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Abstract

Logical reasoning over Knowledge Graphs (KGs) is a fundamental technique that
can provide efficient querying mechanism over large and incomplete databases.
Current approaches employ spatial geometries such as boxes to learn query rep-
resentations that encompass the answer entities and model the logical operations
of projection and intersection. However, their geometry is restrictive and leads to
non-smooth strict boundaries, which further results in ambiguous answer entities.
Furthermore, previous works propose transformation tricks to handle unions which
results in non-closure and, thus, cannot be chained in a stream. In this paper, we
propose a Probabilistic Entity Representation Model (PERM) to encode entities as
a Multivariate Gaussian density with mean and covariance parameters to capture
its semantic position and smooth decision boundary, respectively. Additionally, we
also define the closed logical operations of projection, intersection, and union that
can be aggregated using an end-to-end objective function. On the logical query rea-
soning problem, we demonstrate that the proposed PERM significantly outperforms
the state-of-the-art methods on various public benchmark KG datasets on standard
evaluation metrics. We also evaluate PERM’s competence on a COVID-19 drug-
repurposing case study and show that our proposed work is able to recommend
drugs with substantially better F1 than current methods. Finally, we demonstrate
the working of our PERM’s query answering process through a low-dimensional
visualization of the Gaussian representations.

1 Introduction

Knowledge Graphs (KGs) are structured heterogeneous graphs where information is organized as
triplets of entity pair and the relation between them. This organization provides a fluid schema
with applications in several domains including e-commerce [1], web ontologies [2, 3], and medical
research [4, 5]. Chain reasoning is a fundamental problem in KGs, which involves answering a chain
of first-order existential (FOE) queries (translation, intersection, and union) using the KGs’ relation
paths. A myriad of queries can be answered using such logical formulation (some examples are given
in Figure 1). Current approaches [6, 7, 8] in the field rely on mapping the entities and relations onto a
representational latent space such that the FOE queries can be reduced to mathematical operations in
order to further retrieve the relevant answer entities.

Euclidean vectors [6, 9] provide a nice mechanism to encode the semantic position of the entities by
leveraging their neighborhood relations. They utilize a fixed threshold over the vector to query for
answer entities (such as a k-nearest neighbor search). However, queries differ in their breadth. Certain
queries would lead to a greater set of answers than others, e.g., query Canadians will result in a
higher number of answers than query Canadian Turing Award winners. To capture this query
behavior, spatial embeddings [7, 8, 10, 11] learn a border parameter that accounts for broadness of
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(a) Drug Repurposing (DRKG). (b) Open-domain (FB15K).

Figure 1: Sample FOE queries from different datasets that utilize existential quantification (9),
intersection (\), and union ([) operations. The simple operations need to be chained together in an
end-to-end objective function to retrieve relevant results for complex queries.

queries by controlling the volume of space enclosed by the query representations. However, these
spatial embeddings rely on more complex geometries such as boxes [7] which do not have a closed
form solution to the union operation, e.g., the union of two boxes is not a box. Thus, further FOE
operations cannot be applied to the union operation. Additionally, their strict borders lead to some
ambiguity in the border case scenarios and a non-smooth distance function, e.g., a point on the border
will have a much smaller distance if it is considered to be inside the box than if it is considered to be
outside. This challenge also applies to other geometric enclosures such as hyperboloids [8].

Another line of work includes the use of structured geometric regions [12, 7] or density functions
[13, 14, 11, 15] instead of vector points for representation learning. While these approaches utilize
the representations for modeling individual entities and relations between them, we aim to provide a
closed form solution to logical queries over KGs using the Gaussian density function which enables
chaining the queries together. Another crucial difference in our work is in handling a stream of
queries. Previous approaches rely on Disjunctive Normal Form (DNF) transformation which requires
the entire query input. In our model, every operation is closed in the Gaussian space and, thus,
operations of a large query can be handled individually and aggregated together for the final answers.

(a) Union of box queries. (b) Gaussian mixture queries.

(c) Distance of entities from query
space. For comparability, distances
are given relative to entity Bengio’s
distance to European query.

Figure 2: Results of the query Europeans [ Canadians. Entities in the darker areas have higher
probability of being the answers than lighter areas. We can observe from (c) that the non-smooth
borders of box geometry do not encompass the answer Hinton.

