
Appendix
In this appendix, we supply additional information, experiments, and results. This includes a more in depth
review of the simulator (Section A), the full definition of the Chamfer Distance (Section B), the network
architecture and training details (Section C) for all experiments, additional results and experiments
(Section D), licenses (Section E) for assets and frameworks used, and descriptions of compute (Section
F) used for all tasks. Sections containing elements from the checklist are boldfaced.

A Simulator
In the following section details with respect to the tactile grasping environment will be provided, including
the manner in which grasps on an object are performed, and an explanation of how the touch signals are
simulated.

A.1 Grasping

A batch of PyBullet simulator [3] threads are kept constantly available throughout training. Each thread
possesses the Allegro hand [11] pre-loaded. When a batch of objects needs to be grasped with a set of
chosen actions, each object is loaded into one of the threads such that the object’s center is at position
[0, 0, 0.6], where the max size of the object across any dimension is 0.5. In a given thread and with a
given action, a fixed sphere of points with radius 1 is imagined around the object, and the chosen action is
used to pick its corresponding point. The hand is then loaded in an open position facing the object with
the third digit placed at the point, and the palm of the hand tangent to the imagined sphere. A line from
the point to the center of the object is then imagined, and the closest intersection of this line with the
convex hull of the object is computed. The hand is moved along the imagined line up to the intersection,
and then reoriented so that the palm of the hand is tangent to the surface of the object at the intersection
site. The grasp is then performed by increasing all of the hand’s joint angles in 5 maximal joint updates.
Here the sensors on the fingers will either touch the object in some way, be impeded from performing the
touch by some geometry in the hand or object, or miss the object entirely and the finger will close to the
palm. The pose information of the hand for each thread is then exported from the thread.

A.2 Simulating Touch

A Pyrender [8] scene is kept constantly available throughout training to allow for touch signals to be
simulated. The object is first loaded into the scene in the same position and orientation as in the PyBullet
thread. For each touch sensor in the hand, the pose information of its finger when the grasp was performed
is used to place a simulated perspective camera in its same position and orientation. A depth image is then
produced from this camera. This depth image is used to produce a simulated touch signal, through the
same method as in [12].

Vision signals from each object are also produced using Pyrender. To improve the simulation time, this
is performed offline, and stored images are loaded from memory when needed. To generate this vision
signal (image), the object is given a random colour texture and placed alone in an empty scene with 4
point lights placed in fixed positions around it. The produced images are of size 256×256×3.

A.3 Simulation Time

For the complexity of the required simulation task, the time to simulate all 4 touches for a single grasp is
relatively quick. This due to a number of optimization choices which include:

• All operations are performed within the same python instance.

• GPU acceleration is leveraged for simulating the touch when possible, such as when rendering
with Pyrender, and performing heavy mathematical operations in PyTorch [10].

• The meshes for all objects possess on the order of 500 vertices. As a result, the time required for
operations such as loading the mesh into both simulators, performing the physics simulation in
PyBullet, and rendering images in Pyrender is minimal.

• The number of PyBullet physics simulation steps required to perform the grasp is only five,
and all other computations for the grasps – e.g. the hand placement relative to the object – are
computed out of simulation.

• Objects remain loaded within Pybullet and Pyrender between grasps in the same trajectory.

1

As a result of these optimizations, the average time to extract the 4 simulated touch signals from a single
grasp across all grasp options and 100 random objects from the third training set is ∼ 0.0317 seconds on
a machine with 1 Tesla V100 GPU and with 16 CPU cores.

B Chamfer Distance
The Chamfer distance (CD) is used extensively to compare predictions for training and evaluation in this
paper. The Chamfer distance takes as input two set of point clouds and computes the average minimal
distance between points in each set. As our prediction are in the mesh representation, we first uniformly
sample points on the surface of each mesh, O and Ô, to produce point clouds S and Ŝ. We then compute
the difference:

CD(O, Ô) =
∑
p1∈S

min
p2∈Ŝ

∥p1 − p2∥22 +
∑
p2∈Ŝ

min
p1∈S

∥p2 − p1∥22. (1)

For all experiments, we sample 30, 000 points from each object, and average over 3 computations of the
CD. This is over more points than normally used, and usually no averaging is performed. These changes
were employed to address the stochasticity induced by converting our meshes to point clouds, and ensure
that changes in CD can be attributed to different touches being performed rather then variance in the
approximation.

