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Abstract

Continual learning (CL) of a sequence of tasks is often accompanied with the
catastrophic forgetting (CF) problem. Existing research has achieved remarkable
results in overcoming CF, especially for task continual learning. However, limited
work has been done to achieve another important goal of CL, knowledge transfer.
In this paper, we propose a technique (called BNS) to do both. The novelty of
BNS is that it dynamically builds a network to learn each new task to overcome
CF and to transfer knowledge across tasks at the same time. Experimental results
show that when the tasks are different (with little shared knowledge), BNS can
already outperform the state-of-the-art baselines. When the tasks are similar and
have shared knowledge, BNS outperforms the baselines substantially by a large
margin due to its knowledge transfer capability.

1 Introduction

Continual learning (CL) incrementally learns a sequence of tasks in a neural network. Each task
consists of a set of classes to be learned together. CL is often accompanied by the catastrophic
forgetting (CF) problem [38]. Two main settings for CL have been extensively studied, namely, task
continual learning (Task-CL) and class continual learning (Class-CL). Task-CL learns a classifier for
each task. In testing, the task id is provided for the test data so that the specific task model can be
applied to assign a class to the test sample. Although Class-CL also learns a sequence of tasks, in
testing the task id is not provided for each sample. Note that there is also a less known or studied
CL setting called domain continual learning (Domain-CL), in which all tasks (or domains) share the
same set of classes [22] and no task id is provided in testing. This paper focuses on Task-CL.

A large amount of research has been done on overcoming CF [8]. The main existing techniques
include the regularization-based methods [63, 11, 25, 18], replay-based methods [43, 18, 56] and
structure-based methods [50, 61, 39]. Regularization-based methods are primarily designed to
evaluate the importance of the parameters learned from old tasks, and then use some mechanisms to
protect those important parameters so that the performance of old tasks will not be affected much
in the process of learning new tasks. Replay-based methods use part of the data cached in the past
or train a generator to generate some similar past data to help maintain the performance of the old
tasks in learning new tasks. Structure-based methods allow the neural network to adaptively adjust
the network structure during the learning process or to add a learning module that does not share in
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the continual learning process. In the Task-CL setting, several techniques have overcome CF, e.g,
HAT [50] (see Section 4.3).

However, another major objective of CL, knowledge transfer across tasks [8, 21, 47], has received
relatively little attention. An ideal Task-CL algorithm must do well on both (preventing CF and
transferring knowledge). Being able to prevent CF alone is far from satisfactory. We will see in
Section 4.3 that the knowledge transfer ability of the current Task-CL algorithms is very weak. This
paper proposes a technique based on reinforcement learning (RL) called BNS (Building Network
Structures dynamically for CL) to explicitly perform both CF prevention and knowledge transfer at the
same time and automatically. When the tasks are different with little shared knowledge, BNS should
prevent CF. When the tasks are similar with shared knowledge, BNS should transfer knowledge
across tasks to achieve higher accuracy than without knowledge transfer.

BNS has three components: a neural structure search agent, a set of actions, and the environment.
The environment includes the current task data, a continual learner, a knowledge repository and
a replay buffer. We propose to use the similarity of the new task and the old tasks as the state
representation in the environment. This enables knowledge transfer as more similar tasks tend to have
more shared knowledge to be transferred across tasks. For each new task, the agent uses the state to
sample a sequence of actions to construct a new continual learner for the task, which includes building
a new network structure and selecting the past knowledge (i.e., parameters) from the knowledge
repository to initialize the parameters. The continual learner then learns the current task. After
learning, a specially designed reward is computed based on the current task validation data and the
saved data of old tasks in the replay buffer (to avoid CF and to transfer knowledge to the current
task). The reward is used to guide the training of the agent through RL. Thus, BNS achieves both CF
avoidance and knowledge transfer at the same time. The final model learned by the continual learner
not only performs the current new task well but also maintains the performance of the old tasks.

Experimental results on five datasets MNIST, CIFAR10, CIFAR-100, F-EMNIST and F-Celeba
show that BNS markedly outperforms the existing state-of-the-art Task-CL baselines. For datasets
(F-EMNIST and F-Celeba) with high task similarities, BNS can leverage knowledge transfer to
improve the accuracy substantially compared to the baselines. Even for datasets (MNIST, CIFAR10,
and CIFAR-100) with very different/dissimilar tasks, apart from overcoming CF, it can also improve
the accuracy in most cases, which existing Task-CL baselines have difficulty to do.

