
(a) Removing from a list (b) Adding to a list
Query public class myClass{

/** remove items from a list */
public void

remove(List<String> fp_2){
}

}

public class myClass{

/** add item to list */
public void addItem (
List<String> a, String b){
}}

NSG void remove(java.util.List
<java.lang.Object> fp_2){

java.util.Iterator var_8;
var_8 = fp_2.iterator();
while (var_8.hasNext()){

java.lang.Object var_3;
var_3 = new java.lang.Object(

(java.lang.String) ARG,
(javax.swing.Icon) ARG);

var_3 = var_8.next();
var_8.remove();

}
return;
}

public void addItem (
List<String> fp_9,
String fp_1) {
if (fp_9.contains

((String) ARG)) {
fp_9.add(fp_1);
}

return;
}

CODEGPT public void remove(List<String> fp_2){
items.remove(fp_2); }

public void addItem (
List<String> a, String b)

{
items.add(a);

}

CODEX public void remove(List<String> fp_2){
fp_2.remove(0); }

public void addItem (
List<String> a, String b) {
a.add(b); }

GptNeo1.3B public void remove(List<String> fp_2){
fp_2.remove(); }

public void addItem (
List<String> a, String b) {

List <String> temp =
new ArrayList<String>();

for (int i=0; i<a.size(); i++){
temp.add(a.get(i));

}
a.add(b);
}

Table 4: Example synthesis outputs: (a) Removing from a list and (b) Adding to a list.

A Additional Synthesis Examples

Some additional program-generation examples are shown in Tables 4, 5, and 6.

B Static Checks Considered

Here we give an in-depth description of each of the static checks that has been tested in the paper as
described in Section 5.2.

• No Undeclared Variable Access. All the variables used in a program should be declared
before they are used and should be available in the scope. We measure the percentage
of variable usages across all the programs that are declared before use. For example
int bar() {x.write();} is a violation of this property because x is not declared
(assuming that there is no field named x). When the statement x.write() is synthesized,
the NSG-model has access to the symbol table at that point in the AST. The symbol table
does not contain the variable x because it is not declared in the preceding statements. The
NSG-model has learnt to use variables that are present in the symbol table (encoded as
attribute "symTab"), which increases the likelihood that the variables used in the program
are declared before being used.

• Valid Formal Parameter Access. All of the input variables accessed in a program body
should be available in the class definition. Across all programs, we measure the percentage
of input-variable accesses that are available. If a program grammar allows access for n
input variables, and the synthesizer tries to access one such variable nk even when it is not

14

(a) Writing to a file (b) Creating a Swing JButton
Query public class FileUtil{

String err;
public int read(File f){...}

/* write lines to file */
public void write(

File f, String str){}}

public class myGUI{

public javax.swing.JFrame
createFrame(final String title)

{... }

public void addActionListener
(javax.swing.JButton title)

{... }

/**
create a button
*/
public

javax.swing.JButton createButton(){ }
}

NSG void write(File f, String str){
try {

FileWriter var_0;
var_0 = new FileWriter(f);
var_0.write(str);

} catch(IOException var_0) {
var_0.printStackTrace();
System.out.println(ARG); }

return; }

javax.swing.JButton createButton(){
javax.swing.ImageIcon var_9;
var_9 = new javax.swing.ImageIcon.

ImageIcon(
(java.lang.String) ARG,
(java.lang.String) ARG

);
javax.swing.JButton var_7;
var_7 = new javax.swing.JButton.JButton(

java.lang.String: ARG,
javax.swing.Icon: var_9);

var_7.setVerticalTextPosition(
(int) ARG);

var_7.setHorizontalTextPosition(
(int) ARG);

return var_7;
}

CODEGPT void write (File a, String b){
System.out.println(a);
}

public JButton createButton(){
return new JButton(this);

}

CodeX public void write(File f, String str){
Writer writer = null;
try {

writer = new BufferedWriter(
new FileWriter(f));

writer.write(str);
writer.close();

} catch (IOException e) {
err = e.printStackTrace();}

}

public JButton createButton(){
final javax.swing.JButton b =

new javax.swing.JButton();
return b;

}

GptNeo1.3B public void write(File f, String str)
{ try { f.write(str); }
catch (IOException e) {

e.printStackTrace(); }
}

public JButton createButton(){
javax.swing.JButton button =
new javax.swing.JButton();
button.addActionListener(this);
return button;

}

Table 5: Example synthesis outputs: (a) Writing to a file and (b) Creating a Swing JButton. For
brevity, we omit the method body in the query, denoted as The method body was fed into
transformers as a part of the prompt during generation.

15

(c) Connect to a Socket (d) Decrypting a Message
Query public class tcpSocketManager{

public Socket createSocket(final
InetSocketAddress socketAddress){
...

}

public void connect(
InetSocketAddress socketAddress){

}
}

public class lockAndKey{

public String encryptMessage(
String message, String secret_key){

...
}

public String decryptMessage(
String encrypted_message,
String secret_key){

}
}

NSG public void connect(
InetSocketAddress fp_3)

Socket var_8;
var_8 = new Socket.Socket(

(String) ARG,(int) ARG);
try {

InetSocketAddress var_3;
var_3 = new InetSocketAddress.