C Network and Training details
In the following section, the network architectures and training details will be described for all learned
models.

C.1 Touch CNN Model

A convolutional neural network (CNN) is trained to convert an input touch signal into a chart representing
the local surface of the object where the touch occurred. A chart here is a mesh sheet, meant to represent
a small subsection of a full mesh surface. These produced charts are referred to as touch charts. To do
this, the touch signal is passed though a series of CNN layers, reshaped into a vector, and passed through
a series of fully connected layers to predict the vertex positions of a small fix size mesh with 25 vertices.
The meshes is then rotated and translated with the known pose information of the finger which performed
the touch. The parameters of this network are trained to minimize CD between the produced mesh and the
ground truth surface of the object at the location of the touch. The same trained network is used across all
active touch settings as the objective of the network does not change between them. The touch signal
input image is of size 121×121×3. The network architecture is provided in Table 5. The network was
trained using the Adam optimizer [7] with a learning rate of 0.001 for 300 epochs at a batch size of 256.
Hyper-parameter search was performed in a grid search over learning rate {0.0001, 0.001} and batch size
{128, 256}. The performance of the models was evaluated on the validation set every epoch, and the best
performing model across these evaluations was selected. The objects used in this training were from the
first training set, and in each batch, a set of random touches are sampled from these objects. With this
trained network, a touch chart can be produced for any given touch in a grasp, representing local surface
where the touch takes place.

C.2 Reconstruction Model

The model takes as input a set of touch signals and a vision signal, all in the form of RGB images
and produces from them a collection of charts which have been deformed and arranged to make up the
full surface of the predicted shape. Initially, all touch signals are converted into touch charts using the
pre-trained touch CNN.

In the vision and touch setting, a collection of 76 vision charts are formed in the shape of a sphere and
the vertices on the borders of these charts share edges with each other to allow communication between
them. Recall that the iterative mesh deformation process is performed by two sets of networks which do
not share parameters. In the first part of the deformation process, we pass the image signal through a
VGG-like CNN with network architecture described in Table 6 to extract image features. We then use
perceptual feature pooling [17, 14] to project the extracted image features onto the vertices of our mesh
(composed of the above-described charts). The feature vectors this process produces are of size 118. This
mesh is then passed through a graph convolutional network with Zero-Neighbor GCN layers [14] with
network architecture described in Table 7 and the output of this is added to the original mesh to predict a
new location for every vertex. A set of K empty touch charts which are initially given position (0, 0, 0) for
all vertices are then appended to the mesh of vision charts, and then every predicted touch chart is used to

2

replace one of the empty touch charts each. All touch charts have one of its center vertices connected by
an edge to every vision chart’s border vertices to allow communication between vision and touch charts.
A mask embedding of size 118 is produced indicating if each vertex in this graph is from a vision chart,
empty touch chart, or predicted touch chart. The vertex positions of each vertex are concatenated with a
Nerf positional embedding [9] of length 10 to produce feature vectors which are then passed through 3
fully connected layers with ReLU activations to grow their shape to size 118. In the second part of the
deformation process, we again pass the image signal through a VGG-like CNN with network architecture
described in Table 6 to extract image features which are projected onto the vertices of the mesh using
perceptual feature pooling. The features from the positional embedding, mask embedding and image are
then added together and passed again through a graph convolutional network with Zero-Neighbor GCN
layers with network architecture described in Table 7. The output of this network is added to the input
mesh to predict a new location for every vertex in the vision charts. This process is repeated once more.
More precisely, the resulting mesh is passed through the same GCN network to produce a final update
to the positions of all vertex charts. The combination of vision and touch charts then makes up the final
prediction of shape. The same GCN, CNN, positional embedding, and mask embedding parameters are
used in the second and third deformation steps.