2 Related work

Existing CL approaches mainly focus on overcoming CF. Limited work has been done to explicitly
leverage the knowledge gained in the continual learning process. In general, these methods can be
divided into three categories: regularization-based, memory-based, and structure-based methods.

Regularization-based methods deal with CF by keeping the important parameters for old tasks
minimally modified in the new task learning. For example, EWC [25] uses fisher information
to quantify the importance of parameters to old tasks, and selectively alters the learning rates of
parameters to protect the parameters. Many papers dealing with CF employ similar ideas [63, 13,
3, 44, 60, 23, 40, 11, 1, 48]. In the extreme, [62] finds orthogonal projections of weight updates
that do not disturb the weights of old tasks. Many techniques also use knowledge distillation
[33, 59, 6, 4, 35, 29, 53], which is another family of methods that relies on regularization, i.e.,
knowledge distillation loss.

Memory-based methods save a small number of training examples of each old task or generate some
pseudo-examples of the old tasks to be used to jointly train with the current task data [56]) This
approach is also called experience replay. In the data memorization paradigm, the representative work
includes GEM [36], A-GEM [7], and many others [46, 43, 59, 45, 10, 17]. In the data generation
paradigm, there is also an extensive research [51, 49, 20, 58, 18, 31, 39, 15], which typically learns a
generator to generate pseudo old data. Our work also saves some training examples, but they are used
in reward calculation in our setting rather than in training as in the existing methods.

Structure-based methods dynamically expand the network in learning each new task [33, 61, 60, 32,
39] or use masks over parameters to activate a subset of the network [50, 21, 37], which BNS also
does. In particular, MNTDP [55] learns each task by expanding the existing network resulted from
the previous tasks by adding modules and selectively connect them to the existing network. DEN [61]
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is similar to MNTDP, although the specific details are different. Both these approaches are not based
on reinforcement learning (RL). Our BNS is very different as BNS is based on RL and it constructs a
new network (continual learner) for the new task and initializes it based on 5 actions, not by adding
modules to the existing network. RCL [60] is an RL-based method. However, its state is a fixed
empty embedding. RCL has only one action, which determines how many filters should be added in
each layer for the new task. Its reward is only the new task validation data accuracy and the model
complexity. Our BNS uses task similarity as the state of the environment and has 5 actions. BNS’s
reward considers both forgetting and transfer and thus can simultaneously tackles both catastrophic
forgetting and knowledge transfer. Recently, pre-trained feature extractors have also been employed
to improve the CL accuracy [19, 22]. BNS does not use any pre-trained feature extractor.

Earlier works in lifelong learning focused mainly on knowledge transfer [54, 47, 8]. However, since
they use traditional learning methods such as regression [47] and naive Bayes [9, 57] to build an
independent model for each task, there is no CF. In deep learning, the recent system CAT [21]
learns a sequence of mixed similar and dissimilar tasks and does knowledge transfer among detected
similar tasks. However, it does not do knowledge transfer among dissimilar tasks. BNS can transfer
knowledge regardless of task similarity. Progressive Network [46] tries to perform forward transfer.
It builds a model for each task and then connects all the models. However, it cannot do backward
transfer and its network size grows quadratically in the number of tasks. It is not scalable. Several
continual sentiment classification methods have focused on knowledge transfer as sentiment tasks are
similar [42, 22]. However, they do not deal with dissimilar tasks for which CF is a major issue.

Our method is also related to neural architecture search (NAS) as we search for an optimal network
structure. The goal of traditional NAS is to replace the manually designed models to find an advanced
network structure for a specific task. A NAS method usually employs a reinforcement learning (RL)
method [64, 52] to select actions to construct the final neural architecture. However, this method
usually requires considerable computing power. To solve the problem of high computational cost, a
weight sharing strategy has been proposed [41, 34, 5, 14]. ENAS [41] is a weight sharing algorithm
using RL. After training, the parameters of the previously sampled network structure are retained.
When the newly sampled network contains some substructure of the previous network, the new
network will reuse some parameters of the previous network substructure. Our method borrows the
idea of ENAS, which has not been used in CL before. The major difference between our work and
ENAS is that our policy exploits task similarities to enable our method to transfer knowledge across
tasks as similar tasks tend to have shared knowledge that can be transferred to enable new tasks to
learn better. Further, our actions and reward computation are specifically designed to enable BNS to
achieve both knowledge transfer and CF avoidance at the same time, which ENAS does not do.

