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Abstract

Deep neural networks have achieved impressive performance in many areas. De-
signing a fast and provable method for training neural networks is a fundamental
question in machine learning.
The classical training method requires paying Ω(mnd) cost for both forward com-
putation and backward computation, where m is the width of the neural network,
and we are given n training points in d-dimensional space. In this paper, we pro-
pose two novel preprocessing ideas to bypass this Ω(mnd) barrier:

• First, by preprocessing the initial weights of the neural networks, we can
train the neural network in Õ(m1−Θ(1/d)nd) cost per iteration.

• Second, by preprocessing the input data points, we can train the neural net-
work in Õ(m4/5nd) cost per iteration.

From the technical perspective, our result is a sophisticated combination of tools
in different fields, greedy-type convergence analysis in optimization, sparsity ob-
servation in practical work, high-dimensional geometric search in data structure,
concentration and anti-concentration in probability. Our results also provide theo-
retical insights for a large number of previously established fast training methods.
In addition, our classical algorithm can be generalized to the Quantum compu-
tation model. Interestingly, we can get a similar sublinear cost per iteration but
avoid preprocessing initial weights or input data points.

1 Introduction

Over the last decade, deep learning has achieved dominating performance over many areas, e.g.,
computer vision [LBBH98, KSH12, SLJ+15, HZRS16], natural language processing [CWB+11,
DCLT18], game playing [SHM+16, SSS+17] and beyond. The computational resource requirement
for deep neural network training grows very quickly. Designing a fast and provable training method
for neural networks is, therefore, a fundamental and demanding challenge.

Almost all deep learning models are optimized by gradient descent (or its variants). The total training
time can be split into two components, the first one is the number of iterations and the second one
is the cost per spent per iteration. Nearly all the iterative algorithms for acceleration can be viewed
as two separate lines of research correspondingly, the first line is aiming for an algorithm that has
as small as possible number of iterations, the second line is focusing on designing as efficient as
possible data structures to improve the cost spent per iteration of the algorithm [Vai89, CLS19,
LSZ19, JLSW20, JKL+20, JSWZ21]. In this paper, our major focus is on the second line.

There are a number of practical works trying to use a nearest neighbor search data structure to speed
up the per-step computation of the deep neural network training [CMF+20, LXJ+20, CLP+21,
DMZS21]. However, none of the previous work is able to give a provable guarantee. In this paper,
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our goal is to develop training algorithms that provably reduce per step time complexity. Let us
consider the ReLU activation neural network and two-layer neural network1. Let n denote the
number of training data points. Let d denote the dimension of each data point. Let m denote the
number of neurons. In each iteration of gradient descent (GD), we need to compute prediction for
each point in the neural network. Each point xi ∈ Rd, requires to compute m inner product in d
dimension. Thus, Ω(mnd) is a natural barrier for cost per iteration in training neural networks (in
both forward computation and backward computation).

A natural question to ask is

Is it possible to improve the cost per iteration of training neural network algorithm? E.g., is
o(mnd) possible?

We list our contributions as follows:

• We provide a new theoretical framework for speeding up neural network training by: 1) adopting
the shifted neural tangent kernel; 2) showing that only a small fraction (o(m)) of neurons are
activated for each input data in each training iteration; 3) identifying the sparsely activated neurons
via geometric search; 4) proving that the algorithm can minimize the training loss to zero in a
linear convergence rate.

• We provide two theoretical results 1) our first result (Theorem 6.1) builds a dynamic half-space
report data structure for the weights of a neural network, to train neural networks in sublinear cost
per iteration; 2) our second result (Theorem 6.2) builds a static half-space report data-structure for
the input data points of the training data set for training a neural network in sublinear time.