To alleviate the drawbacks of operations not being closed under unions and border ambiguities, we
propose Probabilistic Entity Representation Model (PERM). PERM models entities as a mixture of
Gaussian densities. Gaussian densities have been previously used in natural language processing [14]
and graphs [15] to enable more expressive parameterization of decision boundaries. In our case, we
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utilize a mixture of multivariate Gaussian densities due to their intuitive closed form solution for
translation, intersection, and union operations. In addition, they can also enable the use of a smooth
distance function; Mahalanobis distance [16]. Figure 2 provides an example of such a case where
the non-smooth boundaries of box query embeddings are not able to capture certain answers. We
utilize the mean (µ) and co-variance (⌃) parameters of multivariate Gaussian densities to encode
the semantic position and spatial query area of an entity, respectively. The closed form solution
for the operations allows us to solve complex queries by chaining them in a pipeline. PERM does
not need to rely on DNF transformations, since all the outputs are closed in the Gaussian space
and complex queries can be consolidated in an end-to-end objective function, e.g., in Figure 2b,
Europeans [ Canadians is a Gaussian mixture and the single objective is to minimize the distance
between the mixture and entity Hinton, whereas in the case of boxes (shown in Figure 2a), we have
two independent objectives to minimize the distance from each box in the union query. Summarizing,
the contributions of our work is as follows:

1. We develop Probabilistic Entity Representation Model (PERM), a method to reason over KGs
using (mixture of) Gaussian densities. Gaussians are able to provide a closed form solution to
intersection and union, and also a smooth distance function. This enables us to process a chain of
complex logical queries in an end-to-end objective function.

2. PERM is able to outperform the current state-of-the-art baselines on logical query reasoning over
standard benchmark datasets. Additionally, it is also able to provide better drug recommendations
for COVID-19.

3. PERM is also interpretable since the Gaussian embeddings can be visualized after each query
process to understand the complete query representation.

The rest of the paper is organized as follows: Section 2 presents the current work in the field. In
section 3, we present PERM and define its various operations. Section 4 provides the formulation for
building the reasoning chains for complex queries. We provide the experimental setup and results in
section 5. We conclude our paper in section 6 and present its broader impact in section 7.

2 Related Work

The topic of multi-hop chain reasoning over KGs has gained a lot of attention in recent years
[17, 18, 19, 6]. These approaches utilize vector spaces to model query representation and retrieve
results using a fixed threshold. While such representations are efficient at encoding semantic
information, the fixed thresholds that are typically used in these models do not allow for an expressive
(adjustable) boundary and, thus, are not best suited for representing queries. Spatial embeddings
[7, 8, 20] enhance the simple vector representations by adding a learnable border parameter that
controls the spatial area around a query representation. These methods have strict borders that rely on
non-smooth distance function that creates ambiguity between border cases. On the other hand, in
our model, the variance parameter of the query’s Gaussian densities creates soft smoothly increasing
borders in terms of the Mahalanobis distance. Additionally, the previous methods do not provide a
closed form solution for unions which we solve using Gaussian mixture models.

Density-based embeddings have seen a recent surge of interest in various domains. Word2Gauss
[14] provides a method of learning Gaussian densities for words from their distributional semantic
information. In addition, the authors further apply this work to knowledge graphs [13]. Another
approach [15] aims to learn Gaussian graph representations from their network connections. These
methods are, however, focused on learning semantic information and do not easily extend to logical
queries over knowledge graphs. PERM primarily focuses on learning spatial Gaussian densities
for queries, while also capturing the semantic information. To achieve this, we derive closed form
solutions to FOE queries.

3 Probabilistic Entity Representation Model for Logical Operators

Knowledge Graphs (KG) G : E ⇥R are heterogeneous graphs that store entities (E) and relations
(R). Each relation r 2 R is a Boolean function r : E ⇥ E ! {True, False} that indicates if the
relation r exists between a pair of entities. Without loss of generality, KGs can also be organized as
a set of triples he1, r, e2i ✓ G, defined by the Boolean relation function r(e1, e2). In this work, we
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focus on the following three FOE operations: translation (t), intersection (\), and union ([). The
operations are defined as below:

qt[Qt] =
�?Vt : {v1, v2, ..., vk} ✓ E 9 a1 (1)

q\[Q\] =
�?V\ : {v1, v2, ..., vk} ✓ E 9 a1 \ a2 \ ... \ ai (2)

q[[Q[] =
�?V[ : {v1, v2, ..., vk} ✓ E 9 a1 [ a2 [ ... [ ai (3)

where Qt = (e1, r1); Q\, Q[ = {(e1, r1), (e2, r2), ..(ei, ri)} and ai = ri(ei, va)

where qt, q\, and q[ are the translation, intersection, and union queries, respectively; and Vt, V\, and
V[ are the corresponding results [10]. As we notice above, each entity has a dual nature; one as being
part of a query and another as a candidate answer to a query. In PERM, we model the query space of
an entity ei 2 E as a multivariate Gaussian density function; ei = N (µi,⌃i), where the learnable
parameters µi (mean) and ⌃i (covariance) indicate the semantic position and the surrounding query
density of the entity, respectively. As a candidate, we only consider the µi and ignore the ⌃i of
the entity. We define the distance of a candidate entity vi = N (µi,⌃i) from a query Gaussian
ej = N (µj ,⌃j) using the Mahalanobis distance [16] given by:

dN (vi, ej) = (µj � µi)
T⌃�1

j (µj � µi) (4)