3 Method

Our Task-CL setting is as follows. We incrementally learn a sequence of N tasks. Each task t has
a training dataset Dt

train = {(xtj , ytj)}
nt
j=1, where xtj is an input instance and ytj is its class label,

and nt is the number of training examples of the t-th task. Similarly, the test dataset and validation
dataset of task t are denoted by Dt

test and Dt
valid (the use of the validation data will become clear

shortly). We denote the datasets of task t by Dt = {Dt
train, D

t
test, D

t
valid}. Our goal is to design

a Task-CL algorithm that can adaptively determine the network structure for each new task t to
selectively transfer the previously learned knowledge to overcome CF and to learn the new task t
better. We use reinforcement learning to help achieve our goal.

Overview of BNS: As mentioned in the introduction, the proposed reinforcement learning based
Task-CL algorithm BNS consists of three components: a neural structure search agent, a set of
actions, and an environment. When learning the new task t, the environment consists of the current
task dataset Dt, a continual learner f(·; θt), a knowledge repository K and a replay buffer T . At the
high level, BNS works as follows. First, the current task dataset Dt and the cached data of each old
task in the replay buffer T are used to compute their similarity. The set of similarities of the new
task with all old tasks forms the current environment state representation St. Second, the agent takes
St as input to sample an action sequence at to build a new continual learner f(·; θt). The actions
determine the network structure and parameter initialization of the continual learner. Third, the new
continual learner is trained using the training set Dt

train in Dt, and then calculates the reward rt for
the model using the validation set Dt

valid of Dt and the saved old task data in the replay buffer T .
Fourth, it uses the reward to update the agent via reinforcement learning.
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The above four steps are repeated to train the agent I iterations or times on task t until it converges.
After the agent is well trained, we select the continual learner with the highest reward as the final
model for task t. This model not only performs well on the current task but also maintains the
performance of the old tasks. After learning task t, the validation dataset Dt

valid and the parameters
of f(·; θt) are saved in the replay buffer T and the knowledge repository K respectively. Note that at
any time, we only keep the trained model of the current continual learner for the last task.

3.1 Environment, Agent, Action, State and Reward

Environment: It contains the current task dataset Dt, the current continual learner f(·; θt), the
replay buffer T and the knowledge repository K. BNS uses a simple network topology, f(·; θt), i.e.,
a network with L shared layers (shared among all the learned tasks) and a task specific layer (i.e.,
the last classification layer) for each task. In learning the current task t, we calculate the similarity
st,i between task t and each old task i to obtain St = [st,0, ..., st,t−1]. We regard St as the current
state representation of the environment. Specifically, we use a pre-trained feature extractor2 F (·) to
encode each instance of the current task’s validation set Dt

valid and the saved data of previous tasks
in the replay buffer T . We then compute the current data representation Xt using the validation set
Dt

valid of task t and the data representation Xk of the saved validation set Dk
valid ∈ T of the old task

k in the replay buffer T . After that, we compute the similarity st,k of Xt and Xk.

Xt =
1

mt

mt∑
j=1

F (xt,j), Xk =
1

mk

mk∑
j=1

F (xk,j), st,k = Similarity(Xt, Xk). (1)

where mk, mt are the number of validation examples and Similarity can be any similarity function
such as cosine, KL divergence or Lp norm. When using KL divergence, we use the softmax function
to convert Xt and Xk into probability distributions. This paper uses the three functions together
through concatenation as the measure of similarity.

Agent: The agent aims to produce a sequence of actions to build an optimal network for the continual
learner f(·; θt) for the current task t. In each training iteration of the agent for task t, it samples
an action sequence to construct each layer of the network of f(·; θt) using the current environment
state St. Since there is correlation between the adjacent layers in the neural network, the actions for
building the neural network should have a front-to-back dependency. Thus, BNS uses a LSTM [16]
based network as the agent to decide the action for each layer of the current continual learner f(·; θt).
The agent is trained with policy gradient by maximizing the expected reward computed using the
current task performance and the CF avoidance on the old task data in the replay buffer T .

Action: BNS has two types of actions: layer-wise actions (i.e., “reuse”, “adaptation”, “new”, "fuse")
and element-wise action (i.e., "mask"). They decide how each layer of the continual learner should be
constructed by leveraging the shared layers’ weights of each old task learned by its continual learner
stored in K. For the layer-wise actions: “reuse” makes the new task use the same parameters as a
previous task (sampled over the corresponding layers of all the old tasks according to the “reuse”
probability). Since it can reuse any previous task’s corresponding layer, the number of reuse increases
as the task increases. “adaptation” expands the network by adding a small number of parameters.
Specifically, we add some new additional neural units to the original layer to increase the capacity
of the current continual learner. “new” spawns new parameters of exactly the same size as that of
the current layer’s parameters, and all the new parameters are randomly initialized. "fuse" makes
the new task use the average parameter values of all previous tasks’ corresponding layers. For each
layer, the agent also needs to decide whether to use "mask" to protect some units so that its previous
parameters (knowledge) will not be updated and forgotten (see Eq. (2) for details). Figure 1(A) shows
the schematic diagram of a continual learner composed of these actions.