Acceleration via high-dimensional search data-structure. High-dimensional search data struc-
tures support efficiently finding points in some geometric query regions (e.g., half-spaces, simplices,
etc). Currently, there are two main approaches: one is based on Locality Sensitive Hashing (LSH)
[IM98], which aims to find the close-by points (i.e., small `2 distance [DIIM04, AR15, AIL+15,
ARN17, Raz17, AIR18, BIW19, DIRW20] or large inner product [SL14, SL15b, SL15a]) of a query
q ∈ Rd in a given set of points S ⊂ Rd. This kind of algorithms runs very fast in practice, but most
of them only support approximate queries. Another approach is based on space partitioning data
structures, for example, partition trees [Mat92a, Mat92b, AEM92, AC09, Cha12], k-d trees / range
trees [CT17, TOG17, Cha19], Voronoi diagrams [ADBMS98, Cha00], which can exactly search the
query regions. Recent works have successfully applied high-dimensional geometric data structure to
reduce the complexity of training deep learning models. SLIDE [CMF+20] accelerates the forward
pass by retrieving neurons with maximum inner product via an LSH-based data structure; Reformer
[KKL20] similarly adopts LSH to reduce the memory usage for processing long sequence; MON-
GOOSE [CLP+21] accelerates the forward pass by retrieving neurons with maximum inner products
via a learnable LSH-based data structure [Cha02] and lazy update framework [CLS19]. Despite the
great empirical success, there is no theoretical understanding of such acceleration.

The goal of our paper is to theoretically characterize the acceleration brought by the high-
dimensional geometric data structure. Specifically, our algorithm and analysis are built upon the
HSR data structures [AEM92] which can find all the points that have large inner products and sup-
port efficient data update. Note that HSR comes with a stronger recovery guarantee than LSH, in
the sense that HSR, whereas LSH is guaranteed to find some of those points.

Convergence via over-parameterization. Over the last few years, there has been a tremendous
work studying the convergence result of deep neural network explicilty or implicitly based on neural
tangent kernel (NTK) [JGH18], e.g. [LL18, DZPS19, AZLS19a, AZLS19b, DLL+19, ADH+19a,
ADH+19b, SY19, CGH+19, ZMG19, CG19, ZG19, OS20, LSS+20, JT20, ZPD+20, HLSY21,
BPSW21]. It has been shown that (S)GD can train a sufficiently wide NN with random initialization
will converge to a small training error in polynomial steps.

1An alternative name of the two-layer neural network is “one-hidden layer neural network”.
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2 Challenges and Techniques

• Empirical works combine high-dimensional search data structures (e.g., LSH) with neural network
training, however, they do not work theoretically due to the following reasons:

– Without shifting, the number of activated (and therefore updated) neurons is Θ(m). There is
no hope to theoretically prove o(m) complexity (See Challenge 1).

– Approximate high-dimensional search data structures might miss some important neurons,
which can potentially prevent the training from converging (see Challenge 2).

• Our solutions are:
– We propose a shifted ReLU activation that is guaranteed to have o(m) number of activated

neurons. Along with the shifted ReLU, we also propose a shifted NTK to rigorously provide
a convergence guarantee (see Solution 1).

– We adopt an exact high-dimensional search data structure that better couples with the shifted
NTK. It takes o(m) time to identify the activated neurons and fits well with the convergence
analysis as it avoids missing important neurons (see Solution 2).

Challenge 1: How to sparsify an over-parameterized neural network? To speed up the training
process, we need the neural network to be “sparse”, that is, for each training data x ∈ Rd, the number
of activated neurons is small. Then, in the forward computation, we can just evaluate a small subset
of neurons. However, in the previous NTK analysis (e.g., [DZPS19]), the activation function is
σ(x) = max{〈wr, x〉, 0}, and the weights vectors wr are initially sampled from a standard d-
dimensional Gaussian distribution. Then, by the symmetry of Gaussian distribution, we know that
for every input data x, there will be about half of the neurons being activated, which means that we
can only obtain a constant-factor speedup.

