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Abstract

Feature-based dynamic pricing is an increasingly popular model of setting prices
for highly differentiated products with applications in digital marketing, online
sales, real estate and so on. The problem was formally studied as an online learning
problem [Javanmard and Nazerzadeh, 2019] where a seller needs to propose prices
on the fly for a sequence of T products based on their features x while having a
small regret relative to the best —“omniscient”— pricing strategy she could have
come up with in hindsight. We revisit this problem and provide two algorithms
(EMLP and ONSP) for stochastic and adversarial feature settings, respectively,
and prove the optimal O(d log T ) regret bounds for both. In comparison, the best
existing results are O

(
min

{
1

λ2
min

log T,
√
T
})

and O(T 2/3) respectively, with

λmin being the smallest eigenvalue of E[xxT ] that could be arbitrarily close to 0.
We also prove an Ω(

√
T ) information-theoretic lower bound for a slightly more

general setting, which demonstrates that “knowing-the-demand-curve” leads to an
exponential improvement in feature-based dynamic pricing.

1 Introduction
The problem of pricing — to find a high-and-acceptable price — has been studied since Cournot
[1897]. In order to locate the optimal price that maximizes the revenue, a firm may adjust their prices
of products frequently, which inspires the dynamic pricing problem. Existing works [Kleinberg and
Leighton, 2003, Broder and Rusmevichientong, 2012, Chen and Farias, 2013, Besbes and Zeevi,
2015] primarily focus on pricing a single product, which usually will not work well in another setting
when thousands of new products are being listed every day with no prior experience in selling them.
Therefore, we seek methods that approach an acceptable-and-profitable price with only observations
on this single product and some historical selling records of other products.

In this work, we consider a “feature-based dynamic pricing” problem, which was studied by Amin
et al. [2014], Cohen et al. [2020], Javanmard and Nazerzadeh [2019]. In this problem setting, a sales
session (product, customer and other environmental variables) is described by a feature vector, and
the customer’s expected valuation is modeled as a linear function of this feature vector.

Feature-based dynamic pricing. For t = 1, 2, ..., T :
1. A feature vector xt ∈ Rd is revealed that describes a sales session (product, customer and context).
2. The customer valuates the product as wt = x⊤

t θ
∗ +Nt.

3. The seller proposes a price vt > 0 concurrently (according to xt and historical sales records).
4. The transaction is successful if vt ≤ wt, i.e., the seller gets a reward (payment) of rt = vt · 1(vt ≤ wt).

Here T is unknown to the seller (and thus can go to infinity), xt’s can be either stochastic (e.g.,
each sales session is drawn i.i.d.) or adversarial (e.g., the sessions arrive in a strategic sequence),
θ∗ ∈ Rd is a fixed parameter for all time periods, Nt is a zero-mean noise, and 1t = 1(vt ≤ wt) is
an indicator that equals 1 if vt ≤ wt and 0 otherwise. In this online-fashioned setting, we only see
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Table 1: Related Works and Regret Bounds w.r.t. T

Algorithm Work Regret (upper) bound Feature Noise
LEAP [Amin et al., 2014] Õ(T

2
3 ) i.i.d. Noise-free

EllipsoidPricing [Cohen et al., 2020] O(log T ) adversarial Noise-free
EllipsoidEXP4 [Cohen et al., 2020] Õ(T

2
3 ) adversarial Sub-Gaussian

PricingSearch [Leme and Schneider, 2018] O(log log(T )) adversarial Noise-free

RMLP [Javanmard and Nazerzadeh, 2019] O(log T/C2
min)

†
i.i.d. Log-concave, distribution-known

O(
√
T )

RMLP-2 [Javanmard and Nazerzadeh, 2019] O(
√
T ) i.i.d. Known parametric family of log-concave.

ShallowPricing [Cohen et al., 2020]
O(poly(log T )) adversarial Sub-Gaussian, known σ = O( 1

T log T )CorPV [Krishnamurthy et al., 2021]
Algorithm 2 (MSPP) [Liu et al., 2021] O(log log(T )) adversarial Noise-free

EMLP This paper O(log T ) i.i.d. Strictly log-concave, distribution-known
ONSP This paper O(log T ) adversarial Strictly log-concave, distribution-known

† Cmin is the restricted eigenvalue condition. It reduces to the smallest eigenvalue of E[xx⊤] in the
low-dimensional case we consider.

and sell one product at each time. Also, the feedback is Boolean Censored, which means we can
only observe 1t instead of knowing wt directly. The best pricing policy for this problem is the one
that maximizes the expected reward, and the regret of a pricing policy is accordingly defined as the
difference of expected rewards between this selected policy and the best policy.