We use the convolution neural network as an example to introduce how each action works. For the
l-th layer of the convolutional neural network, the default kernel size is 5× 5. The action “reuse” (or
”fuse") is to use a previous task’s lth layer’s existing weights (or the average of all previous tasks
l-th layers’ existing weights) for the lth layer of the current continual learner. For “adaptation”, we
use a 1× 1 convolution layer added to the original 5× 5 convolution layer in parallel. For the “new”
action, we introduce a replicated 5× 5 layer that is initialized randomly. Given the output ytl of the

2In this paper, we use ResNet18 pre-trained on ImageNet in Pytorch to calculate the task similarity.
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(A) (B)

Figure 1: (A): The schematic diagram of the continual learner after the agent learned task t. (B):
Agent of BNS, where St is the environment state of the learning task t ; al is the layer-wise action of
layer l of the continual learner; bl is the element-wise action of layer l of the continual learner.

units of the l-th layer, our element-wise "mask" mt
l and the layer final output ytl are

mt
l = σ(γetl),

ytl = mt
l � ytl .

(2)

where σ, γ and etl are the sigmoid function, a hyper-parameter and the lth layer embedding of task t,
respectively. It can also be seen from Eq. (2) that "mask" can generate task specific features. From
another perspective, the five actions defined for each layer of the continual learner can be divided
into two categories: changing the network structure (i.e., "adaptation", "mask") and initializing the
parameters (i.e., "reuse", "new" and "fuse").

Reward: Once a continual learner is built in an iteration, it is trained with the current task training
data Dt

train and then a reward is computed for the model of the continual learner for the iteration.
We design the reward by considering both the current task t’s performance improvement over the
previous iteration computed using a Up-ratio function on its validation data and the forgetting rate of
all previous tasks using a Drop-ratio function. The Up-ratio of the continual learner constructed by
the agent in the current iteration i of action sampling is as follows,

uti =
accti,t
accti−1,t

(3)

where i, accti,t (accti−1,t) are the sample step or iteration of the agent and the accuracy of the current
(previous) iteration continual learner f(·, θt) on the current task t’s validation set Dt

valid. The
Drop-ratio, which measures f(·, θt)’s remembering (CF avoidance) ability, is as follows

dti =
1

t− 1

t−1∑
k=1

accti,k
acc∗k

(4)

where acc∗k (or accti,k) is the accuracy of the final continual learner f(·, θk) (or the current f(·, θt))
on the previous task k’s validation set Dk

valid ∈ T . Our reward for the current iteration i is

rti = dti + βuti (5)

where β is a hyper-parameter. For simplicity, we omit the subscript i from now on.

3.2 Training BNS

Figure 1(B) gives our LSTM based agent network. The LSTM samples actions via softmax classifiers
in an auto-regressive fashion: the action from the previous step and environment state St are fed into
the next step. In the first step, the agent network receives an empty action embedding with state St

as input. BNS has two sets of learnable parameters: the parameters of the agent LSTM πw(St, at),
denoted by w, and the parameters of the current continual learner f(·, θt), denoted by θt. The training
procedure of BNS consists of two interleaving phases. The first phase trains θt, the parameters of
the current learner, using a whole pass over the training dataset Dt

train. The second phase trains w,
the parameters of the agent LSTM. These two phases are alternated during the training of BNS and
trained for a fixed number of steps, 200 for each task in our experiments. More details are as follows.
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Table 1: Datasets details. For each of the first three datasets, the number of classes is the total number
of classes in the dataset. For each of the last two datasets, the number of classes represents the number
of classes per task and each dataset has 10 tasks, not shown in the table.