Additionally, we need to define the FOE operations for the proposed Probabilistic Entity Representa-
tion Model. A visual interpretation of the operations; translation, intersection, and union is shown in
Figure 3. The operations are defined as follows:

Translation (t). Each entity e 2 E and r 2 R are encoded as N (µe,⌃e) and N (µr,⌃r), respectively.
We define the translation query representation of an entity e with relation r as qt and the distance of
resultant entity vt 2 Vt from the query as dqt given by:

qt = N (µe + µr, (⌃
�1
e + ⌃�1

r )�1); dqt = dN (vt, qt) (5)
Intersection (\). Intuitively, the intersection of two Gaussian densities implies a random variable
that belongs to both the densities. Given that the entity densities are independent of each other, we
define the intersection of two entity density functions e1, e2 as q\ and distance of resultant entity
v\ 2 V\ from the query as dq\ given by:

q\ = N (µe1 ,⌃e1)N (µe2 ,⌃e2) = N (µ3,⌃3); dq\ = dN (v\, q\) (6)

where, ⌃�1
3 = ⌃�1

1 + ⌃�1
2

and µ3 = ⌃3(⌃
�1
2 µ1 + ⌃�1

1 µ2) =) ⌃�1
3 µ3 = ⌃�1

2 µ1 + ⌃�1
1 µ2

We provide a brief sketch of the proof that the intersection of Gaussian density functions is a closed
operation. A complete proof is provided in Appendix A. Let us consider two Gaussian PDFs
P (✓1) = N (µ1,⌃1) and P (✓2) = N (µ2,⌃2). Their intersection implies a random variable that is
distributed as the product, P (✓1)P (✓2) The intersection P (✓) = N (µ3,⌃3) is derived as follows:

P (✓) = P (✓1).P (✓2)

log(P (✓)) = (x� µ1)
T⌃�1

1 (x� µ1) + (x� µ2)
T⌃�1

2 (x� µ2)

(x� µ3)
T⌃�1

3 (x� µ3) = (x� µ1)
T⌃�1

1 (x� µ1) + (x� µ2)
T⌃�1

2 (x� µ2)

Comparing coefficients; ⌃�1
3 = ⌃�1

1 + ⌃�1
2 ; µ3 = ⌃3(⌃

�1
2 µ1 + ⌃�1

1 µ2)

Union ([). We model the union of multiple entities using Gaussian mixtures. The union of entity
density functions given by e1, e2, e3, ..., en is defined as q[ and the distance of resultant entity
v[ 2 V[ from the query as dq[ given by:

q[ =
nX

i=1

�iN (µei ,⌃ei); dq[ =
nX

i=1

�idN (v[,N (µei ,⌃ei)) (7)

where, �i =
exp (N (µei ,⌃ei))Pn

j=1 exp
�
N (µej ,⌃ej )

�

�i 2 � are the weights for each Gaussian density in the Gaussian mixture, calculated using the
self-attention mechanism over the parameters of the Gaussians in the mixture, i.e., µei ,⌃ei8i : 1 ! n.
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(a) Translation (qt) (b) Intersection (q\) (c) Union (q[)

(d) Chain Translation (ct) (e) Chain Intersection (c\) (f) Chain Union (c[)

Figure 3: The logical single (top row) and chain operations (bottom row) of translation, intersection,
and union in the Gaussian space. The operations are closed and will result in either a Gaussian density
or a Gaussian mixture. The input operands are given in blue and red and the resultant Gaussian
density/mixture is depicted in purple. For simplicity, the example is given for a univariate Gaussian
model, but in our work, we use multivariate Gaussian densities.

4 Chain Reasoning over Knowledge Graphs

We consider the Gaussian density function (embedding of a single entity) as a special case of Gaussian
mixture with a single component. This ensures that all the operations defined in Section 3 are closed
under the Gaussian space with an output that is either a single (for translations and intersections) or
multi-component Gaussian mixture (for unions). Hence, for chaining the queries, we need to define
the logical operators with a Gaussian density and a Gaussian mixture input. In this section, we define
the different operators (depicted in Figure 3), in the case of a Gaussian mixture input.

