
Does Preprocessing Help Training
Over-parameterized Neural Networks?

Zhao Song
Adobe Research

zsong@adobe.com

Shuo Yang
The University of Texas at Austin
yangshuo_ut@utexas.edu

Ruizhe Zhang
The University of Texas at Austin

ruizhe@utexas.edu

Abstract

Deep neural networks have achieved impressive performance in many areas. De-
signing a fast and provable method for training neural networks is a fundamental
question in machine learning.
The classical training method requires paying Ω(mnd) cost for both forward com-
putation and backward computation, where m is the width of the neural network,
and we are given n training points in d-dimensional space. In this paper, we pro-
pose two novel preprocessing ideas to bypass this Ω(mnd) barrier:

• First, by preprocessing the initial weights of the neural networks, we can
train the neural network in Õ(m1−Θ(1/d)nd) cost per iteration.

• Second, by preprocessing the input data points, we can train the neural net-
work in Õ(m4/5nd) cost per iteration.

From the technical perspective, our result is a sophisticated combination of tools
in different fields, greedy-type convergence analysis in optimization, sparsity ob-
servation in practical work, high-dimensional geometric search in data structure,
concentration and anti-concentration in probability. Our results also provide theo-
retical insights for a large number of previously established fast training methods.
In addition, our classical algorithm can be generalized to the Quantum compu-
tation model. Interestingly, we can get a similar sublinear cost per iteration but
avoid preprocessing initial weights or input data points.

1 Introduction

Over the last decade, deep learning has achieved dominating performance over many areas, e.g.,
computer vision [LBBH98, KSH12, SLJ+15, HZRS16], natural language processing [CWB+11,
DCLT18], game playing [SHM+16, SSS+17] and beyond. The computational resource requirement
for deep neural network training grows very quickly. Designing a fast and provable training method
for neural networks is, therefore, a fundamental and demanding challenge.

Almost all deep learning models are optimized by gradient descent (or its variants). The total training
time can be split into two components, the first one is the number of iterations and the second one
is the cost per spent per iteration. Nearly all the iterative algorithms for acceleration can be viewed
as two separate lines of research correspondingly, the first line is aiming for an algorithm that has
as small as possible number of iterations, the second line is focusing on designing as efficient as
possible data structures to improve the cost spent per iteration of the algorithm [Vai89, CLS19,
LSZ19, JLSW20, JKL+20, JSWZ21]. In this paper, our major focus is on the second line.

There are a number of practical works trying to use a nearest neighbor search data structure to speed
up the per-step computation of the deep neural network training [CMF+20, LXJ+20, CLP+21,
DMZS21]. However, none of the previous work is able to give a provable guarantee. In this paper,

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

our goal is to develop training algorithms that provably reduce per step time complexity. Let us
consider the ReLU activation neural network and two-layer neural network1. Let n denote the
number of training data points. Let d denote the dimension of each data point. Let m denote the
number of neurons. In each iteration of gradient descent (GD), we need to compute prediction for
each point in the neural network. Each point xi ∈ Rd, requires to compute m inner product in d
dimension. Thus, Ω(mnd) is a natural barrier for cost per iteration in training neural networks (in
both forward computation and backward computation).

A natural question to ask is

Is it possible to improve the cost per iteration of training neural network algorithm? E.g., is
o(mnd) possible?

We list our contributions as follows:

• We provide a new theoretical framework for speeding up neural network training by: 1) adopting
the shifted neural tangent kernel; 2) showing that only a small fraction (o(m)) of neurons are
activated for each input data in each training iteration; 3) identifying the sparsely activated neurons
via geometric search; 4) proving that the algorithm can minimize the training loss to zero in a
linear convergence rate.

• We provide two theoretical results 1) our first result (Theorem 6.1) builds a dynamic half-space
report data structure for the weights of a neural network, to train neural networks in sublinear cost
per iteration; 2) our second result (Theorem 6.2) builds a static half-space report data-structure for
the input data points of the training data set for training a neural network in sublinear time.

Acceleration via high-dimensional search data-structure. High-dimensional search data struc-
tures support efficiently finding points in some geometric query regions (e.g., half-spaces, simplices,
etc). Currently, there are two main approaches: one is based on Locality Sensitive Hashing (LSH)
[IM98], which aims to find the close-by points (i.e., small `2 distance [DIIM04, AR15, AIL+15,
ARN17, Raz17, AIR18, BIW19, DIRW20] or large inner product [SL14, SL15b, SL15a]) of a query
q ∈ Rd in a given set of points S ⊂ Rd. This kind of algorithms runs very fast in practice, but most
of them only support approximate queries. Another approach is based on space partitioning data
structures, for example, partition trees [Mat92a, Mat92b, AEM92, AC09, Cha12], k-d trees / range
trees [CT17, TOG17, Cha19], Voronoi diagrams [ADBMS98, Cha00], which can exactly search the
query regions. Recent works have successfully applied high-dimensional geometric data structure to
reduce the complexity of training deep learning models. SLIDE [CMF+20] accelerates the forward
pass by retrieving neurons with maximum inner product via an LSH-based data structure; Reformer
[KKL20] similarly adopts LSH to reduce the memory usage for processing long sequence; MON-
GOOSE [CLP+21] accelerates the forward pass by retrieving neurons with maximum inner products
via a learnable LSH-based data structure [Cha02] and lazy update framework [CLS19]. Despite the
great empirical success, there is no theoretical understanding of such acceleration.