Dataset Classes Training Testing
MNIST 10 60,000 10,000

CIFAR10 10 50,000 10,000
CIFAR100 100 50,000 10,000
F-EMNIST 62 (per task) 7,673 858
F-Celeba 2 (per task) 960 110

Training the continual learner f(·, θt): In this step, the agent first samples an action sequence
which is used to reconstruct a continual learner f(·, θt) for learning the current task. Then, we fix the
agent’s policy πw(St, at) and minimize the expected loss

L(θt) =
1

nt

nt∑
j=1

`t(f(x
t
j , θt), y

t
j) (6)

where, `t is the standard cross-entropy loss, computed on a minibatch of the training data, with a
model f(·, θt) sampled from πw(St, at). Our policy is to output an action for each layer of the current
continual learner. When the action is "reuse" or "fuse", in order to ensure that these parameters will
not change too much and thus alleviate forgetting when training the current task, we introduce L2
transfer regularization [12, 24] to constrain the training of the corresponding layer’s parameters. In
particular, we mark µ∗ as the parameters obtained from the knowledge repository K when using the
action "reuse" or "fuse". Finally, we perform stochastic gradient descent (SGD) on θt to optimize the
following loss function to train each task

L(θt) =
1

nt

nt∑
j=1

`t(f(x
t
j , θt), y

t
j) + η · ||θt − µ∗||22 (7)

where η is a hyper-parameter.

Training the agent: When the continual learner f(·, θt) converges, we use Eq. (5) to calculate the
reward rt (rti with iteration i omitted), and then use the standard policy gradient algorithm to update
the agent’s parameters. In this step, we fix θt and only update the policy parameters w, aiming to
maximize the expected reward. Formally, we update the parameters w using the following function,

w ← w + α · 5wlogπw(St, at) · rt (8)

where α is the learning rate of the agent.

Deriving the continual learner for the current task: We first sample several models from the
trained policy πw(St, at). For each sampled model, we first train it on the current task and then
compute its reward using the current task’s validation set and replay buffer T . We then take only the
model with the highest reward as the final learned model.

4 Experiments

We evaluate the proposed BNS3 on five image classification datasets, three standard benchmarks
MNIST [28], CIFAR10 and CIFAR-100 [26] and two additional datasets F-EMNIST and F-
Celeba [21] originally used for federated learning, which have similar tasks and thus allow us
to evaluate the knowledge transfer ability of BNS. F-EMNIST has 10 tasks and each task contains
the written digits and characters (62 classes) of one individual writer. F-Celeba also has 10 tasks and
each of them contains images of a celebrity labeled by whether he/she is smiling or not. The datasets
statistics are given in Table 1. Our goal is two-fold: (1) to verify whether searching a specific network
for each task through reinforcement learning can deal with CF, and (2) to verify whether similarities
between tasks can help build a good network for knowledge transfer to achieve improved accuracy.

3The code of BNS can be found at: https://github.com/lalalaup6/BNS
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4.1 Baselines

We consider the following 9 baselines for comparison with BNS, which is a task continual learning
(Task-CL) system. SGD uses a feature extractor and a classifier as the continual learner to incremen-
tally learn all tasks. There is no mechanism for dealing with CF or knowledge transfer. LWF [33]
uses knowledge distillation to deal with CF. EWC [63] is a commonly used baseline in most continual
learning papers. IMM [30] combines the sequentially trained independent models for different tasks
to perform all the tasks in the sequence. HAT [50] uses masks to protect task parameters to deal with
CF. GEM [36] is a replay method for Task-CL. UCL [2] is a Task-CL method that tries to improve
HAT. HNET+R [56] is a latest replay Task-CL method (HNET+R performs better than HNET).
GPM [48] is a recent Task-CL method that learns new tasks by taking gradient steps in orthogonal
direction to the gradient subspaces deemed important for the past tasks. Note, LWF, EWC and IMM
were originally designed for class continual learning (Class-CL). They were adapted for Task-CL in
HAT [50]. We use these versions and run their code in the HAT repository.

4.2 Implementation Details and Evaluation Metrics

For experiments using MNIST and F-EMNIST, our BNS and all baselines except HNET+R4 use the
same three fully connected layers as the shared feature extractor, and a classifier on top with one
fully connected layer for each task. In these two datasets, BNS does not use the action "adaptation"
in agent to sample actions for the continual learner. For experiments with F-Celeba, CIFAR10 and
CIFAR100, BNS and all baselines except HNET+R use AlexNet [27] as the basic network, which is
borrowed from HAT [50]. Its shared feature extractor consists of three convolutional layers followed
by two fully connected layers. The task specific classifier is one fully connected layer. In these three
datasets, BNS uses all actions to search for a suitable architecture for the continual learner. For all
experiments, we use a single Nvidia RTX 2080Ti GPU.