InetSocketAddress((String) ARG,
(int) ARG);

var_8.connect((SocketAddress) var_3,
(int) ARG);

}
catch(ConnectException var_3){

var_3.printStackTrace();
}

try {
var_8.close();

}
catch(IOException var_3){

var_3.printStackTrace();
}

return;

String decryptMessage(String fp_2,
String fp_5){

if (fp_5.equals((Object) ARG)){
return fp_5;

}
int var_6;
var_6 = fp_5.indexOf((String) fp_5);
if (true){
return fp_5;

}
String var_4;
var_4 = fp_5.substring((int) ARG,

(int) var_6);
return var_4;

}

CODEGPT public void connect(InetSocketAddress
socketAddress)

if (socketAddress ~= null) {
socketAddress.connect(socketAddress);

}

public String decryptMessage(
String encrypted_message,
String secret_key){

return decryptMessage(encrypted_message,
secret_key);

}

CODEX public void connect(InetSocketAddress
socketAddress){

AbstractSocket activeProxySocket =
createSocket(socketAddress);

activeProxySocket.connect(
socketAddress);

}

public String decryptMessage(
String encrypted_message,
String secret_key){

Key aesKey = new SecretKeySpec(
secret_key.getBytes(), ’AES’);

Cipher cipher =
Cipher.getInstance(’AES’);

cipher.init(Cipher.DECRYPT_MODE, aesKey);
return cipher.doFinal(encrypted_message);
}

GptNeo1.3B public void connect(InetSocketAddress
socketAddress)

throws IOException {
Socket s = new Socket(

new Proxy(
Proxy.Type.SOCKS,socketAddress)

);
s.connect();

}

public String decryptMessage(
String encrypted_message,
String secret_key){

Key aesKey=
new SecretKeySpec(
encrypted_message.getBytes(),
secret_key.getBytes()
);
return aesKey.doFinal(
encrypted_message);

}

Table 6: Example synthesis outputs: (a) Connect to a socket and (b) Decrypting a message. For
brevity, we omit the method body in the query, denoted as The method body was fed into
transformers as a part of the prompt during generation.

16

available, this property will be violated. The formal-parameter-type information is present
in symTab corresponding to each of the input variable which helps NSG learn this property
correctly.

• Valid Class Variable Access. All the class fields accessed in a program body should be
available in the class definition. The presence of field information in symtab helps NSG
satisfy this semantic property. Across all programs, we measure the percentage of field
accesses that happened when they were available.

• No Uninitialized Objects. All variables with reference type should be initialized. Out
of all the variables with reference types declared across all the programs, we measure
the percentage of variables that are initialized using a "new" statement. For example,
BufferedWriter x; x.write(); is a violation because x is not initialized using
new BufferedWriter. Violation of this property could cause a NullPointerException
at runtime. The AG keeps track of variable initializations using an attribute of type array of
Booleans, named IsInitialized. Whenever a variable is declared, the corresponding value in
the IsInitialized array is set to False. As soon as the variable is initialized, the attribute is
set to True. This attribute helps the NSG model learn to avoid generating method bodies in
which a variable is used without being initialized.

• No Variable Access Errors. This property is the aggregate of the preceding four semantic
checks.

• Object-method compatibility. Methods should be invoked on objects of appropriate types.
For example, consider the program snippet int k = 0;
bool b = k.startsWith(pre); which contains an invocation of
String::startsWith(String pre). This program fails the object-method-
compatibility check because the method is invoked on a variable of type int instead of a
variable of type String. The method invocation startsWith is synthesized before the terms
k and pre.2 The symbol-table attribute of the AG, in combination with the synthesized
attribute expr_type, helps the NSG model avoid such cases by learning to synthesize an
expression with a compatible type, given the method signature to be invoked on it.

• Return Type at the Call Site. The return type of a method invoked at some call
site should be consistent with the type expected at the call site. In bool b =
aStr.startsWith(pre); this property asserts that the type of b should be com-
patible with the return type of String::startsWith. The symbol table alongside the
synthesized attribute from the API call, namely ret_type, helps the NSG respect this rule.

• Actual Parameter Type. The actual-parameter types in an API call should be consistent
with the corresponding formal-parameter types. For example, consider the program fragr-
ment int pre = 0; bool b = aStr.startsWith(pre); which contains an
invocation of String::startsWith(String pre). This program fails the formal-
parameter type check because the actual-parameter type (int) does not match the formal-
parameter type (String). The AG has the symbol-table attribute, which contains the variables
in scope and their types, plus it has access to the intended type from the API call by the
attribute typeList, which helps the NSG model to learn to synthesize API arguments of
appropriate types.

• Return Statement Type. The type of the expression in a return statement of a method
should be consistent with the method’s declared return type. For example, public int
foo(){String x; return x} violates this property because the returned expression
x is of type String, whereas the declared return type is int. To make it easier for the NSG
model to learn this restriction, the AG has a dedicated attribute methodRetType to propagate
the declared return type throughout the method, which helps it generate an expression of
the appropriate type after consulting the symbol table. For this property, we measure the

2Note that while this attribute grammar requires Method to be expanded before Expr (because inherited
attributes of the latter depend on synthesized attributes of the former), the grammar is still L-attributed if we
expand Method then Expr, and perform an unparsing trick to emit the subtree produced by Expr first.

17

percentage of return statements for which the expression type matches the method’s declared
return type.

• No Type Errors. All variables should be accessed in a type-consistent manner. Across
all the programs, we measure the percentage of variable accesses that are type-consistent.
Locations of variable accesses include all types of variable accesses relevant to an API
call, method arguments, return statements, the variables on which the methods are invoked,
variable assignments, and internal class method calls.

• Return Statement Exists. This property asserts that a method body should have a re-
turn statement. public int foo(){String x;} violates this property because the
method body does not have a return statement. The AG propagates an attribute, retStmtGen-
erated. This attribute is initially set to false. When a return statement is encountered, the
attribute is set to true. The NSG model learns to continue generating statements while this
attribute is false, and to stop generating statements in the current scope when the attribute is
true. For this property, we report the percentage of programs synthesized with a return
statement.