In the touch only setting, a collection of 76 vision charts (here referred to as touch charts) is formed
in the shape of a sphere and the vertices on the borders of these charts share edges with each other to
allow communication between them. An additional set of K empty touch charts, which are initially given
position (0, 0, 0) for all vertices, are then appended to the initial mesh of charts. Every predicted touch
chart is used to replace one of the empty touch charts in this additional set of charts. All predicted touch
charts have one of its center vertices connected by an edge to every other chart’s border vertices to allow
communications. A mask embedding of size 50 is produced indicating if each vertex in this mesh is from a
chart in the initial sphere, empty touch chart, or predicted touch chart. The vertex positions of each vertex
are concatenated with a Nerf positional embedding [9] of length 10 to produce a feature vectors which are
then passed through 3 fully connected layers with ReLU activations to shrink their size to 50. The features
from the positional embedding and mask embedding are then added together and passed through a graph
convolutional network with Zero-Neighbor GCN layers with network architecture described in Table 7.
The output of this network is added to the original mesh to predict a new location for every vertex. The
process of computing these features and passing the resulting mesh through a GCN network to produce an
update to the positions of all vertex charts is repeated twice more. The combination of charts then makes
up the final prediction of shape. The same GCN parameters are used in the second and third deformation
steps, and the positional embedding and mask embedding parameters are used in all three deformations.

In all settings, the reconstruction models were trained to minimize the CD between predicted and target
meshes using the Adam optimizer [7] with a learning rate of 0.0001 for 1, 000 epochs at a batch size of 12
and with patience of 70. In the poking setting K = 5, and in the grasping setting K = 20. A grid search
was performed over hyper-parameters including the number of GCN layers {8, 10, 12, 15}, the hidden
dimension size in the GCN layers {300, 350, 400}, and the percentage of vertex features shared in every
Zero-Neighbor GCN layer {33%, 35%}. The performance of the models was evaluated on the validation
set every epoch, and the best performing model across these evaluations was selected. The objects used in
this training were from the first training set, and for each instance in the batch a random number of grasps
between 0 and 5 is sampled.

C.3 Autoencoder Models

Recall that the autoencoder creates latent embeddings of the predicted shapes produced using the trained
reconstructed models. The autoencoder takes as input a mesh in the form of a graph, passes it through a
GCN with architecture described in Table 7, concatenates the max value from each vertex feature position
across all vertices to produce a features vector, and passes it through 4 fully connected layers with ReLU
activations to produce a latent embedding of size 200. For the decoder, the latent embedding is passed
through a FoldingNet [18] decoder to produce the predicted point cloud of 2024 points. This setup is
trained to minimize the CD between the predicted point cloud and the input mesh. In all settings, the
models were trained using the Adam optimizer [7] with a learning rate of 0.0001 for 1000 epochs at a
batch size of 12 and with patience of 70. A grid search was performed over hyper-parameters including the
number of GCN layers {8, 10, 12, 15}, the hidden dimension size in the GCN layers {300, 350, 400}, and
the percentage of vertex features shared in every Zero-Neighbor GCN layer {8%, 15%}. The performance
of the models was evaluated on the validation set every epoch, and the best performing model across these
evaluations was selected in each setting. The objects used in this training were from the second training
set, and for each instance in the batch a random number of grasps between 0 and 5 is sampled.

3

C.4 DDQN Policies

We make use of the DDQN [16], a standard and highly successful deep reinforcement learning algorithm
for solving MDPs over discrete action spaces. In this method, the policy is defined by greedily selecting
the action which maximizes a learned value function, at every time step. The value function predicts the
value of any given action in the current state, where the value is defined as the expected future cumulative
reward. The value function is typically implemented as a deep neural network and is trained to minimize
the temporal difference error [15] over sampled data from a replay buffer of previously experienced
trajectories in the environment. A full explanation of this method can be found in [16]. In the DDQNm
setting, the action values are predicted directly from the predicted mesh shape. Here, the set of actions
performed is described as a k-hot mask mask which is passed through 3 fully connected layers with ReLU
activations to produce an action embedding of size 100. A mask embedding of size 100 is produced
indicating if each vertex in the mesh is from a vision chart (charts in the initial sphere), empty touch chart,
or predicted touch chart. The vertex positions of each vertex are concatenated with a Nerf positional
embedding [9] of length 10 to produce feature vectors which are then passed through 3 fully connected
layers with ReLU activations to grow their shape to size 100. The action, positional and mask embeddings
are then concatenated together and passed though a GCN with network architecture described in Table 7
to produce a feature vector of size 50 at every vertex. The max value across all vertices in then computed
to produce a vector of size 50 representing the value of each action. In this setting, the models were
trained using the standard DDQN framework as described in [16] using the Adam optimizer [7] with
a learning rate of 0.001 for 500, 000 episodes with a network update batch size of 128. Validation was
regularly performed over the validation set to identify the best models. A grid search was performed
over hyper-parameters epsilon decay {0.999993, 0.999996}, discount factor {0.9, .99}, hidden GCN
dimension size {100, 200}, memory capacity {300, 000, 100, 000}, and normalization of the reward by
the CD of the initial object belief or the current.