Solution 1 The problem actually comes from the activation function. In practice, people use a
shifted ReLU function σb(x) = max{〈wr, x〉, br} to train neural networks. The main observation
of our work is that threshold implies sparsity. We consider the setting where all neurons have a
unified threshold parameter b. Then, by the concentration of Gaussian distribution, there will be
O(exp(−b2) ·m) activated neurons after the initialization.

The next step is to show that the number of activated neurons will not blow up too much in the
following training iterations. In [DZPS19, SY19], they showed that the weights vectors are changing
slowly during the training process. In our work, we open the black box of their proof and show
a similar phenomenon for the shifted ReLU function. More specifically, a key component is to
prove that for each training data, a large fraction of neurons will not change their status (from
non-activated to activated and vice versa) in the next iteration with high probability. To achieve
this, they showed that this is equivalent to the event that a standard Gaussian random variable in a
small centered interval [−R,R], and applied the anti-concentration inequality to upper-bound the
probability. In our setting, we need to upper-bound the probability of z ∼ N (0, 1) in a shifted
interval [b − R, b + R]. On the one hand, we can still apply the anti-concentration inequality by
showing that the probability is at most Pr[z ∈ [−R,R]]. On the other hand, this probability is also
upper-bounded by Pr[z > b − R], and for small R, we can apply the concentration inequality for
a more accurate estimation. In the end, by some finer analysis of the probability, we can show that
with high probability, the number of activated neurons in each iteration is also O(exp(−b2) ·m) for
each training data. If we take b = Θ(

√
logm), we only need to deal with truly sublinear in m of

activated neurons in the forward evaluation.

Challenge 2: How to find the small subset of activated neurons? A linear scan of the neurons
will lead to a time complexity linear in m, which we hope to avoid. Randomly sampling or us-
ing LSH for searching can potentially miss important neurons which are important for a rigorous
convergence analysis.

Solution 2 Given the shifted ReLU function σb(〈wr, x〉) = max{〈wr, x〉 − b, 0}, the active neu-
rons are those with weights wr lying in the half space of 〈wr, x〉 − b > 0. Finding such neurons
is equivalent to a computational geometry problem: given m points in Rd, in each query and a half
space H, the goal is to output the points contained in H. Here we use the Half-Space Reporting
(HSR) data structure proposed by [AEM92]: after proper initialization, the HSR data structure can
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return all points lying in the queried half space with complexity as low as O(log(n) + k), where k
is the number of such points. Note that the HSR data structure well couples with the shifted ReLU,
as the number of activated neurons k is truly sublinear in m as per the setting of b = Θ(

√
logm).

3 Preliminaries

Notations For an integer n, we use [n] to denote the set {1, 2, · · · , n}. For a vector x and p ∈
{0, 1, 2,∞}, we use ‖x‖p to denote the entry-wise `p norm of a vector. We use Id to denote d-
dimensional identity matrix. We use N (µ, σ2) to denote Gaussian distribution with mean mu and
variance σ2. We use Õ to hide the polylog factors.

This section is organized as follows. Section 3.1 introduces the neural network and present problem
formulation. Section 3.2 presents the half-space report data-structure, Section 3.3 proposes our new
sparsity-based Characterizations.

3.1 Problem Formulation

In this section, we introduce the neural network model we study in this work. Let us consider a
two-layer ReLU activated neural network f that has width m and `2 loss function. 2

Definition 3.1 (Prediction function and loss function). Given b ∈ R, x ∈ Rd, W ∈ Rd×m and
a ∈ Rm,

f(W,x, a) :=
1√
m

m∑

r=1

arσb(〈wr, x〉),

L(W ) :=
1

2

n∑

i=1

(f(W,xi, a)− yi)2.

We say function f is 2NN(m, b) for simplicity.