The goal of our paper is to theoretically characterize the acceleration brought by the high-
dimensional geometric data structure. Specifically, our algorithm and analysis are built upon the
HSR data structures [AEM92] which can find all the points that have large inner products and sup-
port efficient data update. Note that HSR comes with a stronger recovery guarantee than LSH, in
the sense that HSR, whereas LSH is guaranteed to find some of those points.

Convergence via over-parameterization. Over the last few years, there has been a tremendous
work studying the convergence result of deep neural network explicilty or implicitly based on neural
tangent kernel (NTK) [JGH18], e.g. [LL18, DZPS19, AZLS19a, AZLS19b, DLL+19, ADH+19a,
ADH+19b, SY19, CGH+19, ZMG19, CG19, ZG19, OS20, LSS+20, JT20, ZPD+20, HLSY21,
BPSW21]. It has been shown that (S)GD can train a sufficiently wide NN with random initialization
will converge to a small training error in polynomial steps.

1An alternative name of the two-layer neural network is “one-hidden layer neural network”.

2

2 Challenges and Techniques

• Empirical works combine high-dimensional search data structures (e.g., LSH) with neural network
training, however, they do not work theoretically due to the following reasons:

– Without shifting, the number of activated (and therefore updated) neurons is Θ(m). There is
no hope to theoretically prove o(m) complexity (See Challenge 1).

– Approximate high-dimensional search data structures might miss some important neurons,
which can potentially prevent the training from converging (see Challenge 2).

• Our solutions are:
– We propose a shifted ReLU activation that is guaranteed to have o(m) number of activated

neurons. Along with the shifted ReLU, we also propose a shifted NTK to rigorously provide
a convergence guarantee (see Solution 1).

– We adopt an exact high-dimensional search data structure that better couples with the shifted
NTK. It takes o(m) time to identify the activated neurons and fits well with the convergence
analysis as it avoids missing important neurons (see Solution 2).

Challenge 1: How to sparsify an over-parameterized neural network? To speed up the training
process, we need the neural network to be “sparse”, that is, for each training data x ∈ Rd, the number
of activated neurons is small. Then, in the forward computation, we can just evaluate a small subset
of neurons. However, in the previous NTK analysis (e.g., [DZPS19]), the activation function is
σ(x) = max{〈wr, x〉, 0}, and the weights vectors wr are initially sampled from a standard d-
dimensional Gaussian distribution. Then, by the symmetry of Gaussian distribution, we know that
for every input data x, there will be about half of the neurons being activated, which means that we
can only obtain a constant-factor speedup.

Solution 1 The problem actually comes from the activation function. In practice, people use a
shifted ReLU function σb(x) = max{〈wr, x〉, br} to train neural networks. The main observation
of our work is that threshold implies sparsity. We consider the setting where all neurons have a
unified threshold parameter b. Then, by the concentration of Gaussian distribution, there will be
O(exp(−b2) ·m) activated neurons after the initialization.

The next step is to show that the number of activated neurons will not blow up too much in the
following training iterations. In [DZPS19, SY19], they showed that the weights vectors are changing
slowly during the training process. In our work, we open the black box of their proof and show
a similar phenomenon for the shifted ReLU function. More specifically, a key component is to
prove that for each training data, a large fraction of neurons will not change their status (from
non-activated to activated and vice versa) in the next iteration with high probability. To achieve
this, they showed that this is equivalent to the event that a standard Gaussian random variable in a
small centered interval [−R,R], and applied the anti-concentration inequality to upper-bound the
probability. In our setting, we need to upper-bound the probability of z ∼ N (0, 1) in a shifted
interval [b − R, b + R]. On the one hand, we can still apply the anti-concentration inequality by
showing that the probability is at most Pr[z ∈ [−R,R]]. On the other hand, this probability is also
upper-bounded by Pr[z > b − R], and for small R, we can apply the concentration inequality for
a more accurate estimation. In the end, by some finer analysis of the probability, we can show that
with high probability, the number of activated neurons in each iteration is also O(exp(−b2) ·m) for
each training data. If we take b = Θ(

√
logm), we only need to deal with truly sublinear in m of

activated neurons in the forward evaluation.

Challenge 2: How to find the small subset of activated neurons? A linear scan of the neurons
will lead to a time complexity linear in m, which we hope to avoid. Randomly sampling or us-
ing LSH for searching can potentially miss important neurons which are important for a rigorous
convergence analysis.

Solution 2 Given the shifted ReLU function σb(〈wr, x〉) = max{〈wr, x〉 − b, 0}, the active neu-
rons are those with weights wr lying in the half space of 〈wr, x〉 − b > 0. Finding such neurons
is equivalent to a computational geometry problem: given m points in Rd, in each query and a half
space H, the goal is to output the points contained in H. Here we use the Half-Space Reporting
(HSR) data structure proposed by [AEM92]: after proper initialization, the HSR data structure can

3

return all points lying in the queried half space with complexity as low as O(log(n) + k), where k
is the number of such points. Note that the HSR data structure well couples with the shifted ReLU,
as the number of activated neurons k is truly sublinear in m as per the setting of b = Θ(

√
logm).