For DDQNl, the action value is predicted over the latent embedding of the predicted mesh. Here, the set
of actions performed is again described as a k-hot mask passed through 3 fully connected layers with
ReLU activations to produce an action embedding of size 50. This is concatenated with both the latent
embeddings of the current mesh and the initial mesh prediction, and then passed though L fully connected
layers with hidden dimension H and ReLU activation to produce a vector of size 50 representing the value
of every action. In this setting, the models were trained using the standard DDQN framework as described
by [16] using the Adam optimizer [7] with a learning rate of 0.001 for 500k episodes with a network
update batch size of 12. Validation was constantly performed over the validation set to identify the
best models. A grid search was performed over hyper-parameters epsilon decay {0.999993, 0.999996},
discount factor {0.9, .99}, number of hidden dimensions H {35, 75, 100, 200}, number of hidden layers
L {2, 3}, memory capacity {300, 000, 100, 000}, and normalization by the CD of the initial object belief
or the current.

C.5 Supervised Policy

For the supervised learning policies, an individual network is trained to learn the value of actions at each
of the 5 time steps. The first network is trained to predict the improvement induced by performing every
action based on the current belief of the object given that no actions have been performed yet. Here, the
improvement of an action is defined as CD(Ôk+1,O)

CD(Ôk,O)
, where k = 0. Once this network is trained, we move

to training network for the second step. Here, for every object in a batch, action one is first performed
based on selecting the action with the the highest predicted value from the first network. the second
network is trained to predict the improvement induced by performing every action based on the current
belief of the object given that one action has been selected from the first network and performed. This
continues until all 5 networks have been trained. When testing this policy the action at time step t is
selected by passing the current object belief through the t-th network and taking the action which value is
maximized. In all networks, the set of actions performed is described as a k-hot mask which is passed
through 2 fully connected layers with ReLU activations and hidden dimension of 100 to produce an action
embedding of size 50. This is concatenated with both the latent embedding of the current mesh and the
initial mesh prediction and then passed though L fully connected layers with hidden dimension H and
ReLU activations to produce a vector of size 50 representing the value of every action. Each network
is trained to minimize the mean squared error between the predicted action improvements and the true
improvements using the Adam optimizer [7] for 300 epochs with patience 20 and batch size 64. The
performance of the models was evaluated on the validation set every epoch, and the best performing model
across these evaluations was selected in each setting. A grid search was performed over hyper-parameters:

4

Touch Only - Poking Touch Only - Grasping

Vision and Touch - Poking Vision and Touch - Grasping

Figure 1: Graphs demonstrating the average reconstruction accuracy of the trained model in each of the 4
learning settings, across different number of grasps and the greedy oracle and random baseline

number of fully connected layers L {2, 3, 4}, number of hidden dimensions H {50, 100, 200} and learning
rate {0.001, 0.0003}.

D Additional Results
In this section, additional experiments and results are provided.

D.1 Mesh Reconstruction

The performance of the best trained reconstruction models on the test set when randomly picking actions
across the 4 active touch settings is shown in Table 1. The performance of the best trained models on
the test set when greedily picking the best action across the 4 active touch settings is shown in Table 2.
Figure 1 shows depicts the change in relative reconstruction accuracy from 0 to 5 touches when picking
actions using the greedy and random policies. The large difference in reconstruction performance between
the random and greedy policies highlights the need for learned policies which select more informative
grasps.