Here W are weights that connect input nodes with hidden nodes, a1, · · · , am ∈ R are the weights
that connect hidden nodes with output node. The ReLU function σb(x) := max{x − b, 0}, where
b is the threshold parameter. Following the literature, we mainly focus on optimizing W ∈ Rd×m.
For weights a ∈ Rm, we will never change a during the training after we randomly choose them at
the initialization.3

Definition 3.2 (Weights at initialization). We use the following initialization,

• For each r, we sample wr(0) ∼ N (0, Id)

• For each r, we sample ar from {−1,+1} uniformly at random

Next, we can calculate the gradient
Fact 3.3 (Gradient of the prediction function and loss function). For each r ∈ [m],

∂f(W,x, a)

∂wr
=

1√
m
arx1w>

r x≥b. (1)

and

∂L(W )

∂wr
=

1√
m

n∑

i=1

(f(W,xi, a)− yi)arxi1〈wr,xi〉≥b. (2)

To update the weights from iteration k to iteration k + 1, we follow the standard update rule of the
GD algorithm,

GD: W (k + 1) = W (k)− η ·∆W (k), where ∆W (k) =
∂L(W (k))

∂W (k)
. (3)

2This is a very standard formulation in the literature, e.g., see [DZPS19, SY19, BPSW21]
3We remark, in some previous work, they do choose shift, but their shift is a random shift. In our application,

it is important that the same b is fixed for all neurons and never trained.
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The ODE of the gradient flow is defined as
dwr(t)

dt
= −∂L(W )

∂wr
. (4)

Definition 3.4 (Error of prediction). For each t ∈ {0, 1, · · · , T}, we define err(t) ∈ Rn to be the
error of prediction err(t) = y − u(t), where u(t) := f(W (t), a,X) ∈ Rn

3.2 Data Structure for Half-Space Reporting

The half-space range reporting problem is an important problem in computational geometry, which
is formally defined as following:
Definition 3.5 (Half-space range reporting). Given a set S of n points in Rd. There are two opera-
tions:

• QUERY(H): given a half-space H ⊂ Rd, output all of the points in S that contain in H ,
i.e., S ∩H .

• UPDATE: add or delete a point in S.

– INSERT(q): insert q into S
– DELETE(q): delete q from S

Let Tinit denote the pre-processing time to build the data structure, Tquery denote the time per query
and Tupdate time per update.

We use the data-structure proposed in [AEM92] to solve the half-space range reporting problem,
which admits the interface summarized in Algorithm 1. Intuitively, the data-structure recursively
partitions the set S and organizes the points in a tree data-structure. Then for a given query (a, b),
all k points of S with sgn(〈a, x〉 − b) ≥ 0 are reported quickly. Note that the query (a, b) here
defines the half-space H in Definition 3.5.

Algorithm 1 Half Space Report Data Structure

1: data structure HALFSPACEREPORT
2: procedures:
3: INIT(S, n, d) . Initialize the data structure with a set S of n points in Rd
4: QUERY(a, b) . a, b ∈ Rd. Output the set {x ∈ S : sgn(〈a, x〉 − b) ≥ 0}
5: ADD(x) . Add point x ∈ Rd to S
6: DELETE(x) . Delete point x ∈ Rd from S
7: end data structure

Adapted from [AEM92], the algorithm comes with the following complexity:
Corollary 3.6 ([AEM92]). Given a set of n points in Rd, the half-space reporting problem can be
solved with the following performances:

• Part 1. Tquery(n, d, k) = Od(n
1−1/bd/2c + k), amortized Tupdate = Od(log2(n)).

• Part 2. Tquery(n, d, k) = Od(log(n) + k), amortized Tupdate = Od(n
bd/2c−1).

We remark that Part 1 will be used in Theorem 6.1 and Part 2 will be used in Theorem 6.2.

3.3 Sparsity-based Characterizations

In this section, we consider the ReLU function with a nonzero threshold: σb(x) = max{0, x − b},
which is commonly seen in practise, and also has been considered in theoretical work [ZPD+20].