Summary of Results. Our contributions are threefold.

1. When xt’s are independently and identically distributed (i.i.d.) from an unknown distribution,
we propose an “Epoch-based Max-Likelihood Pricing (EMLP)” algorithm that guarantees a
regret bound at O(d log T ). The design of EMLP is similar to that of the RMLP algorithm
in Javanmard and Nazerzadeh [2019], but our new analysis improves their regret bound at
O(

√
T ) when E[xx⊤] is near singular.

2. When xt’s are adversarial, we propose an “Online-Newton-Step Pricing (ONSP)” algorithm
that achieves O(d log T ) regret on constant-level noises for the first time, which exponentially
improves the best existing result of O(T 2/3) [Cohen et al., 2020].1

3. Our methods that achieve logarithmic regret require knowing the exact distribution of Nt in
advance, as is also assumed in Javanmard and Nazerzadeh [2019]. We prove an Ω(

√
T ) lower

bound on the regret if Nt ∼ N (0, σ2) where σ is unknown, even with θ∗ given and xt fixed
for all t.

The O(log T ) regret of EMLP and ONSP meets the information-theoretical lower bound [Theorem
5, Javanmard and Nazerzadeh, 2019]. In fact, the bound is optimal even when wt is revealed to the
learner [Mourtada, 2019]. From the perspective of characterizing the hardness of dynamic pricing
problems, we generalize the classical results on “The Value of Knowing a Demand Curve” [Kleinberg
and Leighton, 2003] by further dividing the random-valuation class with an exponential separation
of: (1) O(log T ) regret for knowing the demand curve exactly (even with adversarial features),
and (2) Ω(

√
T ) regret for almost knowing the demand curves (up to a one-parameter parametric

family).

2 Related Works
In this section, we discuss our results relative to existing works on feature-based dynamic pricing, and
highlight the connections and differences to the related settings of contextual bandits and contextual
search (for a broader discussion, see Appendix A).

Feature-based Dynamic Pricing. There is a growing body of work on dynamic pricing with linear
features [Amin et al., 2014, Qiang and Bayati, 2016, Cohen et al., 2020, Javanmard and Nazerzadeh,
2019]. Table 1 summarizes the differences in the settings and results2. Among these work, our paper
directly builds upon [Cohen et al., 2020] and [Javanmard and Nazerzadeh, 2019], as we share the
same setting of online feature vectors, linear and noisy valuations and Boolean-censored feedback.
Relative to the results in [Javanmard and Nazerzadeh, 2019], we obtain O(d log T ) regret under
weaker assumptions on the sequence of input features — in both distribution-free stochastic feature

1Previous works [Cohen et al., 2020, Krishnamurthy et al., 2021] did achieve polylog regrets, but only for
negligible noise with σ = O( 1

T log T
).

2We only concern the dependence on T since there are various different assumptions on d.
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setting and the adversarial feature setting. It is to be noted that [Javanmard and Nazerzadeh, 2019]
also covers the sparse high-dimensional setting, and handles a slightly broader class of demand
curves. Relative to [Cohen et al., 2020], in which the adversarial feature-based dynamic pricing was
first studied, our algorithm ONSP enjoys the optimal O(d log T ) regret when the noise-level is a
constant. In comparison, Cohen et al. [2020] reduces the problem to contextual bandits and applies
the (computationally inefficient) “EXP-4” algorithm [Auer et al., 2002] to achieve a Õ(T 2/3) regret.
The “bisection” style-algorithm in both Cohen et al. [2020] and Krishnamurthy et al. [2021] could
achieve Õ(poly(d)poly log(T )) regrets but requires a small-variance subgaussian noise satisfying
σ = O( 1

T log T ).

Lower Bounds. Most existing works focus on the lower regret bounds of non-feature-based models.
Kleinberg and Leighton [2003] divides the problem setting as fixed, random, and adversarial valua-
tions, and then proves each a Θ(log log T ), Θ(

√
T ), and Θ(T 2/3) regret, respectively. Broder and

Rusmevichientong [2012] further proves a Θ(
√
T ) regret in general parametric valuation models. In

this work, we generalize the methods of Broder and Rusmevichientong [2012] to our feature-based
setting and further narrow it down to a linear-feature Gaussian-noisy model. As a complement to
Kleinberg and Leighton [2003], we further separate the exponential regret gap between: (1) O(log T )

of the hardest (adversarial feature) totally-parametric model, and (2) Ω(
√
T ) of the simplest (fixed

known expectation) unknown-σ Gaussian model.