Parameter settings: For BNS, we use SGD as the optimizer with learning rate 0.1 to train the
continual learner f(·, θt) except F-EMNIST and F-Celeba (learning rate 0.01). The parameters of
the agent (LSTM) is updated by the Adam optimizer using the learning rate 0.0001. The hyper-
parameters η and β are set to 0.001 and 0.003 respectively. To be consistent with the baseline settings,
our continual learner trains 100 epochs for all datasets except MNIST (10 epochs). We use ten percent
of the training data of each task as the validation set for reward computation. After a task is learned,
its validation set is saved in the replay buffer.

Evaluation metrics: We adopt the final classification accuracy (ACC) as the basic evaluation metric.
For each dataset, we report the average accuracy of all tasks tested using their respective test data after
all tasks have been learned, thus the final accuracy. In order to compare the ability in overcoming
CF and knowledge transfer, we introduce two other indicators. The first one is backward transfer
(BWT) [36] to measure forgetting, which indicates how much the learning of new tasks has influenced
the accuracy of the models for the previous tasks. BWT < 0 means that the learning of new tasks
leads to some forgetting, BWT > 0 indicates that the learning of new tasks helps the previous tasks.
The second one is a new metric (Trans), which measures the forward transfer ability, showing how
helpful the knowledge learned from previous tasks is to each new task in learning. In particular, Trans
compares the accuracy of the final continual learner on each task with the accuracy of training an
independent model for each task separately (no continual learning).

ACC =
1

N

N∑
t=1

accN,t; BWT =
1

N − 1

N−1∑
t=1

accN,t − acct,t; Trans =
1

N

N∑
t=1

accN,t − acc
′
t. (9)

where N is the total number of tasks learned; acct,t is the accuracy on the test set of task t right after
task t is learned; acc

′

t is the accuracy on the test set of task t of the independent model trained on task
t. Accordingly, accN,t is the accuracy of task t after all N tasks have been learned. Note that since
our BNS is built on HAT’s architecture and may also sample the action "mask", the key mechanism
in HAT for protecting the sub-network of each task to prevent forgetting. So comparing with HAT,
we will see the knowledge transfer effect of BNS compared to a Task-CL system.

4Experiments with HNER+R use its own network as it is highly complex and is very difficult to change.
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Table 2: Average results of ACC, BWT and Trans for BNS and baselines on MNIST, CIFAR10
and CIFAR100 with dissimilar tasks over 5 runs, where A5, A2 and A50 represent the number of
tasks that are continually learned on the corresponding dataset. Standard deviation, number of model
parameters, and execution time are given in Appendix A.3.

Model MNIST A5 MNIST A2 CIFAR10 A5 CIFAR10 A2 CIFAR100 A50

ACC BWT Trans ACC BWT Trans ACC BWT Trans ACC BWT Trans ACC BWT Trans
SGD 85.77 −17.45 −14.06 90.47 −17.26 −8.83 73.57 −23.46 −18.83 76.03 −23.28 −10.58 61.14 − − 30.24 −29.22
LWF 99.53 −0.36 −0.28 98.82 −0.46 −0.48 76.86 −18.63 −14.95 83.22 −6.62 −3.40 52.91 −37.90 −37.44
EWC 85.99 −17.23 −13.82 91.58 −15.34 −7.71 79.44 −13.63 −12.37 84.18 −3.58 −2.43 68.78 −21.88 −21.57
IMM 87.25 −15.61 −12.56 94.46 −9.17 −4.83 72.81 −22.09 −19.00 78.39 −16.58 −8.23 67.86 −22.53 −22.48
UCL 98.74 −1.22 −1.07 97.40 −0.67 −1.90 85.29 −5.93 −6.52 83.66 −3.04 −2.95 64.28 −25.54 −26.21
GPM 98.56 −0.65 −1.25 98.27 −0.57 −1.03 88.62 −2.68 −3.19 83.70 −4.72 −2.92 78.43 −3.76 −11.92
GEM 99.28 −0.36 −0.54 96.45 −0.78 −2.84 77.64 −4.03 −14.17 62.87 −2.09 −23.74 78.05 −0.78 −12.30

HNET+R 99.61 −0.21 −0.20 98.58 −0.58 −0.72 92.17 −1.26 0.31 85.76 −0.18 −0.42 76.73 −15.17 −13.72
HAT 99.74 0.00 −0.08 99.03 0.00 −0.26 90.89 0.00 −0.92 86.25 0.00 −0.36 80.46 0.00 −9.89
BNS 99.87 0.01 0.04 99.26 0.00 −0.04 91.40 0.67 −0.42 87.64 0.01 1.02 82.39 −4.35 −7.96

Table 3: Average results of ACC, BWT and Trans for BNS and the baselines on F-EMNIST and
F-Celeba with similar tasks over 5 runs.