We first define the set of neurons that are firing at time t.
Definition 3.7 (fire set). For each i ∈ [n], for each t ∈ {0, 1, · · · , T}, let Si,fire(t) ⊂ [m] denote
the set of neurons that are “fire” at time t, i.e.,

Si,fire(t) := {r ∈ [m] : 〈wr(t), xi〉 > b}.
We define ki,t := |Si,fire(t)|, for all t in {0, 1, · · · , T}.
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We propose a new “sparsity” lemma in this work. It shows that σb gives the desired sparsity.

Lemma 3.8 (Sparsity after initialization). Let b > 0 be a tunable parameter. If we use the σb as
the activation function, then after the initialization, with probability at least 1 − n · exp(−Ω(m ·
exp(−b2/2))), it holds that for each input data xi, the number of activated neurons ki,0 is at most
O(m · exp(−b2/2)), where m is the total number of neurons.

Proof. By the concentration of Gaussian distribution, the initial fire probability of a single neuron is

Pr[σb(〈wr(0), xi〉) > 0] = Pr
z∼N (0,1)

[z > b] ≤ exp(−b2/2).

Hence, for the indicator variable 1r∈Si,fire(0), we have

E[1r∈Si,fire(0)] ≤ exp(−b2/2).

By standard concentration inequality (Lemma B.1),

Pr [|Si,fire(0)| > k0 + t] ≤ exp

(
− t2/2

k0 + t/3

)
,∀t > 0 (5)

where k0 := m · exp(−b2/2). If we choose t = k0, then we have:

Pr [|Si,fire(0)| > 2k0] ≤ exp (−3k0/8)

Then, by union bound over all i ∈ [n], we have that with high probability

1− n · exp(−Ω(m · exp(−b2/2))),

the number of initial fire neurons for the sample xi is bounded by ki,0 ≤ 2m · exp(−b2/2).

The following remark gives an example of setting the threshold b, and will be useful for showing the
sublinear complexity in the next section.

Remark 3.9. If we choose b =
√

0.4 logm then k0 = m4/5. For t = m4/5, Eq. (5) implies that

Pr
[
|Si,fire(0)| > 2m4/5

]
≤ exp

(
−min{mR,O(m4/5)}

)
.

4 Training Neural Network with Half-Space Reporting Data Structure

In this section, we present two sublinear time algorithms for training over-parameterized neural net-
works. The first algorithm (Section 4.1) relies on building a high-dimensional search data-structure
for the weights of neural network. The second algorithm (Section 4.2) is based on building a data
structure for the input data points of the training set. Both of the algorithms use the HSR to quickly
identify the fired neurons to avoid unnecessary calculation. The time complexity and the sketch of
the proof are provided after each of the algorithms.

4.1 Weights Preprocessing

We first introduce the algorithm that preprocesses the weights wr for r ∈ [m], which is com-
monly used in practice [CLP+21, CMF+20, KKL20]. Recall 2NN(m, b) is f(W,x, a) :=

1√
m

∑m
r=1 arσb(〈wr, x〉). By constructing a HSR data-structure for wr’s, we can quickly find the

set of active neurons Si,fire for each of the training sample xi. See pseudo-code in Algorithm 2.

In the remaining part of this section, we focus on the time complexity analysis of Algorithm 2. The
convergence proof will be given in Section 5.