Contextual Bandits. For readers familiar with the online learning literature, our problem can be
reduced to a contextual bandits problem [Langford and Zhang, 2007, Agarwal et al., 2014] by
discretizing the prices. But this reduction only results in O(T 2/3) regret, as it does not capture the
special structure of the feedback: an accepted price indicates the acceptance of all lower prices, and
vise versa. Moreover, when comparing to linear bandits [Chu et al., 2011], it is the valuation instead
of the expected reward that we assume to be linear.

Contextual Search. Feature-based dynamic pricing is also related to the contextual search problem
[Lobel et al., 2018, Leme and Schneider, 2018, Liu et al., 2021, Krishnamurthy et al., 2021],
which often involves learning from Boolean feedbacks, sometimes with a “pricing loss” and “noisy”
feedback. These shared jargons make this problem appearing very similar to our problem. However,
except for the noiseless cases [Lobel et al., 2018, Leme and Schneider, 2018], contextual search
algorithms, even with “pricing losses” and “Noisy Boolean feedback” [e.g., Liu et al., 2021], do not
imply meaningful regret bounds in our problem setup due to several subtle but important differences
in the problem settings. Specifically, the noisy-boolean feedback model of [Liu et al., 2021] is
about randomly toggling the “purchase decision” determined by the noiseless valuation x⊤θ∗ with
probability 0.5 − ϵ. This is incompatible to our problem setting where the purchasing decision is
determined by a noisy valuation x⊤θ∗ + Noise. Ultimately, in the setting of [Liu et al., 2021], the
optimal policy alway plays x⊤θ∗, but our problem is harder in that we need to exploit the noise and
the optimal price could be very different from x⊤θ∗. 3 Krishnamurthy et al. [2021] also discussed
this issue explicitly and considered the more natural noisy Boolean feedback model studied in this
paper. Their result, similar to Cohen et al. [2020], only achieves a logarithmic regret when the noise
on the valuation is vanishing in an Õ(1/T ) rate.

3 Problem Setup
Symbols and Notations. Now we introduce the mathematical symbols and notations involved in the
following pages. The game consists of T rounds. xt ∈ Rd, vt ∈ R+ and Nt ∈ R denote the feature
vector, the proposed price and the noise respectively at round t = 1, 2, ..., T .4 We denote the product
ut := x⊤

t θ
∗ as an expected valuation. At each round, we receive a payoff (reward) rt = vt · 1t,

where the binary variable 1t indicates whether the price is accepted or not, i.e., 1t = 1(vt ≤ wt). As
we may estimate θ∗ in our algorithms, we denote θ̂t as an estimator of θ∗, which we will formally
define in the algorithms. Furthermore, we denote some functions that are related to noise distribution:
F (ω) and f(ω) denote the cumulative distribution function (CDF) and probability density function
(PDF) sequentially. We know that F ′(ω) = f(ω) if we assume differentiability. To concisely
denote all data observed up to round τ (i.e., feature, price and payoff of all past rounds), we define

3As an explicit example, suppose the valuation x⊤θ∗ = 0, then the optimal price must be > 0 in order to
avoid zero return.

4In an epoch-design situation, a subscript (k, t) indicates round t of epoch k.
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hist(τ) = {(xt, vt,1t) for t = 1, 2, ..., τ}. hist(τ) represents the transcript of all observed random
variables before round (τ + 1).

We define
lt(θ) := −1t · log

(
1− F (vt − x⊤

t θ)
)
− (1− 1t) log

(
F (vt − x⊤

t θ)
)

(1)
as a negative log-likelihood function at round t. Also, we define an expected log-likelihood function
Lt(θ):

Lt(θ) := ENt [lt(θ)|xt] (2)
Notice that we will later define an L̂k(θ) which is, however, not an expectation.

Definitions of Key Quantities. We firstly define an expected reward function g(v, u).

g(v, u) := E[rt|vt = v, x⊤
t θ

∗ = u] = v · P [v ≤ x⊤
t θ

∗ +Nt] = v · (1− F (v − u)). (3)
This indicates that if the expected valuation is u and the proposed price is v, then the (conditionally)
expected reward is g(v, u). Now we formally define the regret of a policy (algorithm) A as is
promised in Section 1.

Definition 1 (Regret). Let A : Rd ×
(
Rd,R, {0, 1}

)t−1 → R be a policy of pricing, i.e.
A(xt, hist(t− 1)) = vt. The regret of A is defined as follows.

RegA =

T∑
t=1

max
v

g(v, x⊤
t θ

∗)− g(A(xt, hist(t− 1)), x⊤
t θ

∗). (4)

Here hist(t− 1) is the historical records until (t− 1)th round.

