

By a simple modification on the weighting term of original focal loss, the inverse focal loss assigns
larger weights to the samples with larger output confidences. Similar with original focal loss, the
choice of coefficient γ̄ has a huge impact on the property of this loss. In Figure 6(a), we plot the
curves of inverse focal loss with varied γ̄ and also plot the standard CE loss and focal loss for
comparison. We can see that different from the original focal loss, the curves of inverse focal loss are
steeper when confidence is large, and larger γ̄ gives steeper curves.

We conduct another experiment to evaluate the inverse focal loss, and also investigate what will
happen when we increase its coefficient γ̄. Figure 6(c) shows the ECE results without post-hoc
calibration. The ECEs of inverse focal loss are larger than CE and focal loss in most cases. This is
consistent to our expectation since inverse focal loss aggravates the overconfidence issue of DNNs by
weighting larger on the easy samples. Figure 6(e) and 6(f) show the ECE results with the help of

3As the reviewer suggested, there already exists an "inverse focal loss" in the literature, which was introduced
in a totally different context and using a different mathematical expression, but similar motivation [15].
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post-hoc calibration. When using HB, the ECEs of inverse focal loss are worse than CE on SVHN
and CIFAR-10, while better than CE on CIFAR-100. Generally speaking, there is no clear trend when
we increase γ̄. More interesting results appear when using TS: (1) On CIFAR-10 and CIFAR-100,
the ECE results of inverse focal loss are better than that of the standard CE loss; and (2) there is
a descend-then-ascend trend from focal loss with γ = 3 to inverse focal loss with γ̄ = 3. From
these observations, we may say that the best loss function for calibration is varied across different
tasks according to the characteristics of datasets. On SVHN, which is a relatively easy dataset,
standard CE loss yields pretty good results; on CIFAR-10 and CIFAR-100, which is more complex
and difficult, the best results are obtained using inverse focal loss; on 20Newsgroups, which has
fewest training samples among four datasets, the best result is obtained when using focal loss with
γ = 1. The searched temperatures when using TS are presented in Figure 6(d). The increasing of
best temperatures indicates that the overconfidence problem is severer when using inverse focal loss
with larger γ̄. The predictive accuracies are presented in Figure 6(a). As is shown that inverse focal
loss yields highly competitive results compared with the standard CE loss on SVHN, CIFAR-10 and
CIFAR-100. On 20Newsgroups, when using large γ̄, the predictive performance of inverse focal loss
is worse than the CE loss.

6 Related Work

In machine learning, calibration has long been studied [25, 33, 34, 22], and many classical methods,
like Platt Scaling [25] and Histogram Binning [33], have been proposed in the literature. In recent
years, deep neural networks trained with commonly used CE loss, have been empirically found
to predict poorly calibrated probabilities. The early researches for this problem focus on bayesian
models [2, 16, 3, 1], which indirectly infer prediction uncertainty through weight uncertainties. But
training and inferring the bayesian DNNs are computationally more expensive and conceptually
more complicated than deterministic DNNs. Therefore, the uncertainty qualification of the non-
bayesian models has always been an important topic, which also attracts a lot of researchers from the
perspective of understanding DNNs.

Guo et al. [4] systematically investigated the miscalibration problem of the deterministic DNNs
and empirically compared several conventional post-hoc calibration fixes. Two key findings are
suggested in their paper: (1) Increasing model capacity and regularization strength negatively affect
the calibration. (2) Simple post-hoc methods like TS [25] and HB [33] can reduce the calibration
error to a quite low level. Following their work, there is a surge of research that proposed new
post-hoc calibration methods [10, 27, 5, 11, 24, 36, 26]. Different from post-hoc calibration methods,
another line of research aims to learn calibrated networks during training by modifying the training
process [29, 12, 8]. Thulasidasan et al. [29] found that DNNs trained with mixup are significantly
better calibrated than DNNs trained in the regular fashion. Kumar et al. [12] proposed a RKHS
kernel based measure of calibration that is efficiently trainable alongside the standard CE loss, which
can minimize an explicit calibration error during training. Krishnan and Tichoo [8] introduced a
differentiable accuracy versus uncertainty calibration loss function that allows a model to learn to
provide well-calibrated uncertainties, in addition to improved accuracy. Recently, inspired by the
findings in [4], several studies were proposed to leverage the regularization of DNNs to improve
calibration performance during training [19, 18, 7]. As we described in Section 3, these implicit or
explicit regularization techniques can improve calibration by penalizing the predictive confidences of
DNNs. It is worth nothing that besides the studies on improving calibration performance, there are
also several studies that focus on the measure of calibration performance [23, 31, 32, 5].

7 Conclusion

In this work, we investigate the uncertainty calibration problem of DNNs by a series of experiments.
The empirical study shows that despite the predictions obtained from the regularized models are
better calibrated, worse results would be obtained if we employ post-hoc calibration methods on
these regularized models. Extended experiments demonstrate that the regularized DNNs will lose
the important information about the hardness of samples, which results in the harm of post-hoc
calibration. Based on the experimental observations, we design a new loss function in the opposite
direction of previous regularization methods, and empirically show the superiority of this loss in
calibration with the help of post-hoc methods, even though it causes severer overconfidence issue in
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the main training phase. Our findings suggest that overconfidence of DNNs is not the nightmare in
model calibration and point out a new direction to improve the calibration performance of DNNs by
considering main training and post-hoc calibration as a unified framework. Moreover, the study of
the phenomena of deep learning uncertainty under distribution shift is very interesting as one of the
future work, since the behaviour with distribution shifts might be most important in practice.
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