Lemma 4.1 (Running time part of Theorem 6.1). Given n data points in d-dimensional space.
Running gradient descent algorithm (Algorithm 2) on 2NN(m, b =

√
0.4 logm) (Definition 3.1) the

expected cost per-iteration of the gradient descent algorithm is

Õ(m1−Θ(1/d)nd).
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Algorithm 2 Training Neural Network via building a data structure of weights of the neural network

1: procedure TRAININGWITHPREPROCESSWEIGHTS({(xi, yi)}i∈[n],n,m,d) . Theorem 6.1
2: Initialize wr, ar for r ∈ [m] and b according to Definition 3.2 and Remark 3.9
3: HALFSPACEREPORT HSR.INIT({wr(0)}r∈[m],m, d) . Algorithm 1
4: for t = 1→ T do
5: Si,fire ← HSR.QUERY(xi, b) for i ∈ [n]
6: Forward pass for xi only on neurons in Si,fire for i ∈ [n]
7: Calculate gradient for xi only on neurons in Si,fire for i ∈ [n]
8: Gradient update for the neurons in ∪i∈[n]Si,fire

9: HSR.DELETE(wr(t)) for r ∈ ∪i∈[n]Si,fire

10: HSR.ADD(wr(t+ 1)) for r ∈ ∪i∈[n]Si,fire

11: end for
12: return Trained weights wr(T + 1) for r ∈ [m]
13: end procedure

Algorithm 3 Training Neural Network via building a data-structure of the input data points

1: procedure TRAININGWITHPROCESSDATA({(xi, yi)}i∈[n],n,m,d) . Theorem 6.2
2: Initialize wr, ar for r ∈ [m] and b according to Definition 3.2 and Remark 3.9
3: HALFSPACEREPORT HSR.INIT({xi}i∈[n], n, d) . Algorithm 1
4: S̃r,fire ← HSR.QUERY(wr(0), b) for r ∈ [m] . S̃r,fire are samples which neuron r fires for
5: Si,fire ← {r | i ∈ S̃r,fire} . Si,fire is the set of neurons, which fire for xi
6: for t = 1→ T do
7: Forward pass for xi only on neurons in Si,fire for i ∈ [n]
8: Calculate gradient for xi only on neurons in Si,fire for i ∈ [n]
9: Gradient update for the neurons in ∪i∈[n]Si,fire

10: for r ∈ ∪i∈[n]Si,fire do
11: Si,fire.DEL(r) for i ∈ S̃r,fire

12: S̃r,fire ← HSR.QUERY(wr(t+ 1), b)

13: Si,fire.ADD(r) for i ∈ S̃r,fire

14: end for
15: end for
16: return Trained weights wr(T + 1) for r ∈ [m]
17: end procedure

Proof. The per-step time complexity is

n∑

i=1

TQUERY(m, d, ki,t) + (TDELETE + TINSERT) · | ∪i∈[n] Si,fire(t)|+ d
∑

i∈[n]

ki,t

The first term
∑n
i=1 TQUERY(m, d, ki,t) corresponds to the running time of querying the active neuron

set Si,fire(t) for all training samples i ∈ [n]. With the first result in Corollary 3.6, the complexity is
bounded by Õ(m1−Θ(1/d)nd).

The second term (TDELETE + TINSERT) · | ∪i∈[n] Si,fire(t)| corresponds to updating wr in the high-
dimensional search data-structure (Lines 9 and 10). Again with the first result in Corollary 3.6, we
have TDELETE + TINSERT = O(log2m). Combining with the fact that | ∪i∈[n] Si,fire(t)| ≤ | ∪i∈[n]

Si,fire(0)| ≤ O(nm4/5), the second term is bounded by O(nm4/5 log2m).

The third term is the time complexity of gradient calculation restricted to the set Si,fire(t). With the
bound on

∑
i∈[n] ki,t (Lemma C.10), we have d

∑
i∈[n] ki,t ≤ O(m4/5nd).

Putting them together completes the proof.
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4.2 Data Preprocessing

While the weights preprcessing algorithm is inspired by the common practise, the dual relationship
between the input xi and model weights wr inspires us to preprocess the dataset before training (i.e.,
building HSR data-structure for xi). This largely improves the per-iteration complexity and avoids
the frequent updates of the data structure since the training data is fixed. More importantly, once
the training dataset is preprocessed, it can be reused for different models or tasks, thus one does not
need to perform the expensive preprocessing for each training.