Summary of Assumptions. We specify the problem settings by proposing three assumptions.

Assumption 1 (Known, bounded, strictly log-concave distribution). The noise Nt is independently
and identically sampled from a distribution whose CDF is F . Assume that F ∈ C2 is strictly
increasing and that F and (1− F ) are strictly log-concave. Also assume that f and f ′ are bounded,
and denote Bf := supω∈R f(ω), Bf ′ := supω∈R |f ′(ω)| as two constants.

Assumption 2 (Bounded convex parameter space). The true parameter θ∗ ∈ H, where H ⊆ {θ :
||θ||2 ≤ B1} is a bounded convex set and B1 is a constant. Assume H is known to us (but θ∗ is not).

Assumption 3 (Bounded feature space). Assume xt ∈ D ⊆ {x : ||x||2 ≤ B2}, ∀t = 1, 2, . . . , T .
Also, 0 ≤ x⊤θ ≤ B, ∀x ∈ D,∀θ ∈ H, where B = B1 ·B2 is a constant.

Assumption 2 and 3 are mild as we can choose B1 and B2 large enough. In Section 4.1, we may
add further complement to Assumption 3 to form a stochastic setting. Assumption 1 is stronger
since we might not know the exact CDF in practice, but it is still acceptable from an information-
theoretic perspective. There are at least three reasons that lead to this assumption: Primarily, this is
necessary if we hope to achieve an O(log(T )) regret. We will prove in Section 5.3 that an Ω(

√
T ) is

unavoidable if we cannot know one parameter exactly. Moreover, the pioneering work of Javanmard
and Nazerzadeh [2019] also assumes a known noise distribution with log-concave CDF, and many
common distributions are actually strictly log-concave, such as Gaussian and logistic.5 Besides,
although we did not present a method to precisely estimate σ in this work, it is a reasonable algorithm
to replace with a plug-in estimator estimated using historical offline data. As we have shown, not
knowing σ requires O(

√
T ) regret in general, but the lower bound does not rule out the plug-in

approach achieving a smaller regret for interesting subclasses of problems in practice.

Finally, we state a lemma and define an argmax function helpful for our algorithm design.

Lemma 2 (Uniqueness). For any u ≥ 0, there exists a unique v∗ ≥ 0 such that g(v∗, u) =
maxv∈R g(v, u). Thus, we can define a greedily pricing function that maximizes the expected reward:

J(u) := argmax
v

g(v, u) (5)

Please see the proof of Lemma 2 in Appendix B.1.

4 Algorithms
In this section, we propose two dynamic pricing algorithms: EMLP and ONSP, for stochastic and
adversarial features respectively.

5In fact, F and (1− F ) are both log-concave if its PDF is log-concave, according to Prekopa’s Inequality.
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Algorithm 1 Epoch-based max-likelihood pric-
ing (EMLP)

Input: Convex and bounded set H
Observe x1, randomly choose v1 and get r1.
Solve θ̂1 = argminθ∈H l1(θ);
for k = 1 to ⌊log2 T ⌋+ 1 do

Set τk = 2k−1;
for t = 1 to τk do

Observe xk,t;
Set price vk,t = J(x⊤

k,tθ̂k);
Receive rk,t = vkt · 1t;

end for
Solve: θ̂k+1 = argminθ∈H L̂k(θ), where
L̂k(θ) =

1
τk

∑τk
t=1 lk,t(θ).

end for

Algorithm 2 Online Newton Step Pricing
(ONSP)

Input: Convex and bounded set H, θ1, param-
eter γ, ϵ > 0
Set A0 = ϵ · Id;
for t = 1 to T do

Observe xt;
Set price vt = J(x⊤

t θt);
Receive rt = vt · 1t;
Set surrogate loss function lt(θ);
Calculate ∇t = ∇lt(θ);
Rank-1 update: At = At−1 +∇t∇⊤

t ;
Newton step: θ̂t+1 = θt − 1

γA
−1
t ∇t;

Projection: θt+1 =
∏At

H (θ̂t+1).
end for

4.1 Pricing with Distribution-Free Stochastic Features
Assumption 4 (Stochastic features). Assume xt ∼ D ⊆ D are independently identically distributed
(i.i.d.) from an unknown distribution, for any t = 1, 2, . . . , T .