We compare the performance of the proposed model to other state of the art single image 3D object
reconstruction models on the 3D Warehouse Dataset [1] using the exact training and evaluation setup
described in [5]. The results of this experiment can be seen in Table 3. Here, F1k∗τ is the harmonic mean
of the percentage of predicted points with distance at most k ∗ τ from any ground truth points and the
percentage of ground truth points with distance at most k ∗ τ from any predicted point. The proposed
method nearly matches the performance of the best performing method, Mesh-RCNN [5], and notably
performs significantly better than the only previous method built for leveraging vision and touch [12].

D.2 Autoencoder

In Table 4, the chosen autoencoder models’ reconstruction Chamfer distances on the test set across all 4
settings are shown. In Figure 2, two random objects are shown in each learning setting along with the 4
closest objects to them in the respective learned latent space of objects. The visual similarity of objects to
their closest neighbors in the latent space along with the relatively low CD achieved demonstrates that the
learned latent encodings possess important shape information which may be leveraged in the proposed
active exploration policies.

5

Touches 0 1 2 3 4 5

TP 100 64.28 49.01 41.95 38.31 35.91
TG 100 45.26 34.10 29.55 27.31 25.76
V&TP 100 97.66 95.76 94.71 94.09 94.51
V&TG 100 96.37 93.78 92.14 91.06 90.60

Table 1: Mesh reconstruction results across all
4 learning settings with actions chosen using
the random policy. The units displayed are the
percentage of Chamfer distance relative to the
Chamfer distance of the initial object belief.

Touches 0 1 2 3 4 5

TP 100 31.40 23.45 20.87 19.87 19.35
TG 100 23.09 18.99 17.49 16.76 16.38
V&TP 100 90.19 85.00 81.90 80.03 78.95
V&TG 100 89.03 83.71 8 0.51 78.46 77.18

Table 2: Mesh reconstruction results across all 4
learning settings with actions chosen using the
greedy policy. The units displayed are the per-
centage of Chamfer distance relative to the Cham-
fer distance of the initial object belief.

CD(↓) F1τ (↑) F12τ (↑)

N3MR [6] 2.629 3.80 47.72
3D-R2N2 [2] 1.445 39.01 54.62
PSG [4] 0.593 48.58 69.78
MVD [13] - 66.39 -
GEOMetrics [14] - 67.37 -
Pixel2Mesh [17] 0.463 67.89 79.88
MeshRCNN [5] (Pretty) 0.391 69.83 81.76
VT3D [12] 0.369 69.52 82.33
MeshRCNN [5] (Best) 0.306 74.84 85.75

Ours 0.346 73.58 84.78

Table 3: Single image 3D shape reconstructing
results on the 3D Warehouse Dataset using the
evaluation from [5] and [17].

Grasps 0 1 2 3 4 5

TP 0.334 0.435 0.436 0.435 0.438 0.445
TG 0.405 0.514 0.488 0.470 0.462 0.459
V&TP 0.516 0.516 0.516 0.516 0.517 0.517
V&TG 0.477 0.477 0.477 0.477 0.477 0.477

Table 4: Autoencoder average Chamfer distance
scores across the 4 active learning settings and 5
grasps.

D.3 Policies

Figure 3 highlights the distributions of action selected by each strategy. Here, the points of all actions
on the sphere are transformed into their corresponding UV coordinates in an image, and the intensity
value for every pixel corresponding to an action is set to its relative frequency computed over the test
set. The visible area of the sphere of actions from the camera’s perspective is highlighted in orange, and
non-visible in blue. Figure 4 displays shape reconstructions after 5 grasps resulting from the DDQNl
policy. In Figure 5, the different action selection strategies employed by various policies and the Oracle
are shown for 2 randomly sampled objects in the test set.

Touch Only - Poking

Touch Only - Grasping

Vision and Touch - Poking

Vision and Touch - Grasping

Figure 2: Objects from the test set, along with their four nearest neighbors in the test set measured in the
latent space of our trained autoencoder in the 4 learning settings.