• No Unused Variables. There should not be any unused variables (variables declared but
not used) in the method body. For example, in public void reader(){String
x; String y; x=field1.read()}, the variable y is an unused variable. To keep
track of the unused variables, we use a boolean array attribute isUsed. Entries in array
corresponding to the used variables are true whereas all other entries are false. Out of all the
programs synthesized, we report the percentage of variables declared which have been used
inside the method body.

• Percentage of Parsing. A parser for the Java language should be able to parse the synthe-
sized programs. We use an open-source Java parser, called javalang [19], and check for the
number of programs that parse. This test does not include static-semantic checks; it only
checks if a generated program has legal Java syntax. Note that NSG, CNG, and GNN2NAG
models are rule-based generation and they are bound to parse by definition. The pre-trained
language models, however, are not guaranteed to produce programs that exactly follow the
grammar definition. Therefore we capture all such instances that throw parsing exceptions
and report the resulting numbers.

• Pass All Checks. This property is the aggregate of all of the preceding checks.

C Implementation Details

We now give a few details about how the distributions required to instantiate an NSG are implemented
in our Java prototype.

Evidence Encoder: The evidences that we support as input to user context include class-level
information (e.g., class name, Java-type information of the instance variables, and methods in the
same class that have already been implemented); along with the information from the method header.

Each of these evidence types is encoded in a way appropriate to its domain. The method header has a
separate encoding for each of its components: return type, formal parameters, and method name. The
natural-language description available as Javadoc is also included. In total, there are seven kinds of
evidence that we consider in our context.

The evidences are encoded together as follows: class and method names are split using camel case
and delimiters; the resulting elements are treated as natural-language keywords, and encoded as a
set, using a single-layer feed-forward network. The other evidences that are represented as sets and
encoded by similar neural network. The type information of the class variables, formal parameters,
and Javadoc are encoded as sequential data using a single-layered LSTM. The surrounding method is
encoded as a concatenation of the three components of the method header, namely, the method name,
formal parameters, and return type, followed by a dense layer to reduce the dimensionality to the size
of the latent space. Note that the model defined in Section 4 allows us to get meaningful synthesis
outputs even when only a small subset of the different kinds of evidence are available during training.

18

Sampling Symbol RHS Values: The distribution P (S|SymSoFar, A(S)#,Z) is implemented using
an LSTM. There are six different kind of symbols for which we need to chooses an RHS: choosing
the program block to produce (e.g., producing a try-catch statement or a loop), Java types, object-
initialization calls, API calls, variable accesses, and accessing a method within the same class. Each
one of these has their own vocabulary of possibilities, and requires a separate neural LSTM decoding
unit. It is also possible to use additional, separate neural units in different production scenarios. In
our implementation, we use four separate LSTM units for decoding variable accesses: for a variable
that is being declared, when accessed in a return statement, when accessed as an input parameter,
or when an API call is invoked. In other words, the NSG synthesizer consists of multiple decoding
neural units, for decoding all of the production rules in the program’s grammar, each using a separate
LSTM unit. It should be noted here that even though each of these LSTM units in the network has its
own parameter set, they all maintain the same recurrent state, which tracks the state of the unfinished
program synthesized so far.

Attributes: Each of the neural units in an NSG decodes the current symbol using its corresponding
LSTM and additional attributes available from the attribute grammar. Generally when a recurrent
model like an LSTM is trained, the input to the LSTM cell is fixed as the correct output from the last
time step (or the output from the parent node in case of a tree decoder). The availability of attributes
in an NSG lets us augment this input information with the additional attributes from our grammar.
The attributes that we support are given below:

• Symbol table: An unrolled floating-point matrix that represents the types of all variables in
scope, including field variables, input variables, and user-defined variables. Represented in
our grammar as symTab attrbute.

• Method return type: A floating-point vector containing the expected type of the method
body. Represented in our grammar as methodReturnType.

• Return type of an API call, expression type of an object invoking an API call, and types of
the input variables of an API call: Three separate floating-point vectors that represent the
expected return type (retType), the expression type of the object that initiates an API call
(exprType), and the expected formal parameters of the API call, if any (typeList).

• Internal-method table: A floating-point vector representing the neural representation of the
completed methods available in the same class.

• Unused variable flag: A Boolean vector indicating which variables have been initialized but
not used so far in the program. The attribute that tracks this semantic property is isUsed.

• Uninitiated-object flag: A Boolean vector indicating which objects have been declared but
not initialized. The attribute that tracks this semantic property is isInitialized.

• Return-statement flag: A Boolean indicating if a return statement has yet been reached in
the program body. The attribute that tracks this semantic property is retStmtGenerated

Note that not all attributes are important to every production rule in the grammar at a given time step.
For example, while decoding a variable access, it is unimportant to know about internal methods.
This information follows from our attribute grammar, as described in Appendix K. If a particular
attribute is not associated with a non-terminal, or it is unused inside a production rule, it is not
required required for that rule, and the attribute can be omitted from being input to decoding that
particular token.

Training and Inference: During training, all information required for the LSTM, such as contextual
information for the missing class and the associated attributes in the AST, are available to the neural
decoder. The neural network is only tasked with learning the correct distributions related to decoding
the method-body AST. The objective function related to learning the probability distributions within
the learner is composed of a linear sum of cross-entropy loss for each category of symbol: non-
terminals of the AST, API calls, Java types, and so on. This loss can be minimized using standard
techniques like gradient descent to ‘train’ the model. If we compare this to a simple neural model,
the NSG decoder has additional inputs in the form of attributes coming from the grammar to aid its
decoding process.

During inference, only the program context is available to the decoder. The attributes that the
synthesizer requires are inferred on-the-fly, after the previous sub-part of the AST has been decoded.
Because we make use of an L-attributed grammar, at each step of AST construction, the necessary

19

inputs are already available from the partial AST at hand. At no point in the decoding process do the
neural units need any input from the part of the AST that has not yet been synthesized. This approach
to synthesizing is close to the standard inference procedure in sequence-to-sequence models [35, 13]

Given the learned neural units, decoding for the “best” program is an intractable problem, hence
we use beam search [37]. Because beam search is only applicable for sequences, we modify it to
perform a depth-first traversal on the AST, with the non-terminal nodes that lead to branching in the
AST stored in a separate stack.