The first algorithm, Epoch-based Max-Likelihood Pricing (EMLP) algorithm, is suitable for a
stochastic setting defined by Assumption 4. EMLP proceeds in epochs with each stage doubling the
length of the previous epoch. At the end of each epoch, we consolidate the observed data and solve
a maximum likelihood estimation problem to learn θ. A max likelihood estimator (MLE) obtained
by minimizing L̂k(θ) :=

1
τk

∑τk
t=1 lk,t(θ), which is then used in the next epoch as if it is the true

parameter vector. In the equation, k, τk denotes the index and length of epoch k. The estimator is
computed using data in hist(k), which denotes the transcript for epoch 1 ∼ k. The pseudo-code of
EMLP is summarized in Algorithm 1. In the remainder of this section, we discuss the computational
efficiency and prove the upper regret bound of O(d log T ).

Computational Efficiency. The calculations in EMLP are straightforward except for argmin L̂k(θ)
and J(u). As g(v, u) is proved unimodal in Lemma 2, we may efficiently calculate J(u) by binary
search. We will prove that lk,t is exp-concave (and thus also convex). Therefore, we may apply any
off-the-shelf tools for solving convex optimization.

MLE and Probit Regression. A closer inspection reveals that this log-likelihood function corre-
sponds to a probit [Aldrich et al., 1984] or a logit model [Wright, 1995] for Gaussian or logistic
noises. See Appendix C.2.1.

Affine Invariance. Both optimization problems involved depend only on x⊤θ, so if we add any affine
transformation to x into x̃ = Ax, the agent can instead learn a new parameter of θ̃∗ = (A⊤)−1θ∗

and achieve the same ut = x⊤
t θ

∗. Also, the regret bound is not affected as the upper bound B over
x⊤θ does not change 6. Therefore, it is only natural that the regret bound does not depend on the
distribution x, nor the condition numbers of E[xx⊤] (i.e., the ratio of λmax/λmin).

4.2 Pricing with Adversarial Features
In this part, we propose an “Online Newton Step Pricing (ONSP)” algorithm that deals with adversarial
{xt} series and guarantees O(d log T ) regret. The pseudo-code of ONSP is shown as Algorithm
2. In each round, it uses the likelihood function as a surrogate loss and applies “Online Newton
Step”(ONS) method to update θ̂. In the next round, it adopts the updated θ̂ and sets a price greedily. In
the remainder of this section, we discuss some properties of ONSP and prove the regret bound.

The calculations of ONSP are straightforward. The time complexity of calculating the matrix inverse
A−1

t is O(d3), which is fair as d is small. In high-dimensional cases, we may use Woodbury matrix
identity7 to reduce it to O(d2) as we could get A−1 directly from the latest round.

6Here A is assumed invertible, otherwise the mapping from x̃t to ut does not necessarily exist.
7(A+ xx⊤)−1 = A−1 − 1

1+x⊤A−1x
A−1x(A−1x)⊤.
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5 Regret Analysis
In this section, we mainly prove the logarithmic regret bounds of EMLP and ONSP corresponding to
stochastic and adversarial settings, respectively. Besides, we also prove an Ω(

√
T ) regret bound on

fully parametric F with one parameter unknown.

5.1 O(d log T ) Regret of EMLP
In this part, we present the regret analysis of Algorithm 1. First of all, we propose the following
theorem as our main result on EMLP.

Theorem 3 (Overall regret). With Assumptions 1, 2, 3 and 4, the expected regret of EMLP can be
bounded by:

E[RegEMLP] ≤ 2Csdlog T , (6)

where Cs is a constant that depends only on F (ω) and is independent to D.

The proof of Theorem 3 is sophisticated. For the sake of clarity, we next present an inequality system
as a roadmap toward the proof. After this, we formally illustrate each line of it with lemmas.

Since EMLP proposes J(x⊤
k,tθ̂k) in every round of epoch k, we may denote the per-round regret as

Regt(θ̂k), where:
Regt(θ) := g(J(x⊤

t θ
∗), x⊤

t θ
∗)− g(J(x⊤

t θ), x
⊤
t θ

∗). (7)

Therefore, it is sufficient to prove the following Theorem:

Theorem 4 (Expected per-round regret). For the per-round regret defined in Equation (7), we have:

E[Regk,t(θ̂k)] ≤ Cs ·
d

τk
.

The proof roadmap of Theorem 4 can be written as the following inequality system.

E[Regk,t(θ̂k)] ≤ C ·E[(θ̂k−θ∗)⊤xk,tx
⊤
k,t(θ̂k−θ∗)] ≤ 2C

Cdown
E[L̂k(θ̂k)− L̂k(θ

∗)] ≤
2C · Cexp

C2
down

d

τk
.

(8)

We explain Equation (8) in details. The first inequality comes from the following Lemma 5.