3 Preliminaries

Notations For an integer n, we use [n] to denote the set {1, 2, · · · , n}. For a vector x and p ∈
{0, 1, 2,∞}, we use ‖x‖p to denote the entry-wise `p norm of a vector. We use Id to denote d-
dimensional identity matrix. We use N (µ, σ2) to denote Gaussian distribution with mean mu and
variance σ2. We use Õ to hide the polylog factors.

This section is organized as follows. Section 3.1 introduces the neural network and present problem
formulation. Section 3.2 presents the half-space report data-structure, Section 3.3 proposes our new
sparsity-based Characterizations.

3.1 Problem Formulation

In this section, we introduce the neural network model we study in this work. Let us consider a
two-layer ReLU activated neural network f that has width m and `2 loss function. 2

Definition 3.1 (Prediction function and loss function). Given b ∈ R, x ∈ Rd, W ∈ Rd×m and
a ∈ Rm,

f(W,x, a) :=
1√
m

m∑

r=1

arσb(〈wr, x〉),

L(W) :=
1

2

n∑

i=1

(f(W,xi, a)− yi)2.

We say function f is 2NN(m, b) for simplicity.

Here W are weights that connect input nodes with hidden nodes, a1, · · · , am ∈ R are the weights
that connect hidden nodes with output node. The ReLU function σb(x) := max{x − b, 0}, where
b is the threshold parameter. Following the literature, we mainly focus on optimizing W ∈ Rd×m.
For weights a ∈ Rm, we will never change a during the training after we randomly choose them at
the initialization.3

Definition 3.2 (Weights at initialization). We use the following initialization,

• For each r, we sample wr(0) ∼ N (0, Id)

• For each r, we sample ar from {−1,+1} uniformly at random

Next, we can calculate the gradient
Fact 3.3 (Gradient of the prediction function and loss function). For each r ∈ [m],

∂f(W,x, a)

∂wr
=

1√
m
arx1w>

r x≥b. (1)

and

∂L(W)

∂wr
=

1√
m

n∑

i=1

(f(W,xi, a)− yi)arxi1〈wr,xi〉≥b. (2)

To update the weights from iteration k to iteration k + 1, we follow the standard update rule of the
GD algorithm,

GD: W (k + 1) = W (k)− η ·∆W (k), where ∆W (k) =
∂L(W (k))

∂W (k)
. (3)

2This is a very standard formulation in the literature, e.g., see [DZPS19, SY19, BPSW21]
3We remark, in some previous work, they do choose shift, but their shift is a random shift. In our application,

it is important that the same b is fixed for all neurons and never trained.

4

The ODE of the gradient flow is defined as
dwr(t)

dt
= −∂L(W)

∂wr
. (4)

Definition 3.4 (Error of prediction). For each t ∈ {0, 1, · · · , T}, we define err(t) ∈ Rn to be the
error of prediction err(t) = y − u(t), where u(t) := f(W (t), a,X) ∈ Rn

3.2 Data Structure for Half-Space Reporting

The half-space range reporting problem is an important problem in computational geometry, which
is formally defined as following:
Definition 3.5 (Half-space range reporting). Given a set S of n points in Rd. There are two opera-
tions:

• QUERY(H): given a half-space H ⊂ Rd, output all of the points in S that contain in H ,
i.e., S ∩H .

• UPDATE: add or delete a point in S.

– INSERT(q): insert q into S
– DELETE(q): delete q from S

Let Tinit denote the pre-processing time to build the data structure, Tquery denote the time per query
and Tupdate time per update.

We use the data-structure proposed in [AEM92] to solve the half-space range reporting problem,
which admits the interface summarized in Algorithm 1. Intuitively, the data-structure recursively
partitions the set S and organizes the points in a tree data-structure. Then for a given query (a, b),
all k points of S with sgn(〈a, x〉 − b) ≥ 0 are reported quickly. Note that the query (a, b) here
defines the half-space H in Definition 3.5.

Algorithm 1 Half Space Report Data Structure

1: data structure HALFSPACEREPORT
2: procedures:
3: INIT(S, n, d) . Initialize the data structure with a set S of n points in Rd
4: QUERY(a, b) . a, b ∈ Rd. Output the set {x ∈ S : sgn(〈a, x〉 − b) ≥ 0}
5: ADD(x) . Add point x ∈ Rd to S
6: DELETE(x) . Delete point x ∈ Rd from S
7: end data structure

Adapted from [AEM92], the algorithm comes with the following complexity:
Corollary 3.6 ([AEM92]). Given a set of n points in Rd, the half-space reporting problem can be
solved with the following performances:

• Part 1. Tquery(n, d, k) = Od(n
1−1/bd/2c + k), amortized Tupdate = Od(log2(n)).

• Part 2. Tquery(n, d, k) = Od(log(n) + k), amortized Tupdate = Od(n
bd/2c−1).

We remark that Part 1 will be used in Theorem 6.1 and Part 2 will be used in Theorem 6.2.