D Implementation of Baselines

GNN2NAG: We describe the implementation details of GNN2NAG [7], which is one of the baselines
in Sec. 5. We expand the AST nodes in the order of a depth-first search. We considered the same
six types of edges as Brockschmidt et al. [7], which consists of Parents, Child, NextSib, NextUse,
NextToken, and InhToSyn. After building the graph, we propagate the information through a Gated
Graph Neural Network (GGNN [22, 7]). We obtain a representation for each node after the GGNN
propagation. We then apply an LSTM to go over all the nodes until reaching the node where the goal is
to predict the next token. Training is via cross-entropy loss. Note that the biggest difference between
our implementation of GNN2NAG and Brockschmidt et al. [7] is the use of an LSTM. Brockschmidt
et al. [7] assumes that information about which type of edge is responsible for generating the token
is available to the model. However, this information is not available in our setup. Thus, we use an
LSTM to iterate over all edges in the GNN to obtain the features for prediction.

Pre-Trained Language Models: We consider 4 types of transformer models—GPTNeo 125M, GPT-
Neo 1.3B, CODEGPT, and CODEX [6, 24, 8]. We fine-tuned each of these pre-trained transformers
on our Java dataset, except for CODEX, for which we have no access to the pre-trained weights.
While our NSG model only takes the headers in the Java class as inputs, for the various transformer
models, the input is the entire Java class, including both headers and method bodies. (We found that
transformers perform quite poorly if only headers are provided.) During evaluation, transformers are
asked to predict the missing method body given the header and the rest of the class.

To fine-tune on our Java dataset, we used the token-level code-completion task provided by
CodeXGLUE3 [24]. During fine-tuning, the transformers are asked to predict the next token in
an autoregressive fashion, just like in any language-modeling task. The learning rate is 8e�5 and the
batch size is 1 on each GPU. In total, we used 16 GPUs to fine-tune these transformers, which takes
about 4 days to complete two epochs on our Java dataset, consisting of 600,000 training instances.

E Generation of Training Data

Now we sketch the process by which our training data is generated. Assume that the task is to
generate procedure bodies from start-nonterminal Prog, and that we are given a large corpus of Java
programs from which to learn the distribution P (Prog|X).
An AG-based compiler is used to produce the training data. For each user-defined method M in the
corpus, we create training examples of the form

�
(Prog, Srhs

1), ..., (Si�1, S
rhs
i�1), (Si, S

rhs
i), A(Si)#,X

�
(2)

where (i) (Prog, Srhs
1), ..., (Si�1, Srhs

i�1) is a pre-order listing—from goal nonterminal Prog to a partic-
ular instance of nonterminal Si—of the (nonterminal, RHS) choices in M ’s Prog subtree, (ii) Srhs

i
is the RHS production that occurs at Si, and (iii) attribute values A(Si)# are the values at the given
instance of Si. As input-output pairs for a learner, inputs (i) and (iii) produce output (ii).

We compile the program, create its parse tree, and label each node with the values of its attributes
(which are evaluated during a left-to-right pass over the tree). For each method M , its subtree is
traversed, and a training example is emitted for each node of the subtree.

3https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/
CodeCompletion-token

20

https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/CodeCompletion-token
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/CodeCompletion-token

Table 7: Percent of Static Checks Passed with 25% Evidence

GPTNeo125M GPTNeo1.3B CodeX CODEGPT GNN2NAG CNG NSG

No Undeclared Variable Access 90.77% 89.99% 84.55% 89.21% 46.88% 19.78% 99.32%
Valid Formal Param Access NA NA NA NA 25.72% 11.03% 98.61%
Valid Class Var Access NA NA NA NA 14.34% 12.75% 99.31%
No Uninitialized Objects 92.35% 91.21% 88.52% 93.40% 20.31% 21.56% 93.35%
No Variable Access Error 90.92% 90.11% 84.98% 89.63% 28.10% 17.92% 99.10%
Object-Method Compatibility 96.93% 97.05% 96.74% 98.35% 21.29% 12.23% 94.87%
Ret Type at Call Site 97.91% 97.66% 98.47% 97.98% 22.97% 16.40% 92.53%
Actual Param Type 88.51% 88.61% 90.02% 86.77% 9.22% 16.09% 93.63%
Return Stmt Type 82.50% 81.56% 83.75% 83.43% 12.05% 9.51% 88.94%
No Type Errors 86.46% 86.14% 88.62% 86.83% 15.98% 13.56% 91.98%
Return Stmt Exists 99.58% 99.61% 96.74% 99.56% 93.83% 99.92% 96.94%
No Unused Variables 96.51% 96.33% 96.46% 97.60% 20.14% 24.29% 91.75%
Percentage of Parsing 98.61% 98.53% 94.95% 97.14% 100.0% 100.0% 100.0%
Pass All Checks 65.26% 62.65% 38.77% 63.12% 16.75% 12.87% 79.17%

Table 8: Average Fidelity of Generated Method Bodies with 25% Evidence

GPTNeo125M GPTNeo1.3B CodeX CODEGPT CNG NSG

Set of API Calls 24% 27% 29% 27% 12% 43%
Sequences of API Calls 12% 14% 13% 13% 7% 31%
Sequences of Program Paths 7% 8% 8% 8% 7% 28%
AST Exact Match 7% 8% 8% 8% 1% 18%

F Restricting Available Evidence

In our experiments, generation of a particular method is conditioned on available “evidences,” which
refer to the context surrounding the missing method, in the method’s complete class (other method
names and method headers, Java Doc comments, class variables, and so on). All of the experiments
described thus far simulate the situation where the entire class—except the method to be generated—
is visible when it is time to generate the missing method. This simulates the situation where a user is
using an automatic programming tool to help generate the very last method in a class, when all other
methods and class variables have been defined and are visible.