Lemma 5 (Quadratic regret bound). We have:

Regt(θ) ≤ C · (θ − θ∗)⊤xtx
⊤
t (θ − θ∗),∀θ ∈ H,∀xt ∈ D. (9)

Here C = 2Bf + (B + J(0)) ·Bf ′ .

The intuition is that function g(J(u), u) is 2nd-order-smooth at (J(u∗), u∗). A detailed proof of
Lemma 5 is in Appendix B.2.1. Note that C is highly dependent on the distribution F . After this, we
propose Lemma 6 that contributes to the second inequality of Equation (8).

Lemma 6 (Quadratic likelihood bound). For the expected likelihood function Lt(θ) defined in
Equation (2), we have:

Lt(θ)− Lt(θ
∗) ≥ 1

2
Cdown(θ − θ∗)⊤xtx

⊤
t (θ − θ∗),∀θ ∈ H,∀x ∈ D, (10)

where Cdown := inf
ω∈[−B,B+J(0)]

min

{
d2 log(1− F (ω))

dω2
,

d2 log(F (ω))

dω2

}
> 0. (11)

Proof. Since the true parameter always maximizes the expected likelihood function [Murphy, 2012],
by Taylor Expansion we have ∇L(θ∗) = 0, and hence Lt(θ)−Lt(θ

∗) = 1
2 (θ−θ∗)⊤∇2Lt(θ̃)(θ−θ∗)

for some θ̃ = αθ∗ + (1− α)θ. Therefore, we only need to prove the following lemma:

6



Lemma 7 (Strong convexity and Exponential Concavity). Suppose lt(θ) is the negative log-likelihood
function in epoch k at time t. For any θ ∈ H, xt ∼ D, we have:

∇2lt(θ) ⪰ Cdownxtx
⊤
t ⪰ Cdown

Cexp
∇lt(θ)∇lt(θ)

⊤ ⪰ 0, (12)

where Cexp := sup
ω∈[−B,B+J(0)]

max

{
f(ω)2

F (ω)2
,

f(ω)2

(1− F (ω))2

}
< +∞. (13)

Proof of Lemma 7 is in Appendix B.2.2. With this lemma, we see that Lemma 6 holds.

With Lemma 5 and Lemma 6, we can immediately get the following Lemma 8.

Lemma 8 (Surrogate Regret). The relationship between Reg(θ) and likelihood function can be
shown as follows:

Regt(θ) ≤
2 · C
Cdown

(Lt(θ)− Lt(θ
∗)) , (14)

∀θ ∈ H,∀x ∈ D, where C and Cdown are defined in Lemma 5 and 6 respectively.

Lemma 8 enables us to choose the negative log-likelihood function as a surrogate loss. This is not
only an important insight of EMLP regret analysis, but also the foundation of ONSP design.

The last inequality of Equation (8) comes from this lemma:

Lemma 9 (Per-epoch surrogate regret bound). Denoting θ̂k as the estimator coming from epoch
(k − 1) and being used in epoch k, we have:

Eh[L̂k(θ̂k)− L̂k(θ
∗)] ≤

Cexp

Cdown
· d

τk + 1
. (15)

Here Cexp is defined in Equation 13, and Eh[·] = E[·|hist(k − 1)].

Proof of Lemma 9 is partly derived from the work Koren and Levy [2015], and here we give a proof
sketch without specific derivations. A detailed proof lies in Appendix B.2.3.

Proof sketch of Lemma 9. We list the four main points that contribute to the proof:

• Notice that lk,t(θ) is strongly convex w.r.t. a seminorm xk,tx
⊤
k,t, we know L̂k(θ) is also

strongly convex w.r.t.
∑τk

t=1 xk,tx
⊤
k,t.

• For two strongly convex functions g1 and g2, we can upper bound the distance between their
arg-minimals (scaled by some norm || · ||) with the dual norm of ∇(g1 − g2).

• Since a seminorm has no dual norm, we apply two methods to convert it into a norm: (1)
separation of parameters and likelihood functions with a “leave-one-out” method (to separately
take expectations), and (2) separation of the spinning space and the null space.

• As the dual data-dependent norm offsets the sum of xx⊤ to a constant, Lemma 9 holds.

We have so far proved Inequality (8) after proving Lemma 5, 6, 9. Therefore, Theorem 4 holds.

5.2 O(d log T ) Regret of ONSP
Here we present the regret analysis of Algorithm 2 (ONSP). Firstly, we state the main theorem.

Theorem 10. With Assumptions 1, 2, 3, the regret of Algorithm 2 (ONSP) satisfies:
RegONSP ≤ Ca · d log T, (16)

where Ca is a function only dependent on F .