Model F-EMNIST F-Celeba
ACC BWT Trans ACC BWT Trans

SGD 13.49 −26.66 −25.87 54.93 −1.62 −6.88
LWF 8.11 −2.20 −31.25 57.18 −1.61 −4.63
EWC 43.47 −8.67 4.10 55.27 −1.22 −6.53
IMM 17.52 −25.74 −21.84 57.81 −0.80 −4.00
UCL 49.75 −1.63 10.38 55.26 −5.65 −6.55
GPM 57.84 6.40 19.07 58.08 1.03 −3.69
GEM 53.82 21.75 15.02 54.51 −3.62 −7.27

HNET+R 24.95 −43.69 −13.85 55.84 −3.23 −5.92
HAT 56.02 0.00 16.65 59.82 0.00 −1.99
BNS 60.38 0.53 21.01 65.44 −2.59 3.62

4.3 Experimental Results

To evaluate the effectiveness of forgetting avoidance and knowledge transfer of the continual learner
of BNS, we use the 3 metrics in Eq. 9. Each row in the table gives the average results over 5 runs of
all compared systems. The mean of results are summarized in Table 2 and Table 3. The standard
deviations are summarized in Tables 6 and 7 of Appendix A.3. For MNIST, CIFAR10 and CIFAR100,
we evaluate the effectiveness under three settings, 5 tasks (A5), 2 tasks (A2) and 50 tasks (A50). For
example, CIFAR10 A5 means that the original dataset is divided into 5 tasks and each task contains
two classes. For F-MNIST and F-Celeba, the 10 tasks are fixed in the original datasets. We analyze
the results in the two tables from the following perspectives.

Final accuracy (ACC): BNS performs very well. Only HNET+R performs slightly better than BNS
on CIFAR10 A5. However, HNET+R performs poorly in the other experiments in Table 2, especially
on CIFAR100 A50. On the two similar task datasets F-EMNIST and F-Celeba (Table 3), the current
state-of-the-art models, HNET+R and GPM, are very weak compared to BNS. They are even poorer
than HAT. BNS outperforms all baselines by a large margin, which shows that its ability to handle
multiple tasks using the final continual learner is powerful.

With and without continual learning (CL): Here we compare the results of learning each task
separately (without CL) and CL and study the impact of CL. The Trans metric is for this purpose.
Recall Trans is the difference between the final accuracy ACC of the continual learner after all tasks
are learned and the accuracy of learning a model for each task separately and independently (which is
ACC - Trans). The Trans column in Table 2 shows that BNS produces similar or better results than
learning separately when the tasks are different. The baselines are clearly poorer. For CIFAR100
A50, there are some loss of accuracy, but the baselines lose even more. The Trans column in Table 3
shows a very different story when we have similar tasks. We see that five CL baselines can improve
the accuracy (positive Trans values) of learning separately without CL (ACC - Trans) for F-EMNIST,
which show some knowledge transfer. But the knowledge transfer ability of BNS is significantly
better than all baselines. For example, the Trans values of GPM on F-EMNIST is 19.07% and on
F-Celeba is −3.69% (negative transfer), but these of BNS are 21.01% and 3.62% respectively. Note
that the final accuracy ACC of all other baselines are weaker than HAT, which is markedly poorer
than BNS. This again demonstrates the knowledge transfer ability of BNS.

Overcoming catastrophic forgetting (CF): BWT measures the ability of preventing CF. SGD
performs extremely poorly with very negative values (negative backward transfer or CF) for BWT for
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Figure 2: The percentage of each action used in the continual learner. Note that "mask" co-exists
with other actions. At the same time, "adaptation" is accompanied by "reuse".

all datasets. This is because SGD has no mechanism to deal with CF. Comparing the BWT values of
BNS and the baselines, we can see that BNS performs very well except a few cases with GPM and
HAT (no CF), but their final accuracy ACC values are substantially lower.

Backward knowledge transfer: As indicated in Section 4.2, BWT not only measures CF avoidance
(i.e., BWT < 0), but also measures backward knowledge transfer from new tasks to old tasks (i.e.,
BWT > 0). For all datasets, HAT has no backward transfer (BWT = 0.00) and no forgetting. Our
BNS achieves none negative backward transfer in 5 out of the 7 experiments. The baseline GPM
achieves only in 3, out of which 2 (F-EMNIST and F-CEleba) still result in much lower final accuracy
(ACC) than BNS, indicating that the forward transfer capability of GPM is poor (see below).