3.3 Sparsity-based Characterizations

In this section, we consider the ReLU function with a nonzero threshold: σb(x) = max{0, x − b},
which is commonly seen in practise, and also has been considered in theoretical work [ZPD+20].

We first define the set of neurons that are firing at time t.
Definition 3.7 (fire set). For each i ∈ [n], for each t ∈ {0, 1, · · · , T}, let Si,fire(t) ⊂ [m] denote
the set of neurons that are “fire” at time t, i.e.,

Si,fire(t) := {r ∈ [m] : 〈wr(t), xi〉 > b}.
We define ki,t := |Si,fire(t)|, for all t in {0, 1, · · · , T}.

5

We propose a new “sparsity” lemma in this work. It shows that σb gives the desired sparsity.

Lemma 3.8 (Sparsity after initialization). Let b > 0 be a tunable parameter. If we use the σb as
the activation function, then after the initialization, with probability at least 1 − n · exp(−Ω(m ·
exp(−b2/2))), it holds that for each input data xi, the number of activated neurons ki,0 is at most
O(m · exp(−b2/2)), where m is the total number of neurons.

Proof. By the concentration of Gaussian distribution, the initial fire probability of a single neuron is

Pr[σb(〈wr(0), xi〉) > 0] = Pr
z∼N (0,1)

[z > b] ≤ exp(−b2/2).

Hence, for the indicator variable 1r∈Si,fire(0), we have

E[1r∈Si,fire(0)] ≤ exp(−b2/2).

By standard concentration inequality (Lemma B.1),

Pr [|Si,fire(0)| > k0 + t] ≤ exp

(
− t2/2

k0 + t/3

)
,∀t > 0 (5)

where k0 := m · exp(−b2/2). If we choose t = k0, then we have:

Pr [|Si,fire(0)| > 2k0] ≤ exp (−3k0/8)

Then, by union bound over all i ∈ [n], we have that with high probability

1− n · exp(−Ω(m · exp(−b2/2))),

the number of initial fire neurons for the sample xi is bounded by ki,0 ≤ 2m · exp(−b2/2).

The following remark gives an example of setting the threshold b, and will be useful for showing the
sublinear complexity in the next section.

Remark 3.9. If we choose b =
√

0.4 logm then k0 = m4/5. For t = m4/5, Eq. (5) implies that

Pr
[
|Si,fire(0)| > 2m4/5

]
≤ exp

(
−min{mR,O(m4/5)}

)
.

4 Training Neural Network with Half-Space Reporting Data Structure

In this section, we present two sublinear time algorithms for training over-parameterized neural net-
works. The first algorithm (Section 4.1) relies on building a high-dimensional search data-structure
for the weights of neural network. The second algorithm (Section 4.2) is based on building a data
structure for the input data points of the training set. Both of the algorithms use the HSR to quickly
identify the fired neurons to avoid unnecessary calculation. The time complexity and the sketch of
the proof are provided after each of the algorithms.

4.1 Weights Preprocessing

We first introduce the algorithm that preprocesses the weights wr for r ∈ [m], which is com-
monly used in practice [CLP+21, CMF+20, KKL20]. Recall 2NN(m, b) is f(W,x, a) :=

1√
m

∑m
r=1 arσb(〈wr, x〉). By constructing a HSR data-structure for wr’s, we can quickly find the

set of active neurons Si,fire for each of the training sample xi. See pseudo-code in Algorithm 2.

In the remaining part of this section, we focus on the time complexity analysis of Algorithm 2. The
convergence proof will be given in Section 5.

Lemma 4.1 (Running time part of Theorem 6.1). Given n data points in d-dimensional space.
Running gradient descent algorithm (Algorithm 2) on 2NN(m, b =

√
0.4 logm) (Definition 3.1) the

expected cost per-iteration of the gradient descent algorithm is

Õ(m1−Θ(1/d)nd).

6

Algorithm 2 Training Neural Network via building a data structure of weights of the neural network

1: procedure TRAININGWITHPREPROCESSWEIGHTS({(xi, yi)}i∈[n],n,m,d) . Theorem 6.1
2: Initialize wr, ar for r ∈ [m] and b according to Definition 3.2 and Remark 3.9
3: HALFSPACEREPORT HSR.INIT({wr(0)}r∈[m],m, d) . Algorithm 1
4: for t = 1→ T do
5: Si,fire ← HSR.QUERY(xi, b) for i ∈ [n]
6: Forward pass for xi only on neurons in Si,fire for i ∈ [n]
7: Calculate gradient for xi only on neurons in Si,fire for i ∈ [n]
8: Gradient update for the neurons in ∪i∈[n]Si,fire

9: HSR.DELETE(wr(t)) for r ∈ ∪i∈[n]Si,fire

10: HSR.ADD(wr(t+ 1)) for r ∈ ∪i∈[n]Si,fire

11: end for
12: return Trained weights wr(T + 1) for r ∈ [m]
13: end procedure

Algorithm 3 Training Neural Network via building a data-structure of the input data points