Proof. Proof of Theorem 10 here is more concise than Section 5.1, because the important Lemma 7
and 8 have been proved there. From Lemma 8, we have:

g(J(u∗
t ), u

∗
t )− g(J(ut), u

∗
t ) ≤

2 · C
Cdown

· ENt
[lt(θt)− lt(θ

∗)]. (17)

With Equation 17, we may reduce the regret of likelihood functions as a surrogate regret of pricing.
From Lemma 7 we see that the log-likelihood function is Cdown

Cexp
-exponentially concave8. This enables

8A function f(µ) is α-exponentially concave iff ∇2f(µ) ⪰ α∇f(µ)∇f(µ)⊤.
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an application of Online Newton Step method to achieve a logarithmic regret. Therefore, by citing
from the Online Convex Optimization [Hazan, 2016], we have the following Lemma.

Lemma 11 (Online Newton Step). With parameters γ = 1
2 min{ 1

4GD , α} and ϵ = 1
γ2D2 , and T > 4

guarantees:

sup
{xt}

{
T∑

t=1

lt(θt)−min
θ∈H

T∑
t=1

lt(θ)

}
≤ 5

(
1

α
+GD

)
d log T.

Here α = Cdown
Cexp

, D = 2 ·B1 and G =
√
Cexp ·B2.

With Equation 17 and Lemma 11, we have:

Reg =

T∑
t=1

(
g(J(u∗

t ), u
∗
t )− EN1,N2,...,Nt−1

[g(J(ut), u
∗
t )]
)
≤ 2 · C

Cdown
·5
(
1

α
+GD

)
d log T. (18)

Therefore, we have proved Lemma 10.

5.3 Lower Bound for Unknown Distribution
In this part, we evaluate Assumption 1 and prove that an Ω(

√
T ) lower regret bound is unavoidable

with even a slight relaxation: a Gaussian noise with unknown σ. Our proof is inspired by Broder and
Rusmevichientong [2012] Theorem 3.1, while our lower bound relies on more specific assumptions
(and thus applies to more general cases).

We firstly state Assumption 5 covering this part, and then state Theorem 12 as a lower bound:

Assumption 5. The noise Nt ∼ N (0, σ2) independently, where 0 < σ ≤ 1 is fixed and unknown.

Theorem 12 (Lower bound with unknown σ). Under Assumption 2, 3, 4 and 5, for any policy
(algorithm) Ψ : Rd ×

(
Rd,R, {0, 1}

)t−1 → R+ and any T > 2, there exists a Gaussian parameter
σ ∈ R+, a distribution D of features and a fixed parameter θ∗, such that: RegΨ ≥ 1

24000 ·
√
T .

Remark: Here we assume xt to be i.i.d., which also implies the applicability on adversarial features.
However, the minimax regret of the stochastic feature setting is Θ(

√
T ) [Javanmard and Nazerzadeh,

2019], while existing results have not yet closed the gap in adversarial feature settings.

Proof sketch of Theorem 12. Here we assume a fixed valuation, i.e. u∗ = x⊤
t θ

∗,∀t = 1, 2, . . ..
Equivalently, we assume a fixed feature. The main idea of proof is similar to that in Broder and
Rusmevichientong [2012]: we assume σ1 = 1, σ2 = 1− T− 1

4 , and we prove that: (1) it is costly for
an algorithm to perform well in both cases if the σ’s are different by a lot, and (2) it is costly for an
algorithm to distinguish the two cases if σ’s are close enough to each other. We put the detailed proof
in Appendix B.3.

6 Numerical Result
In this section, we conduct numerical experiments to validate EMLP and ONSP. In comparison with
the existing work, we implement a discretized EXP-4 [Auer et al., 2002] algorithm for pricing, as is
introduced in Cohen et al. [2020] (in a slightly different setting). We will test these three algorithms
in both stochastic and adversarial settings.

Basically, we assume d = 2, B1 = B2 = B = 1 and Nt ∼ N (0, σ2) with σ = 0.25. In both
settings, we conduct EMLP and ONSP for T = 216 rounds. For ONSP, we empirically select γ
and ϵ that accelerates the convergence, instead of using the values specified in Lemma 11. Since
EXP-4 consumes exponential time and requires the knowledge of T in advance to discretize the
policy and valuation spaces, we execute EXP-4 for a series of T = 2k, k = 1, 2, . . . , 12. We repeat
every experiment 5 times for each setting and then take an average.

Stochastic Setting. We implement and test EMLP, ONSP and EXP-4 with stochastic {xt}’s. The
numerical results are shown in Figure 1a on a log-log diagram, with the regrets divided by log(t). It
shows log(t)-convergences on EMLP and ONSP, while EXP-4 is in a tα rate with α ≈ 0.699.