We can restrict the amount of evidence available to make the task more difficult. When we only
make a portion of the evidence available, this simulates the case where a user is using an automatic
programming tool to generate a method when the surrounding class is less complete. When we use
“x% evidence” for a task, each piece of evidence in the surrounding code is selected and available
to the automatic programming tool with x% probability. In Table 7 and Table 8, we show results
obtained when we repeat the experiments from earlier in the paper, but this time using 25% evidence
while Table 9 and Table 10 show the result for 50% evidence.

G Next-Token Prediction

Our NSG implementation uses a relatively weak language model (based on LSTMs as opposed
to more modern transformers) but augments them with a static analysis. We have shown that the
resulting NSG is good at “long-horizon” tasks such as semantic consistency (compared to the baselines
tested) and at generating methods that have high fidelity to the original, “correct” method. But it is
reasonable to ask: how does the NSG compare to the baselines at “short-horizon” tasks? To measure
this, for each symbol S that is expanded to form the body of a test method, we compute (i) the actual
left-context sequence of the test method (up to but not including the RHS sequence chosen for S) as
the value of SymSoFar, (ii) A(S) # (in the case of the NSG), and (iii) Z. We then use these values to
ask the NSG to predict the next RHS. If the predicted RHS matched the observed RHS, the model
was scored as “correct.” We recorded the percentage of correct predictions for terminal RHS symbols
(such as API calls or types) for each test program.

We also performed next-token prediction using the NSG and three of the baseline models. Note
that it is non-trivial to classify CODEGPT’s output into different terminal symbols, so we only
report the overall RHS symbols’ correctness. The results show that two of the baselines (CODEGPT
and GNN2NAG) are very accurate, and demonstrate better performance than the NSG on this task.

21

Table 9: Percent of Static Checks Passed with 50% Evidence

GPTNeo125M GPTNeo1.3B CodeX CODEGPT GNN2NAG CNG NSG

No Undeclared Variable Access 89.87% 90.36% 88.62% 90.34% 47.17% 17.79% 99.86%
Valid Formal Param Access NA NA NA NA 25.50% 8.58% 99.83%
Valid Class Var Access NA NA NA NA 14.96% 11.57% 99.78%
No Uninitialized Objects 93.90% 91.73% 90.82% 94.37% 20.01% 21.68% 97.30%
No Variable Access Error 90.36% 90.51% 88.86% 91.32% 28.43% 17.34% 99.84%
Object-Method Compatibility 98.36% 98.09% 98.35% 97.84% 21.39% 10.11% 96.42%
Ret Type at Call Site 97.38% 98.01% 98.53% 97.83% 23.45% 14.82% 97.22%
Actual Param Type 87.03% 86.36% 92.28% 88.71% 9.24% 14.35% 96.74%
Return Stmt Type 84.05% 85.09% 88.13% 85.23% 12.07% 7.66% 92.15%
No Type Errors 87.25% 88.13% 91.42% 88.10% 16.04% 11.45% 96.22%
Return Stmt Exists 99.61% 99.80% 98.44% 99.57% 93.87% 98.71% 97.47%
No Unused Variables 96.42% 96.46% 96.82% 97.64% 20.55% 18.50% 94.20%
Percentage of Parsing 98.18% 98.13% 94.69% 97.08% 100.0% 100.0% 100.0%
Pass All Checks 65.26% 64.88% 47.49% 67.73% 16.92% 24.28% 86.00%

Table 10: Average Fidelity of Generated Method Bodies with 50% Evidence

GPTNeo125M GPTNeo1.3B CodeX CODEGPT CNG NSG

Set of API Calls 32% 37% 36% 36% 12% 50%
Sequences of API Calls 17% 20% 16% 19% 7% 39%
Sequences of Program Paths 13% 10% 10% 14% 7% 36%
AST Exact Match 13% 10% 10% 14% 1% 21%

These results are in-keeping with our assertion that the baselines are useful mostly for short-horizon
code-generation tasks. However, they struggle with long-horizon tasks, such as the CPG task of
generating an entire Java method body. The results—together our earlier CPG results—also show
that even though the NSG has reduced accuracy in a short-horizon task, it is still able to generate
semantically accurate programs on the CPG task.

H Application to Novel Semantic Checks

The NSG approach can generate semantically accurate programs given context. At its core, an NSG
relies on the various semantic properties (i.e., attributes) on which it is trained. We would like to
understand the influence of these semantic properties in the generated program, and explore the
possibility that training on such a set of attributes can automatically allow for high accuracy with
respect to additional semantic checks for which specific attributes were not explicitly provided during
training. To study this question, we performed an ablation study in which we trained an NSG with a
subset of the relevant attributes, but evaluated the generated programs on all properties.

We trained an NSG without the attrOut.retStmtGenerated and methodRetType attributes, as defined
in Section K.2. With 50% of the evidence available, we see that the resulting model suffers in terms
of accuracy. The “Return Stmt Type” accuracy falls from 92.15% to 77.45% whereas the “Return
Stmt Exists" accuracy falls from 97.47% to 95.68%. That said, note that the resulting “Return Stmt
Type” accuracy is still a big improvement over the vanilla CNG model (with no attributes), which is
correct only 9.51% of the time.

This suggests that the NSG has learned type-safe program generation from other semantic properties,
most notably the symTab attribute, which carries type information about the various objects that are
currently in scope. This further suggests that providing a small core of key attributes may be enough
to greatly increase the accuracy of code generation.