The corresponding pseudocode is presented in Algorithm 3. With xi preprocessed, we can query
HSR with weights wr and the result S̃r,fire is the set of training samples xi for which wr fires for.
Given S̃r,fire for r ∈ [m], we can easily reconstruct the set Si,fire, which is the set of neurons fired
for sample xi. The forward and backward pass can then proceed similar to Algorithm 2.

At the end of each iteration, we will update S̃r,fire based on the new wr estimation and update Si,fire

accordingly. For Algorithm 3, the HSR data-structure is static for the entire training process. This
is the main difference from Algorithm 2, where the HSR needs to be updated every time step to
account for the changing weights wr.

We defer the convergence analysis to Section 5 and focus on the time complexity analysis of Algo-
rithm 2 in the rest of this section. We consider d being a constant for the rest of this subsection.
Lemma 4.2 (Running time part of Theorem 6.2). Given n data points in d-dimensional space.
Running gradient descent algorithm (Algorithm 2) on 2NN(m, b =

√
0.4 logm) (Definition 3.1), the

expected per-iteration running time of initializing S̃r,fire, Si,fire for r ∈ [m], i ∈ [n] is O(m log n+

m4/5n). The cost per iteration of the training algorithm is O(m4/5n log n).

Proof. We analyze the initialization and training parts separately.

Initialization In Lines 4 and 5, the sets S̃r,fire, Si,fire for r ∈ [m], i ∈ [n] are initialized. For each
r ∈ [m], we need to query the data structure the set of data points x’s such that σb(wr(0)>x) > 0.
Hence, the running time of this step is

m∑

r=1

Tquery(n, d, k̃r,0) = O(m log n+
m∑

r=1

k̃r,0)

= O(m log n+

n∑

i=1

ki,0)

= O(m log n+m4/5n).

where the second step follows from
∑m
r=1 k̃r,0 =

∑n
i=1 ki,0.

Training Consider training the neural network for T steps. For each step, first notice that the
forward and backward computation parts (Line 7 - 9) are the same as previous algorithm. The time
complexity is O(m4/5n log n).

We next show that maintaining S̃r,fire, r ∈ [m] and Si,fire, i ∈ [n] (Line 10 - 14) takes
O(m4/5n log n) time. For each fired neuron r ∈ [m], we first remove the indices of data in the
sets Si,fire, which takes time

O(1) ·
∑

r∈∪i∈[n]Si,fire

k̃r,t = O(1) ·
m∑

r=1

k̃r,t = O(m4/5n).

Then, we find the new set of x’s such that σb(〈wr(t + 1), x〉) > 0 by querying the half-space
reporting data structure. The total running time for all fired neurons is

∑

r∈∪i∈[n]Si,fire

Tquery(n, d, k̃r,t+1) . m4/5n log n+
∑

r∈∪i∈[n]Si,fire

k̃r,t+1 = O(m4/5n log n)

Then, we update the index sets Si,fire in time O(m4/5n). Therefore, each training step takes
O(m4/5n log n) time, which completes the proof.
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5 Convergence of Our Algorithm

We state the result of our training neural network algorithms (Lemma 5.2) can converge in certain
steps. An important component in our proof is to find out a lower bound on minimum eigenvalue
of the continuous Hessian matrix λmin(Hcts). It turns out to be an anti-concentration problem of
the Gaussian random matrix. In [OS20], they gave a lower bound on λmin(Hcts) for ReLU function
with b = 0, assuming the input data are separable. One of our major technical contribution is
generalizing it to arbitrary b ≥ 0.

Proposition 5.1 (Informal version of Theorem F.1). Given n (normalized) input data points
{x1, x2, · · · , xn} ⊆ Rd such that ∀i ∈ [n], ‖xi‖2 = 1. Let parameter δ := mini 6=j{‖xi −
xj‖2, ‖xi + xj‖2} denote the data separability. For any shift parameter b ≥ 0, we define shifted
NTK Hcts ∈ Rn×n as follows

Hcts
i,j := E

w∼N (0,Id)

[
〈xi, xj〉 · 1〈w,xi〉≥b · 1〈w,xj〉≥b

]
,∀i ∈ [n], j ∈ [n].