Adversarial Setting. We implement the three algorithms and test them with an adversarial {xt}’s:
for the k-th epoch, i.e. t = 2k−1, 2k−1 + 1, . . . , 2k − 1, we let xt = [1, 0]⊤ if k ≡ 1( mod 2) and
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(a) Stochastic feature
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(b) Adversarial feature

Figure 1: The regret of EMLP, ONSP and EXP-4 on simulated examples (we only conduct EXP-4 up to T = 212

due to its exponential time consuming), with Figure a for stochastic features and Figure b for adversarial ones.
The plots are in log-log scales with all regrets divided by a log(t) factor to show the convergence. For EXP-4,
we discretize the parameter space with T− 1

3 -size grids, which would incur an Õ(T
2
3 ) regret according to Cohen

et al. [2020]. We also plot linear fits for some regret curves, where a slope-α line indicates an O(Tα) regret.
Besides, we draw error bars and bands with 0.95 coverage using Wald’s test. The two diagrams reveal that
(i) logarithmic regrets of EMLP and ONSP in the stochastic setting, (ii) a nearly-linear regret of EMLP in the
adversarial setting, and (iii) O(T

2
3 ) regrets of EXP-4 in both settings.

xt = [0, 1]⊤ if k ≡ 0( mod 2). The numerical results are shown in Figure 1b on a log-log diagram,
with the regrets divided by log(t). The log-log plots of ONSP and EXP-4 are almost the same as
those in Figure 1a. However, EMLP shows an almost linear (tα rate with α ≈ 0.912) regret in this
adversarial setting. This is because the adversarial series only trains one dimension of θ in each
epoch, while the other is arbitrarily initialized and does not necessarily converge. However, in the
next epoch, the incorrect dimension is exploited. Therefore, a linear regret originates.

7 Discussion
Here we discuss the coefficients on our regret bounds as a potential extension of future works. In
Appendix C we will discuss more on algorithmic design, problem modeling, and ethic issues.

Coefficients on Regret Bounds. The exact regret bounds of both EMLP and ONSP contain a constant
Cexp

Cdown
that highly depends on the noise CDF F and could be large. A detailed analysis in Appendix C.1

shows that Cexp

Cdown
is exponentially large w.r.t. B

σ (see Equation 39 and Lemma 21) for Gaussian noise
N (0, σ2), which implies that a smaller noise variance would lead to a (much) larger regret bound.
This is very counter-intuitive as a larger noise usually leads to a more sophisticated situation, but
similar phenomenons also occur in existing algorithms that are suitable for constant-variance noise,
such as RMLP in Javanmard and Nazerzadeh [2019] and OORMLP in Wang et al. [2020]. In fact, it
is because a (constantly) large noise would help explore the unknown parameter θ∗ and smoothen the
expected regret. In this work, this can be addressed by increasing T since we mainly concern the
asymptotic regrets as T → ∞ with fixed noise distributions. However, we admit that it is indeed a
nontrivial issue for finite T and small σ situations. There exists a “ShallowPricing” method in Cohen
et al. [2020] that can deal with a very-small-variance noise setting (when σ = Õ( 1

T )) and achieve a
logarithmic regret. Specifically, its regret bound would decrease as the noise variance σ decreases
(but would still not reach O(log log T ) as the noise vanishes). We might also apply this method as a
preprocess to cut the parameter domain and decrease B

σ within logarithmic trials (see Cohen et al.
[2020] Thm. 3), but it is still open whether a log(T ) regret is achievable when σ = Θ(T−α) for
α ∈ (0, 1).

8 Conclusion
In this work, we studied the problem of online feature-based dynamic pricing with a noisy linear
valuation in both stochastic and adversarial settings. We proposed a max-likelihood-estimate-based
algorithm (EMLP) for stochastic features and an online-Newton-step-based algorithm (ONSP) for
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adversarial features. Both of them enjoy a regret guarantee of O(d log T ), which also attains the
information-theoretic limit up to a constant factor. Compared with existing works, EMLP gets
rid of strong assumptions on the distribution of the feature vectors in the stochastic setting, and
ONSP improves the regret bound exponentially from O(T 2/3) to O(log T ) in the adversarial setting.
We also showed that knowing the noise distribution (or the demand curve) is required to obtain
logarithmic regret, where we prove a lower bound of Ω(

√
T ) on the regret for the case when the noise

is knowingly Gaussian but with an unknown σ. In addition, we conducted numerical experiments to
empirically validate the scaling of our algorithms. Finally, we discussed the regret dependence on the
noise variance, and proposed a subtle open problem for further study.
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