1: procedure TRAININGWITHPROCESSDATA({(xi, yi)}i∈[n],n,m,d) . Theorem 6.2
2: Initialize wr, ar for r ∈ [m] and b according to Definition 3.2 and Remark 3.9
3: HALFSPACEREPORT HSR.INIT({xi}i∈[n], n, d) . Algorithm 1
4: S̃r,fire ← HSR.QUERY(wr(0), b) for r ∈ [m] . S̃r,fire are samples which neuron r fires for
5: Si,fire ← {r | i ∈ S̃r,fire} . Si,fire is the set of neurons, which fire for xi
6: for t = 1→ T do
7: Forward pass for xi only on neurons in Si,fire for i ∈ [n]
8: Calculate gradient for xi only on neurons in Si,fire for i ∈ [n]
9: Gradient update for the neurons in ∪i∈[n]Si,fire

10: for r ∈ ∪i∈[n]Si,fire do
11: Si,fire.DEL(r) for i ∈ S̃r,fire

12: S̃r,fire ← HSR.QUERY(wr(t+ 1), b)

13: Si,fire.ADD(r) for i ∈ S̃r,fire

14: end for
15: end for
16: return Trained weights wr(T + 1) for r ∈ [m]
17: end procedure

Proof. The per-step time complexity is

n∑

i=1

TQUERY(m, d, ki,t) + (TDELETE + TINSERT) · | ∪i∈[n] Si,fire(t)|+ d
∑

i∈[n]

ki,t

The first term
∑n
i=1 TQUERY(m, d, ki,t) corresponds to the running time of querying the active neuron

set Si,fire(t) for all training samples i ∈ [n]. With the first result in Corollary 3.6, the complexity is
bounded by Õ(m1−Θ(1/d)nd).

The second term (TDELETE + TINSERT) · | ∪i∈[n] Si,fire(t)| corresponds to updating wr in the high-
dimensional search data-structure (Lines 9 and 10). Again with the first result in Corollary 3.6, we
have TDELETE + TINSERT = O(log2m). Combining with the fact that | ∪i∈[n] Si,fire(t)| ≤ | ∪i∈[n]

Si,fire(0)| ≤ O(nm4/5), the second term is bounded by O(nm4/5 log2m).

The third term is the time complexity of gradient calculation restricted to the set Si,fire(t). With the
bound on

∑
i∈[n] ki,t (Lemma C.10), we have d

∑
i∈[n] ki,t ≤ O(m4/5nd).

Putting them together completes the proof.

7

4.2 Data Preprocessing

While the weights preprcessing algorithm is inspired by the common practise, the dual relationship
between the input xi and model weights wr inspires us to preprocess the dataset before training (i.e.,
building HSR data-structure for xi). This largely improves the per-iteration complexity and avoids
the frequent updates of the data structure since the training data is fixed. More importantly, once
the training dataset is preprocessed, it can be reused for different models or tasks, thus one does not
need to perform the expensive preprocessing for each training.

The corresponding pseudocode is presented in Algorithm 3. With xi preprocessed, we can query
HSR with weights wr and the result S̃r,fire is the set of training samples xi for which wr fires for.
Given S̃r,fire for r ∈ [m], we can easily reconstruct the set Si,fire, which is the set of neurons fired
for sample xi. The forward and backward pass can then proceed similar to Algorithm 2.

At the end of each iteration, we will update S̃r,fire based on the new wr estimation and update Si,fire

accordingly. For Algorithm 3, the HSR data-structure is static for the entire training process. This
is the main difference from Algorithm 2, where the HSR needs to be updated every time step to
account for the changing weights wr.

We defer the convergence analysis to Section 5 and focus on the time complexity analysis of Algo-
rithm 2 in the rest of this section. We consider d being a constant for the rest of this subsection.
Lemma 4.2 (Running time part of Theorem 6.2). Given n data points in d-dimensional space.
Running gradient descent algorithm (Algorithm 2) on 2NN(m, b =

√
0.4 logm) (Definition 3.1), the

expected per-iteration running time of initializing S̃r,fire, Si,fire for r ∈ [m], i ∈ [n] is O(m log n+

m4/5n). The cost per iteration of the training algorithm is O(m4/5n log n).

Proof. We analyze the initialization and training parts separately.

Initialization In Lines 4 and 5, the sets S̃r,fire, Si,fire for r ∈ [m], i ∈ [n] are initialized. For each
r ∈ [m], we need to query the data structure the set of data points x’s such that σb(wr(0)>x) > 0.
Hence, the running time of this step is

m∑

r=1

Tquery(n, d, k̃r,0) = O(m log n+
m∑

r=1

k̃r,0)

= O(m log n+

n∑

i=1

ki,0)

= O(m log n+m4/5n).

where the second step follows from
∑m
r=1 k̃r,0 =

∑n
i=1 ki,0.

Training Consider training the neural network for T steps. For each step, first notice that the
forward and backward computation parts (Line 7 - 9) are the same as previous algorithm. The time
complexity is O(m4/5n log n).

We next show that maintaining S̃r,fire, r ∈ [m] and Si,fire, i ∈ [n] (Line 10 - 14) takes
O(m4/5n log n) time. For each fired neuron r ∈ [m], we first remove the indices of data in the
sets Si,fire, which takes time

O(1) ·
∑

r∈∪i∈[n]Si,fire

k̃r,t = O(1) ·
m∑

r=1

k̃r,t = O(m4/5n).