Then

λmin(Hcts) ≥ 0.01e−b
2/2δ/n2.

With proposition 5.1, we are ready to show the convergence rate of training an over-parameterized
neural network with shifted ReLU function.

Lemma 5.2 (Convergence part of Theorem 6.1 and Theorem 6.2). Suppose input data-points are
δ-separable, i.e., δ := mini 6=j{‖xi − xj‖2, ‖xi + xj‖2}. Let m = poly(n, 1/δ, log(n/ρ)) and
η = O(λ/n2). Let b = Θ(

√
logm). Then

Pr
[
‖err(k)‖22 ≤ (1− ηλ/2)k · ‖err(0)‖22, ∀k ∈ {0, 1, · · · , T}

]
≥ 1− ρ.

Note that the randomness is over initialization. Eventually, we choose T = λ−2n2 log(n/ε) where
ε is the final accuracy.

This result shows that despite the shifted ReLU and sparsely activated neurons, we can still retain
the linear convergence. Combined with the results on per-step complexity in the previous section, it
gives our main theoretical results of training deep learning models with sublinear time complexity
(Theorem 6.1 and Theorem 6.2).

6 Main Classical Results

We present two theorems (under classical computation model) of our work, showing the sublinear
running time and linear convergence rate of our two algorithms. We leave the quantum application
into Appendix G. The first algorithm is relying on building a high-dimensional geometric search
data-structure for the weights of a neural network.

Theorem 6.1 (Main result I, informal of Theorem E.2). Given n data points in d-dimensional space.
We preprocess the initialization weights of the neural network. Running gradient descent algorithm
(Algorithm 2) on a two-layer, m-width, over-parameterized ReLU neural network will minimize the
training loss to zero, and the expected running time of gradient descent algorithm (per iteration) is

Õ(m1−Θ(1/d)nd).

The second algorithm is based on building a data structure for the input data points of the training
set. Our second algorithm can further reduce the cost per iteration from m1−1/d to truly sublinear
in m, e.g. m4/5.

Theorem 6.2 (Main result II, informal of Theorem E.2). Given n data points in d-dimensional
space. We preprocess all the data points. Running gradient descent algorithm (Algorithm 3) on
a two-layer, m-width, over-parameterized ReLU neural network will minimize the training loss to
zero, and the expected running time of gradient descent algorithm (per iteration) is

Õ(m4/5nd).
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7 Discussion and Limitations

In this paper, we propose two sublinear algorithms to train neural networks. By preprocessing
the weights of the neuron networks or preprocessing the training data, we rigorously prove that
it is possible to train a neuron network with sublinear complexity, which overcomes the Ω(mnd)
barrier in classical training methods. Our results also offer theoretical insights for many previously
established fast training methods.

Our algorithm is intuitively related to the lottery tickets hypothesis [FC18]. However, our theoretical
results can not be applied to explain lottery tickets immediately for two reasons: 1) the lottery ticket
hypothesis focuses on pruning weights; while our results identify the important neurons. 2) the lot-
tery ticket hypothesis identifies the weights that need to be pruned after training (by examining their
magnitude), while our algorithms accelerate the training via preprocessing. It would be interesting
to see how our theory can be extended to the lottery ticket hypothesis.

One limitation of our work is that the current analysis framework does not provide a convergence
guarantee for combining LSH with gradient descent, which is commonly seen in many empirical
works. Our proof breaks as LSH might miss important neurons which potentially ruins the conver-
gence analysis. Instead, we refer to the HSR data structure, which provides a stronger theoretical
guarantee of successfully finding all fired neurons.
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