I Robustness Incomplete Analysis

In this section, we analyze a situation where the static analyzer fails to accurately resolve different
attributes during the synthesis process. We simulate three situations in which the static analyzer
might fail.

In the first scenario, we emulate a situation where the compiler is unable to resolve the correct
return-type information from the missing method that the user has asked the NSG to synthesize. This

22

Table 11: Next-Token Prediction Accuracy

Percentage of Evidence Available
50% 100%

NSG CODEGPT GNN2NAG CNG NSG CODEGPT GNN2NAG CNG
API Calls 62.42% NA 80.24% 49.05% 75.94% NA 80.77% 59.73%
Object Initialization Call 59.64% NA 97.65% 49.12% 66.66% NA 97.94% 87.90%
Types 61.11% NA 85.78% 50.28% 70.33% NA 86.21% 54.44%
Variable Access 92.26% NA 92.11% 50.28% 92.44% NA 92.94% 52.85%
All Terminal RHS Symbols 73.41% 88% 80.83% 51.22% 73.99% 89% 81.1% 54.32%

Real Code CodeGPT NSG

public String reader()
{

StringBuffer stringBuffer
= new StringBuffer();

String line;
while ((line =
bReader.readLine() ~= null) {
stringBuffer.append(line);
stringBuffer.append("\n");};

return stringBuffer.toString();
}

public String reader()
{
StringBuffer buffer=

new StringBuffer();
buffer.append("\n");
return buffer.toString();

}

public String reader()
{
java.lang.String var_9;
try{
var_9=field_5.readLine();
}
catch(IOException var_8) {

var_8.printStackTrace();
}
return var_9;

}

Table 12: Reader example for analyzing the BLEU-score metric.

results in a default null value being passed around for the attribute methodRetType. We find that
this reduces the overall accuracy for the attribute “Return Stmt Type" from 90.97% to 77.28%. This
does not seem to impact other static checks, however.

In the second scenario, consider the case where the compiler is unable to resolve the API return-type
attribute retType. This reduces the accuracy of the “Return type at call site” check from 98.01% to
18.16%. It also results in a decrease in “No undeclared-variable access” and “Valid formal-param
access” to 72.48% and 67.23%, respectively. This is is a huge decrease from 99.82% and 99.55%
accuracy that these semantic checks had for the base model where the attribute retType can be resolved
correctly. The fidelity metrics are also impacted, where the “AST exact match” metric drops from
26% to 10%. This is because the retType attribute is used in many portions of our attribute grammar,
on which the trained program generator is being conditioned on. An incorrect resolution of such
attribute had led to deterioration of the overall model performance.

In the final scenario, we only break the static analyzer’s capability to resolve the unused-variable-
check attribute attrOut.isUsed. For this scenario, we see that only the one semantic check “No unused
variables" out of all the semantic checks considered is impacted. Here the accuracy for this check
drops from 93.84% to 91.10%. All other metrics have negligible changes.

Rather unsurprisingly, the results suggest that NSG relies heavily on the static analyzer, and that some
attributes influence the result much more than others. It is also critical to have a static analyzer that
performs accurately during inference time, to avoid any model performance degradation.

J BLEU-Score Analysis

As described in the main body of the paper, BiLingual Evaluation Understudy or BLEU score
is “problematic in the code-generation setting. First, the BLEU score is not invariant to variable
renamings, which means that a nonsensical program that uses commonplace variable names can
get an artificially high BLEU score. Second, programs are structured objects in which some tokens
indicate control flow, and some indicate data flow. The BLEU score does not take this structure into
account.” We use one of the examples in Table 4 of the paper ("reading from a file") to illustrate this
point and show the real code and outputs from CodeGPT and NSG in Table 12.

The NSG output is clearly better. However, the CodeGPT output gets a higher BLEU score because it
uses variable names that superficially match the ground truth. Specifically, the BLEU score of the
CodeGPT output is 25.11 and the BLEU score of the NSG output is 19.07. This situation arose often
in our experiments, which is why we have used alternative program-equivalence metrics to judge
performance of generated programs, as defined in Section 5.

23

K Grammar

The Neural Attribute Grammar (NSG) model learns to synthesize real-life Java programs while
learning over production rules of an attribute grammar. In this section, we present the comprehensive
set of production rules considered, along with the attributes used. We first present the context-free
grammar in Appendix K.1, and then decorate it with attributes in Appendix K.2. The productions in
a-c deal with expansion of all the non-terminal symbols in the grammar: rules in a mainly expand to
one line of code in a Java method body; rules in b are their corresponding expansions; and rules in c
deal with control-flow operations inside the grammar. Rules in d generate terminal symbols inside
the grammar. We show the flow of attributes symTab and methodRetType in the AST in Appendix
K.2. The rest of the attributes are passed inside attrIn and attrOut, namely isInitialized, isUsed,
retStmtGenerated and itrVec.

K.1 Context Free Grammar

a1. Start : Stmt
a2. Stmt : Stmt ; Stmt | ✏
a3. Stmt : Decl
a4. Stmt : ObjInit
a5. Stmt : Invoke
a6. Stmt : Return

b1. Decl : Type Var
b2. ObjInit : Type Var = new Type ArgList
b3. Invoke : Var = Var Call InvokeMore
b4. InvokeMore : Call InvokeMore | ✏
b5. Call : Api ArgList
b6. ArgList : Var ArgList | ✏
b7. Return : return Var

c1. Stmt : Branch | Loop | Except
c2. Branch : if Cond then Stmt else Stmt
c3. Loop : while Cond then Stmt
c4. Except : try Stmt Catch
c5. Catch : catch(Type) Stmt; Catch | ✏
c6. Cond : Call

d1. Api : JAVA_API_CALL
d2. Api : INTERNAL_METHOD_CALL
d3. Type : JAVA_TYPE
d4. Var : VAR_ID