Forward knowledge transfer: This is defined as the difference between the accuracy of a task when
it is first learned (ACC− N−1

N BWT) and the accuracy of learning the task separately (ACC−Trans),
i.e., Trans− N−1

N BWT, which shows whether the knowledge learned from previous tasks can help
learn the new task. We summarize the experimental results of this metric in Appendix A.2. We
can again see that BNS is substantially better overall. As discussed above, for the two similar
tasks datasets in Table 3, GPM’s backward transfer is more effective, but GPM’s forward transfer
(Trans− N−1

N BWT) results are only 13.31% and −4.61% but those of BNS are 20.53% and 5.95%
respectively, which explains why GPM’s final accuracy ACC results are much lower than BNS. For
the best baseline HAT, they are respectively 16.65% and −1.99%, which are also substantially lower
than those of BNS.

In summary, we can conclude that for dissimilar tasks with little shared knowledge, BNS can deal
with CF as well as state-of-the-art baselines and in many cases, it can even achieve some positive
knowledge transfer. For similar tasks with shared knowledge, the knowledge transfer capability of
BNS is considerably better than the baselines. This indicates that BNS is a much better model for
achieving the two objectives of Task-CL, CF avoidance and knowledge transfer.

4.4 Actions Used by the Agent

In Figure 2, we plot the percentage of each action used in the action sequences generated by the agent
for all tasks in our experiments. It can be seen that in the datasets with similar tasks (F-EMNIST
and F-Celeba), the percentage of action "masks" used is much lower. This is so because for similar
tasks sharing and knowledge transfer are needed but masks are for protecting previous knowledge. In
Appendix A.1, we will present a case study to show the action selection of the agent.

4.5 Ablation Experiments and Analysis

As discussed earlier, BNS produces a task-related network structure and gives a specific initialization
method for each task according to the similarity of the task to previous tasks. In order to verify the
effectiveness of including the task similarity, we compare the results of three settings on five datasets
MNIST A5, CIFAR10 A5, CIFAR100 A50, F-EMNIST and F-Celeba. The first setting is without task
similarity as the agent input, which degenerates into a traditional neural architecture search algorithm,
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Table 4: Ablation study. BNS (zero-smi) means that no task similarity is used as an input to the agent.
BNS (one-smi) (or BNS) means that only the cosine similarity (or cos, KL and Lp-norm together) is
(are) used to calculate task correlation and is used as an input to the agent.

Components MNIST CIFAR10 CIFAR100 F-EMNIST F-Celeba
SGD 85.77 73.57 61.14 13.49 54.93
BNS (zero-sim) 99.24 88.99 78.50 57.75 62.28
BNS (one-sim) 99.85 90.73 80.21 58.41 66.62
BNS 99.87 91.40 82.39 60.38 65.44

referred to as BNS (zero-sim). The second setting uses one similarity, cosine similarity, as the agent
input, referred to as BNS (one-sim). The third setting uses all similarity measures as an input to the
agent, which is our final BNS model. Table 4 gives the results of the ablation experiments.

By comparing the results of BNS (zero-sim) and SGD, it can be seen that after storing the parameters
learned in the past, using NAS (neural architecture search) to search for each task has a significant
positive effect on overcoming catastrophic forgetting (CF). That is, designing a new initialization
method for each task using the parameters of previous tasks and appropriately changing the network
capacity can already help overcome CF significantly. Additionally, introducing one or more similari-
ties as the input to the agent further improves the model’s ability to overcome CF (see the results
of BNS (one-sim) and BNS). This demonstrates that it is highly effective to generate the network
structure and initialization method based on task similarity.

5 Conclusion

This paper proposed a novel reinforcement learning based method, BNS, for task continual learn-
ing (Task-CL). The proposed model can dynamically adjust the network structure and parameter
initialization method of each task by exploiting the similarities and differences of the tasks to achieve
both objectives of Task-CL, overcoming catastrophic forgetting and transferring knowledge across
tasks to improve accuracy. Experimental results showed that the performance of BNS is superior to
the state-of-the-art baselines in both forgetting prevention and knowledge transfer. The knowledge
transfer ability of the baselines are especially weak compared to BNS. One limitation of work is that
it requires a large amount of memory and compute. In our future work, we plan to try a generative
approach to generate the parameters of the past models.
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