Then, we find the new set of x’s such that σb(〈wr(t + 1), x〉) > 0 by querying the half-space
reporting data structure. The total running time for all fired neurons is

∑

r∈∪i∈[n]Si,fire

Tquery(n, d, k̃r,t+1) . m4/5n log n+
∑

r∈∪i∈[n]Si,fire

k̃r,t+1 = O(m4/5n log n)

Then, we update the index sets Si,fire in time O(m4/5n). Therefore, each training step takes
O(m4/5n log n) time, which completes the proof.

8

5 Convergence of Our Algorithm

We state the result of our training neural network algorithms (Lemma 5.2) can converge in certain
steps. An important component in our proof is to find out a lower bound on minimum eigenvalue
of the continuous Hessian matrix λmin(Hcts). It turns out to be an anti-concentration problem of
the Gaussian random matrix. In [OS20], they gave a lower bound on λmin(Hcts) for ReLU function
with b = 0, assuming the input data are separable. One of our major technical contribution is
generalizing it to arbitrary b ≥ 0.

Proposition 5.1 (Informal version of Theorem F.1). Given n (normalized) input data points
{x1, x2, · · · , xn} ⊆ Rd such that ∀i ∈ [n], ‖xi‖2 = 1. Let parameter δ := mini 6=j{‖xi −
xj‖2, ‖xi + xj‖2} denote the data separability. For any shift parameter b ≥ 0, we define shifted
NTK Hcts ∈ Rn×n as follows

Hcts
i,j := E

w∼N (0,Id)

[
〈xi, xj〉 · 1〈w,xi〉≥b · 1〈w,xj〉≥b

]
,∀i ∈ [n], j ∈ [n].

Then

λmin(Hcts) ≥ 0.01e−b
2/2δ/n2.

With proposition 5.1, we are ready to show the convergence rate of training an over-parameterized
neural network with shifted ReLU function.

Lemma 5.2 (Convergence part of Theorem 6.1 and Theorem 6.2). Suppose input data-points are
δ-separable, i.e., δ := mini 6=j{‖xi − xj‖2, ‖xi + xj‖2}. Let m = poly(n, 1/δ, log(n/ρ)) and
η = O(λ/n2). Let b = Θ(

√
logm). Then

Pr
[
‖err(k)‖22 ≤ (1− ηλ/2)k · ‖err(0)‖22, ∀k ∈ {0, 1, · · · , T}

]
≥ 1− ρ.

Note that the randomness is over initialization. Eventually, we choose T = λ−2n2 log(n/ε) where
ε is the final accuracy.

This result shows that despite the shifted ReLU and sparsely activated neurons, we can still retain
the linear convergence. Combined with the results on per-step complexity in the previous section, it
gives our main theoretical results of training deep learning models with sublinear time complexity
(Theorem 6.1 and Theorem 6.2).

6 Main Classical Results

We present two theorems (under classical computation model) of our work, showing the sublinear
running time and linear convergence rate of our two algorithms. We leave the quantum application
into Appendix G. The first algorithm is relying on building a high-dimensional geometric search
data-structure for the weights of a neural network.

Theorem 6.1 (Main result I, informal of Theorem E.2). Given n data points in d-dimensional space.
We preprocess the initialization weights of the neural network. Running gradient descent algorithm
(Algorithm 2) on a two-layer, m-width, over-parameterized ReLU neural network will minimize the
training loss to zero, and the expected running time of gradient descent algorithm (per iteration) is

Õ(m1−Θ(1/d)nd).

The second algorithm is based on building a data structure for the input data points of the training
set. Our second algorithm can further reduce the cost per iteration from m1−1/d to truly sublinear
in m, e.g. m4/5.

Theorem 6.2 (Main result II, informal of Theorem E.2). Given n data points in d-dimensional
space. We preprocess all the data points. Running gradient descent algorithm (Algorithm 3) on
a two-layer, m-width, over-parameterized ReLU neural network will minimize the training loss to
zero, and the expected running time of gradient descent algorithm (per iteration) is

Õ(m4/5nd).

9

7 Discussion and Limitations

In this paper, we propose two sublinear algorithms to train neural networks. By preprocessing
the weights of the neuron networks or preprocessing the training data, we rigorously prove that
it is possible to train a neuron network with sublinear complexity, which overcomes the Ω(mnd)
barrier in classical training methods. Our results also offer theoretical insights for many previously
established fast training methods.

Our algorithm is intuitively related to the lottery tickets hypothesis [FC18]. However, our theoretical
results can not be applied to explain lottery tickets immediately for two reasons: 1) the lottery ticket
hypothesis focuses on pruning weights; while our results identify the important neurons. 2) the lot-
tery ticket hypothesis identifies the weights that need to be pruned after training (by examining their
magnitude), while our algorithms accelerate the training via preprocessing. It would be interesting
to see how our theory can be extended to the lottery ticket hypothesis.