K.2 Attribute Grammar

a0. Initialization of inherited attributes of Start:⇥
Start.symTab # :=
{ in_param_1 7! type_in_param_1,
. . .
in_param_n 7! type_in_param_n,
field_1 7! type_field_1,
. . .
field_m 7! type_field_m }

Start.attrIn.itrVec # := (false, false);
Start.attrIn.retStmtGenerated # := false;
Start.attrIn.isInitialized # := �;
Start.attrIn.isUsed # := �;
Start.methodRetType # := METHOD_RET_TY PE;]

24

a1. Start : Stmt ;⇥
Stmt.attrIn # := Start.attrIn #;

Stmt.methodRetType # := Start.methodRetType #;
Stmt.symTab # := Start.symTab #;
Start.symTabOut " := Stmt.symTabOut ";
Start.attrOut " := Stmt.attrOut ";
Start.valid " := Stmt.valid ";

⇤

a2a. Stmt$0 : Stmt$1 ; Stmt$2⇥
Stmt$1.symTab # := Stmt$0.symTab #;

Stmt$2.symTab # := Stmt$1.symTabOut ";
Stmt$0.symTabOut " := Stmt$2.symTabOut ";
Stmt$1.attrIn # := Stmt$0.attrIn #;
Stmt$2.attrIn # := Stmt$1.attrOut ";
Stmt$0.attrOut " := Stmt$2.attrOut ";
Stmt$1.methodRetType # := Stmt$0.methodRetType #;
Stmt$2.methodRetType # := Stmt$0.methodRetType #;
Stmt$0.valid " := Stmt$1.valid " ^ Stmt$2.valid ";

⇤

a2b. Stmt : ✏⇥
Stmt.symTabOut " := {};

Stmt.attrOut.itrVec " := (false, false);
Stmt.valid " := true;

⇤

a3. Stmt : Decl⇥
Decl.symTab # := Stmt.symTab #;

Stmt.symTabOut " := Stmt.symTab # + Decl.symTabOut ";
Decl.attrIn # := Stmt.attrIn #;
Stmt.attrOut " := Stmt.attrIn # + Decl.attrOut ";
Decl.methodRetType # := Stmt.methodRetType #;
Stmt.valid " := Decl.valid ";

⇤

a4. Stmt : ObjInit⇥
ObjInit.symTab # := Stmt.symTab #;

Stmt.symTabOut " := Stmt.symTab #
+ ObjInit.symTabOut ";

ObjInit.attrIn # := Stmt.attrIn #;
ObjInit.methodRetType # := Stmt.methodRetType #;
Stmt.attrOut " := Stmt.attrIn # + ObjInit.attrOut ";
Stmt.valid " := ObjInit.valid "

⇤

a5. Stmt : Invoke⇥
Invoke.symTab # := Stmt.symTab #;

Stmt.symTabOut " := Stmt.symTab # +Invoke.symTabOut ";
Invoke.attrIn # := Stmt.attrIn #;
Stmt.attrOut " := Stmt.attrOut # +Invoke.attrOut ";
Invoke.methodRetType # := Stmt.methodRetType #;
Stmt.valid " := Invoke.valid ";

⇤

a6. Stmt : Return⇥
Return.symTab # := Stmt.symTab #;

Stmt.symTabOut " :=
Stmt.symTab # + Return.symTabOut ";

Invoke.attrIn # := Stmt.attrIn #;
Stmt.attrOut " := Stmt.attrIn # + Invoke.attrOut ";]
Return.methodRetType # := Stmt.methodRetType #;
Stmt.valid " := Return.valid ";

⇤

b1. Decl : Type Var⇥
Decl.symTabOut " := {Var.id : Type.name};

Decl.attrOut.isUsed[Var] " := false;
Decl.attrOut.isInitialized[Var] " := false;
Decl.valid " := true

⇤

25

b2. ObjInit : Type$0 Var = new Type$1 ArgList⇥
ArgList.symTab # := ObjInit.symTab #;

ObjInit.symtabOut " := {Var.id : Type.name};
ArgList.typeList # := Type.params ";
ObjInit.attrOut.isInitialized[Var] " := true;
ObjInit.attrOut.isUsed[Var] " := false;
ObjInit.valid " := ArgList.valid ";
^ Type$0.name " := Type$1.name ";

⇤

b3. Invoke : Var$0 = Var$1 Call InvokeMore⇥
InvokeMore.symTab # := Invoke.symTab #;

InvokeMore.exprType # := Call.retType ";
Call.attrIn # := Invoke$0.attrIn #;
InvokeMore.attrIn # := Call.attrOut ";
Invoke.attrOut.isUsed[Var$0] " := true;
Invoke.attrOut.isUsed[Var$1] " := true;
Invoke.attrOut " := InvokeMore.attrOut ";
Invoke.valid " := InvokeMore.valid "
^ (InvokeMore.retType "==

Invoke.symTab # [Var$0.id "])
^ Call.exprType " ==

Invoke.symTab # [Var$1.id "];
⇤

b4a. InvokeMore$0 : Call InvokeMore$1⇥
InvokeMore$1.symTab # := InvokeMore$0.symTab #;

InvokeMore$1.exprType # := Call.returnType ";
Call.symTab # := InvokeMore$0.symTab #;
InvokeMore$0.retType " := InvokeMore$1.retType ";
Call.attrIn # := InvokeMore$0.attrIn #;
InvokeMore$1.attrIn # := Call.attrOut ";
InvokeMoreOut$0.attrIn " := InvokeMoreOut$1.attrIn ";
InvokeMore$0.valid " := Call.valid "

^ InvokeMore$1.valid ";
^ Call.exprType " := InvokeMore$1.exprType #;