6

Figure 3: Distribution of selected actions (greyscale encoded) for all policies in all settings, with visible
area of the sphere of actions from the camera highlighted in orange.

E Licences
All licensed software and assets, along with their licenses are:

1. PyBullet: MIT License
https://github.com/bulletphysics/bullet3

2. PyRender: MIT License
https://github.com/mmatl/pyrender

3. Pytorch3D: BSD 3-Clause License
https://github.com/facebookresearch/pytorch3d

4. ABC Dataset: MIT License https://github.com/deep-geometry/abc-dataset
5. Wonik Allegro Hand: BSD 2-Clause "Simplified" License

https://github.com/simlabrobotics/allegro_hand_ros_catkin

F Compute
All described actions were performed on machines with either 1 or 2 Tesla V100 GPUs and with 16 CPU
cores.

7

https://github.com/bulletphysics/bullet3
https://github.com/mmatl/pyrender
https://github.com/facebookresearch/pytorch3d
https://github.com/deep-geometry/abc-dataset
https://github.com/simlabrobotics/allegro_hand_ros_catkin

Touch Only - Poking Vision and Touch - Poking

Touch Only - Grasping Vision and Touch - Grasping

Figure 4: Target objects (top rows) and predicted 3D shapes (bottom rows) after 5 grasps have been
selected following the DDQNl policy in all settings.

Oracle OracleLEBA LEBANN NNSup. Sup.

Figure 5: Action selection for the Oracle, LEBA, NN, and Supervised strategies, where the arrows indicate
the direction the hand moves towards the object for each selected action.

8

Index Input Operation Output Shape

(1) Input Conv (5 × 5) + BN + ReLU 8 × 61 × 61
(2) (1) Conv (5 × 5) + BN + ReLU 8 × 61 × 61
(3) (2) Conv (5 × 5) + BN + ReLU 8 × 61 × 61
(4) (3) Conv (5 × 5) + BN + ReLU 8 × 61 × 61
(5) (4) Conv (5 × 5) + BN + ReLU 16 × 31 × 31
(6) (5) Conv (5 × 5) + BN + ReLU 16 × 31 × 31
(7) (6) Conv (5 × 5) + BN + ReLU 16 × 31 × 31
(8) (7) Conv (5 × 5) + BN + ReLU 16 × 31 × 31
(9) (8) Conv (5 × 5) + BN + ReLU 32 × 16 × 16

(10) (8) Conv (5 × 5) + BN + ReLU 32 × 16 × 16
(11) (10) Conv (5 × 5) + BN + ReLU 32 × 16 × 16
(12) (11) Conv (5 × 5) + BN + ReLU 32 × 16 × 16
(13) (12) Conv (5 × 5) + BN + ReLU 64 × 8 × 8
(14) (13) Conv (5 × 5) + BN + ReLU 64 × 8 × 8
(15) (14) Conv (5 × 5) + BN + ReLU 64 × 8 × 8
(16) (15) Conv (5 × 5) + BN + ReLU 64 × 8 × 8
(17) (16) Conv (5 × 5) + BN + ReLU 128 × 4 × 4
(18) (17) Conv (5 × 5) + BN + ReLU 128 × 4 × 4
(19) (18) Conv (5 × 5) + BN + ReLU 128 × 4 × 4
(20) (19) Conv (5 × 5) + BN + ReLU 128 × 4 × 4
(21) (20) FC + ReLu 2048
(22) (21) FC + ReLu 1024
(23) (22) FC + ReLu 512
(24) (23) FC + ReLu 256
(25) (24) FC + ReLu 128
(26) (25) FC + ReLu 75
(27) (26) FC 25 × 3

Table 5: Architecture for CNN used to convert touch signals into touch charts.