One limitation of our work is that the current analysis framework does not provide a convergence
guarantee for combining LSH with gradient descent, which is commonly seen in many empirical
works. Our proof breaks as LSH might miss important neurons which potentially ruins the conver-
gence analysis. Instead, we refer to the HSR data structure, which provides a stronger theoretical
guarantee of successfully finding all fired neurons.

Acknowledgments and Disclosure of Funding

SY’s research is supported by NSF grants 1564000 and 1934932. RZ’s research is supported by
NSF Grant CCF-1648712 and Scott Aaronson’s Vannevar Bush Faculty Fellowship from the US
Department of Defense.

References
[AC09] Peyman Afshani and Timothy M Chan. Optimal halfspace range reporting in three di-

mensions. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete
algorithms, pages 180–186. SIAM, 2009.

[ADBMS98] Pankaj K Agarwal, Mark De Berg, Jiri Matousek, and Otfried Schwarzkopf. Con-
structing levels in arrangements and higher order voronoi diagrams. SIAM journal on
computing, 27(3):654–667, 1998.

[ADH+19a] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained
analysis of optimization and generalization for overparameterized two-layer neural
networks. In International Conference on Machine Learning, pages 322–332, 2019.

[ADH+19b] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong
Wang. On exact computation with an infinitely wide neural net. In NeurIPS, 2019.

[AEM92] Pankaj K Agarwal, David Eppstein, and Jirí Matousek. Dynamic half-space report-
ing, geometric optimization, and minimum spanning trees. In Annual Symposium on
Foundations of Computer Science (FOCS), volume 33, pages 80–80, 1992.

[AHKZ20] Jonathan Allcock, Chang-Yu Hsieh, Iordanis Kerenidis, and Shengyu Zhang. Quan-
tum algorithms for feedforward neural networks. ACM Transactions on Quantum
Computing, 1(1):1–24, 2020.

[AIL+15] Alexandr Andoni, Piotr Indyk, TMM Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. Practical and optimal lsh for angular distance. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 1225–1233. Curran Associates, 2015.

[AIR18] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor
search in high dimensions. arXiv preprint arXiv:1806.09823, 7, 2018.

[AR15] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approx-
imate near neighbors. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing (STOC), pages 793–801, 2015.

10

[ARN17] Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel Nosatzki. Lsh forest: Practical
algorithms made theoretical. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 67–78. SIAM, 2017.

[AZLS19a] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learn-
ing via over-parameterization. In ICML, 2019.

[AZLS19b] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training
recurrent neural networks. In NeurIPS, 2019.

[Ber24] Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula
of laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

[BHMT02] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude
amplification and estimation. Contemporary Mathematics, 305:53–74, 2002.

[BIW19] Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density
estimation in high dimensions. In NeurIPS, pages 15773–15782, 2019.

[BPSW21] Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (over-
parametrized) neural networks in near-linear time. In 12th Innovations in Theoretical
Computer Science Conference (ITCS), 2021.

[CG19] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent
for wide and deep neural networks. In NeurIPS, pages 10835–10845, 2019.

[CGH+19] Tianle Cai, Ruiqi Gao, Jikai Hou, Siyu Chen, Dong Wang, Di He, Zhihua Zhang,
and Liwei Wang. Gram-gauss-newton method: Learning overparameterized neural
networks for regression problems. arXiv preprint arXiv:1905.11675, 2019.

[Cha00] Timothy M Chan. Random sampling, halfspace range reporting, and construction of
(≤ k)-levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.

[Cha02] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing (STOC),
pages 380–388, 2002.

[Cha12] Timothy M Chan. Optimal partition trees. Discrete & Computational Geometry,
47(4):661–690, 2012.

[Cha19] Timothy M Chan. Orthogonal range searching in moderate dimensions: kd trees and
range trees strike back. Discrete & Computational Geometry, 61(4):899–922, 2019.

[CLP+21] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao,
Zhao Song, Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh
framework for efficient neural network training. In ICLR oral, 2021.

[CLS19] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. In STOC, 2019.

[CMF+20] Beidi Chen, Tharun Medini, James Farwell, Sameh Gobriel, Charlie Tai, and Anshu-
mali Shrivastava. Slide: In defense of smart algorithms over hardware acceleration
for large-scale deep learning systems. In In Proceedings of the 3rd Conference on
Machine Learning and Systems (MLSys), 2020.

[CT17] Timothy M Chan and Konstantinos Tsakalidis. Dynamic orthogonal range search-
ing on the ram, revisited. Leibniz International Proceedings in Informatics, LIPIcs,
77:281–2813, 2017.

[CWB+11] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. Natural language processing (almost) from scratch. Journal of
machine learning research, 12(ARTICLE):2493–2537, 2011.

11

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the twen-
tieth annual symposium on Computational geometry (SoCG), pages 253–262, 2004.

[DIRW20] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space partitions
for nearest neighbor search. In ICLR. arXiv preprint arXiv:1901.08544, 2020.

[DLL+19] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient
descent finds global minima of deep neural networks. In ICML, 2019.

[DMZS21] Shabnam Daghaghi, Nicholas Meisburger, Mengnan Zhao, and Anshumali Shrivas-
tava. Accelerating slide deep learning on modern cpus: Vectorization, quantizations,
memory optimizations, and more. Proceedings of Machine Learning and Systems, 3,
2021.