⇤

b4b. InvokeMore : ✏⇥
InvokeMore.retType " := InvokeMore.exprType #;

InvokeMore.attrIn.itrVec "= (false, false);
InvokeMore.valid " := true;

⇤

b5 Call : Api ArgList⇥
ArgList.symTab # := Call.symTab #;

ArgList.typeList # := Api.params ";
Call.retType " := Api.retType "]
Api.attrIn # := Call.attrIn #;
Call.attrOut " := Api.attrOut ";
Call.exprType " := Api.exprType ");
Call.valid " := ArgList.valid "

⇤

b6a. ArgList$0 : Var ArgList$1⇥
ArgList$1.symTab # := ArgList$0.symTab #;

ArgList$1.typeList # := ArgList$0.typeList[1 :] #;
ArgList$1.attrOut.isUsed[Var] " := true;
ArgList$0.valid " := ArgList$1.valid "
^ (ArgList$0.symTab # [Var.id "]

== ArgList$0.typeList[0] #);
⇤

b6b. ArgList : ✏⇥
ArgList.valid " := ArgList.typeList.isEmpty() ";

⇤

b7. Return : return Var⇥
Return.attrOut.retStmtGenerated " :: true

Return.valid " := Return.methodRetType #==
Return.symTab # [Var.id "]

⇤
;

26

c1.a. Stmt : Branch⇥
Branch.symTab # := Stmt.symTab #;

Stmt.valid " := Branch.valid ";
Branch.attrIn # := Stmt.attrIn #;
Stmt.attrOut " := Branch.attrOut ";

⇤

c1.b. Stmt : Loop⇥
Loop.symTab # := Stmt.symTab #;

Stmt.valid " := Loop.valid ";
Loop.attrIn # := Stmt.attrIn #;
Stmt.attrOut " := Loop.attrOut ";

⇤

c1.c. Stmt : Except⇥
Except.symTab # := Stmt.symTab #;

Stmt.valid " := Except.valid ";
Except.attrIn # := Stmt.attrIn #;
Stmt.attrOut " := Except.attrOut ";

⇤

c2. Branch : if Cond then Stmt$1 else Stmt$2⇥
Cond.symTab # := Stmt.symTab #;

Stmt$1.symTab # := Cond.symtabOut ";
Stmt$2.symTab # := Cond.symtabOut ";
Branch.valid " := Cond.valid " ^ Stmt$1.valid "

^ Stmt$2.valid ";
Cond.attrIn # := Branch.attrIn #;
Stmt$1.attrIn # := Cond.attrIn #;
Stmt$2.attrIn # := Cond.attrIn #;
Branch.attrOut " := Branch$1.attrIn #;

⇤

c3. Loop : while Cond then Stmt⇥
Cond.symTab # := Stmt.symTab #;

Stmt.symTab # := Cond.symTabOut ";
Loop.valid " := Cond.valid " ^ Stmt.valid ";
Cond.attrIn # := Loop.attrIn #;
Stmt.attrIn # := Cond.attrOut ";
Loop.attrOut " := Loop.attrIn #;

⇤

c4. Except : try Stmt Catch⇥
Stmt.symTab # := Except.symTab #;

Catch.symTab # := Stmt.symTabOut ";
Except.valid " := Stmt.valid " ^ Catch.valid ";
Stmt.attrIn # := Except.attrIn #;
Catch.attrIn # := Stmt.attrIn #;
Except.attrOut " := Except.attrIn #;

⇤

c5a. Catch$0 : catch(Type) Stmt; Catch$1⇥
Catch$1.symTab # := Catch$0.symTab #;

Stmt.symTab # := Catch$0.symTab #;
Stmt.attrIn # := Catch$0.attrIn #;
Catch$1.attrIn # := Stmt.attrIn #;
Catch$0.attrOut " := Catch$1.attrOut ";
Catch$0.valid " := Stmt.valid " ^Catch$1.valid ";

⇤

c5b. Catch : ✏⇥
Catch.valid " := true;Catch.attrOut " := �

⇤

c6. Cond : Call⇥
Call.symTab # := Cond.symTab #;

Cond.valid " := Call.valid ";
Call.attrIn # := Cond.attrIn #;
Cond.attrOut " := Call.attrOut ";

⇤

27

d1. Api : JAVA_API_CALL⇥
Api.name " := NAME;

Api.params " := FORMAL_PARAM_LIST ;
Api.exprType " := TY PE;
Api.retType " := RET_TY PE;
if(Api.name == "hasNext")

Api.attrOut.itrVec " := (true, false);
else if(Api.name == "next")

Api.attrOut.itrVec[1] " := true;
⇤

d2. Api : INTERNAL_METHOD_CALL⇥
Api.name " := NAME;

Api.params " := FORMAL_PARAM_LIST ;
Api.exprType " := ✏;
Api.retType " := RET_TY PE;
Api.attrOut.itrVec " := Api.attrIn.itrVec #;

⇤

d3. Type : JAVA_TYPE⇥
Type.name " := NAME

Type.params " := FORMAL_PARAM_LIST ;
⇤

d4. Var : VAR_ID⇥
Var.id " := ID_NUMBER

⇤

28

	Introduction
	Conditional Program Generation
	Static Analysis with Attribute Grammars
	Neurosymbolic Attribute Grammars
	Evaluation
	Experimental Setup
	Results

	Related Work
	Conclusion
	Additional Synthesis Examples
	Static Checks Considered
	Implementation Details
	Implementation of Baselines
	Generation of Training Data
	Restricting Available Evidence
	Next-Token Prediction
	Application to Novel Semantic Checks
	Robustness Incomplete Analysis
	BLEU-Score Analysis
	Grammar
	Context Free Grammar
	Attribute Grammar