Index Input Operation Output Shape

(1) Input Conv (5 × 5) + BN + ReLU 6 × 256 × 256
(2) (1) Conv (5 × 5) + BN + ReLU 6 × 254 × 254
(3) (2) Conv (5 × 5) + BN + ReLU 16 × 126 × 126
(4) (3) Conv (5 × 5) + BN + ReLU 16 × 124 × 124
(5) (4) Conv (5 × 5) + BN + ReLU 6 × 122 × 122
(6) (5) Conv (5 × 5) + BN + ReLU 16 × 120 × 120
(7) (6) Conv (5 × 5) + BN + ReLU 32 × 59 × 59
(8) (7) Conv (5 × 5) + BN + ReLU 32 × 57 × 57
(9) (8) Conv (5 × 5) + BN + ReLU 32 × 55 × 55

(10) (8) Conv (5 × 5) + BN + ReLU 32 × 53 × 53
(11) (10) Conv (5 × 5) + BN + ReLU 64 × 26 × 26
(12) (11) Conv (5 × 5) + BN + ReLU 64 × 24 × 24
(13) (12) Conv (5 × 5) + BN + ReLU 64 × 22 × 22
(14) (13) Conv (5 × 5) + BN + ReLU 64 × 20 × 20

Table 6: Architecture for perceptual feature pooling in vision and touch setting where features from layers
2, 6, 10, and 14 are extracted.

Index Input Operation Output Shape

(1) Input ZN-GCN Layer (C) |V| × H
(2) (1) ZN-GCN Layer(C) |V| × H
....

K-1 (K-2) ZN-GCN Layer (C) |V| × H
K (K-1) GCN Layer |V| × O

Table 7: Architecture for deforming charts positions where H is the chosen hidden dimension size , K is
the chosen number of layers, C the percentage of vertex features shared between neighboring vertices in
the ZN-GCN layer, and O is the output vertex feature vector size.

9

References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,

Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

[2] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A
unified approach for single and multi-view 3d object reconstruction. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 628–644. Springer, 2016.

[3] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. GitHub repository, 2016.

[4] Haoqiang Fan, Hao Su, and Leonidas Guibas. A point set generation network for 3d object
reconstruction from a single image. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 38, 2017.

[5] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh r-cnn. IEEE International Conference
on Computer Vision (ICCV), 2019.

[6] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. arXiv preprint
arXiv:1711.07566, 2017.

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] Matthew Matl. Pyrender. https://github.com/mmatl/pyrender, 2019.

[9] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
Conference on Computer Vision, pages 405–421. Springer, 2020.

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[11] SimLab. Allegro hand overview, 2016. URL http://wiki.wonikrobotics.com/
AllegroHandWiki/index.php/Allegro_Hand_Overview. [Online; accessed 25-May-2020].

[12] Edward Smith, Roberto Calandra, Adriana Romero, Georgia Gkioxari, David Meger, Jitendra Malik,
and Michal Drozdzal. 3d shape reconstruction from vision and touch. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 14193–14206. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/a3842ed7b3d0fe3ac263bcabd2999790-Paper.pdf.

[13] Edward J. Smith, Scott Fujimoto, and David Meger. Multi-view silhouette and depth decomposition
for high resolution 3d object representation. In Advances in Neural Information Processing Systems,
pages 6479–6489, 2018.

[14] Edward J. Smith, Scott Fujimoto, Adriana Romero, and David Meger. Geometrics: Exploiting
geometric structure for graph-encoded objects. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
volume 97 of Proceedings of Machine Learning Research, pages 5866–5876. PMLR, 2019. URL
http://proceedings.mlr.press/v97/smith19a.html.

[15] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

10

https://github.com/mmatl/pyrender
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://wiki.wonikrobotics.com/AllegroHandWiki/ index.php/Allegro_Hand_Overview
http://wiki.wonikrobotics.com/AllegroHandWiki/ index.php/Allegro_Hand_Overview
https://proceedings.neurips.cc/paper/2020/file/a3842ed7b3d0fe3ac263bcabd2999790-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a3842ed7b3d0fe3ac263bcabd2999790-Paper.pdf
http://proceedings.mlr.press/v97/smith19a.html

[16] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[17] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. arXiv preprint arXiv:1804.01654, 2018.

[18] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via
deep grid deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 206–215, 2018.

11

	Simulator
	Grasping
	Simulating Touch
	Simulation Time

	Chamfer Distance
	Network and Training details
	Touch CNN Model
	Reconstruction Model
	Autoencoder Models
	DDQN Policies
	Supervised Policy

	Additional Results
	Mesh Reconstruction
	Autoencoder
	Policies

	Licences
	Compute