[DZPS19] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In ICLR, 2019.

[FC18] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In ICLR, 2018.

[Gro96] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceed-
ings of the twenty-eighth annual ACM symposium on Theory of computing (STOC),
pages 212–219, 1996.

[HLSY21] Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent
kernel-based framework for federated learning convergence analysis. In ICML, 2021.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pages 770–778, 2016.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing
the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing (STOC), pages 604–613, 1998.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. In Advances in neural information
processing systems, pages 8571–8580, 2018.

[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A
faster interior point method for semidefinite programming. In FOCS, 2020.

[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved
cutting plane method for convex optimization, convex-concave games and its appli-
cations. In STOC, 2020.

[JSWZ21] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic
matrix inverse for faster lps. In Proceedings of the 53rd Annual ACM SIGACT Sym-
posium on Theory of Computing (STOC). arXiv preprint arXiv:2004.07470, 2021.

[JT20] Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to
achieve arbitrarily small test error with shallow relu networks. In ICLR, 2020.

[KKL20] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient trans-
former. arXiv preprint arXiv:2001.04451, 2020.

[KLP19] Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algorithms for
deep convolutional neural networks. arXiv preprint arXiv:1911.01117, 2019.

12

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information processing
systems, 25:1097–1105, 2012.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[LL18] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via
stochastic gradient descent on structured data. In NeurIPS, 2018.

[LS01] W.V. Li and Q.-M. Shao. Gaussian processes: Inequalities, small ball probabilities and
applications. In Stochastic Processes: Theory and Methods, volume 19 of Handbook
of Statistics, pages 533–597. Elsevier, 2001.

[LSS+20] Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu. Generalized
leverage score sampling for neural networks. In NeurIPS, 2020.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the
current matrix multiplication time. In Conference on Learning Theory (COLT), pages
2140–2157. PMLR, 2019.

[LXJ+20] Zichang Liu, Zhaozhuo Xu, Alan Ji, Jonathan Li, Beidi Chen, and Anshumali
Shrivastava. Climbing the wol: Training for cheaper inference. arXiv preprint
arXiv:2007.01230, 2020.

[Mat92a] Jiří Matoušek. Efficient partition trees. Discrete & Computational Geometry,
8(3):315–334, 1992.

[Mat92b] Jiri Matousek. Reporting points in halfspaces. Computational Geometry, 2(3):169–
186, 1992.

[OS20] Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization:
Global convergence guarantees for training shallow neural networks. IEEE Journal
on Selected Areas in Information Theory, 1(1):84–105, 2020.

[Raz17] Ilya Razenshteyn. High-dimensional similarity search and sketching: algorithms and
hardness. PhD thesis, Massachusetts Institute of Technology, 2017.

[Sch11] J. Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich
vielen veränderlichen. Journal für die reine und angewandte Mathematik, 140:1–28,
1911.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree
search. nature, 529(7587):484–489, 2016.

[SL14] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maxi-
mum inner product search (mips). Advances in Neural Information Processing Sys-
tems (NIPS), pages 2321–2329, 2014.

[SL15a] Anshumali Shrivastava and Ping Li. Asymmetric minwise hashing for indexing bi-
nary inner products and set containment. In Proceedings of the 24th international
conference on world wide web (WWW), pages 981–991, 2015.

[SL15b] Anshumali Shrivastava and Ping Li. Improved asymmetric locality sensitive hashing
(alsh) for maximum inner product search (mips). In Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence (UAI), pages 812–821, 2015.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 1–9, 2015.

13

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-
tering the game of go without human knowledge. nature, 550(7676):354–359, 2017.

[SY19] Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix
chernoff bound. arXiv preprint arXiv:1906.03593, 2019.

[TOG17] Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and
computational geometry. CRC press, 2017.

[Tro15] Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and
Trends in Machine Learning, 8(1-2):1–230, 2015.

[Vai89] Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication.
In FOCS, 1989.

[ZG19] Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized
deep neural networks. In NeurIPS, pages 2053–2062, 2019.

[ZMG19] Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natu-
ral gradient descent for over-parameterized neural networks. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[ZPD+20] Yi Zhang, Orestis Plevrakis, Simon S Du, Xingguo Li, Zhao Song, and Sanjeev Arora.
Over-parameterized adversarial training: An analysis overcoming the curse of dimen-
sionality. In NeurIPS. arXiv preprint arXiv:2002.06668, 2020.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
A: [Yes] .

(b) Did you describe the limitations of your work?
A: [Yes] See Section 7.

(c) Did you discuss any potential negative societal impacts of your work?
A: [N/A] . Our theoretical work does not have explicitly negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them?
A: [Yes] , we conformed.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results?

A: [Yes] , we explictly stated the assumptions.
(b) Did you include complete proofs of all theoretical results?

A: [Yes] , we provided the complete proofs in supplementary materials.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)?
A: [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?
A: [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
A: [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)?
A: [N/A]

14

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators?

A: [N/A]
(b) Did you mention the license of the assets?

A: [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL?

A: [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating?
A: [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content?
A: [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable?
A: [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable?
A: [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation?
A: [N/A]

15