Chain Translation. Let us assume that the input query embedding is an n-component mixture
p =

Pn
i=1 N (µi,⌃i) and we need to translate it with relation r = N (µr,⌃r). Intuitively, we would

like to translate all the Gaussians in the mixture with the relation. Hence, we model this translation as
ct and the distance from entities vt 2 Vt as dct given by:

ct =
nX

i=1

�iN (µi + µr, (⌃
�1
i + ⌃�1

r )�1) (8)

dct =
nX

i=1

�idN (vt,N (µi + µr, (⌃
�1
i + ⌃�1

r )�1) (9)

Chain Intersection. A Gaussian mixture is a union over individual densities. Based on the dis-
tributive law of sets, an intersection over a Gaussian mixture p =

Pn
i=1 N (µi,⌃i) and entity

e = N (µe,⌃e) implies the union of the intersection between the entity and each Gaussian density in
the mixture. Hence, we derive this intersection as c\ and the distance from entities v\ 2 V\ as dc\:

c\ = [n
i=1N (µe,⌃e)N (µi,⌃i) =

nX

i=1

�iN (µe,⌃e)N (µi,⌃i)

=) c\ =
nX

i=1

�iN (µe\i,⌃e\i) (10)

where, ⌃�1
e\i = ⌃�1

e + ⌃�1
i and µe\i = ⌃e\i(⌃

�1
i µe + ⌃�1

e µi)

dc\ =
nX

i=1

�idN (v\,N (µe\i,⌃e\i)) (11)

Chain Union. The union of an entity e = N (µe,⌃e) with a Gaussian mixture
Pn

i=1 �iN (µi,⌃i) is
the addition of the entity to the mixture. Hence, the union c[ and the distance from entities v[ 2 V[
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dc[ can be defined as follows:

c[ =
nX

i=1

�iN (µi,⌃i) + �eN (µe,⌃e) (12)

dc[ =
nX

i=1

�idN (v[,N (µi,⌃i)) + �edN (v[,N (µe,⌃e)) (13)

Implementation Details. To calculate the weights (�i 2 �) of the Gaussian mixtures, we use the
popular self-attention mechanism [21]. The gradient descent over Mahalanobis distance (Eq. 4)
and derivation for the product of Gaussians (Eq. 6) are given by [22] and Appendix A, respectively.
Another important note is that we do not need to compute ⌃ for the operations, but rather we only
need to compute the ⌃�1. Also, storing the complete ⌃�1 requires quadratic memory, i.e., a Gaussian
density of d variables requires d ⇥ d parameters for ⌃. So, we only store a decomposed matrix
L of ⌃�1 : ⌃�1 = LLT . Thus, for a Gaussian density of d variables our memory requirement is
d⇥ (r + 1) parameters (d for µ and d⇥ r for ⌃�1). For computing the µ3 for intersection, in Eq.
(6), we use a linear solver (torch.solve) for faster computation. All our models are implemented
in Pytorch [23] and run on four Quadro RTX 8000. 1

5 Experiments

This section describes the experimental setup used to analyze the performance of PERM on various
tasks with a focus on the following research questions:

1. Does PERM’s query representations perform better than the state-of-the-art baselines on the task
of logical reasoning over standard benchmark knowledge graphs?

2. What is the role of individual components in PERM’s overall performance gain?
3. Is PERM able to recommend better therapeutic drugs for COVID-19 from drug re-purposing

graph data compared to the current baselines?
4. Are we able to visualize the operations on PERM’s query representations in the latent space?

5.1 Datasets and Baselines

We utilize the following standard benchmark datasets to compare PERM’s performance on the task
of reasoning over KGs:

• FB15K-237 [24] is comprised of the 149,689 relation triples and textual mentions of Freebase
entity pairs. All the simply invertible relations are removed.

• NELL995 [25] consists of 107,982 triples obtained from the 995th iteration of the Never-Ending
Language Learning (NELL) system.

• DBPedia2 is a subset of the Wikipedia snapshot that consists of a multi-level hierarchical taxonomy
over 240,942 articles.

• DRKG [26] (Drug Re-purposing Knowledge Graph) is used to evaluate the performance of our
model on both the logical reasoning and drug recommendation tasks.

Table 1: Dataset statistics including the number of unique entities, relations, and edges, along with
the splits of dataset triples used in the experiments.

Dataset # Entities # Relations # Edges # Training # Validation # Test
FB15k-237 14,505 237 310,079 272,115 17,526 20,438
NELL995 63,361 200 142,804 114,213 14,324 14,267
DBPedia 34,575 3 240,942 168,659 24,095 48,188
DRKG 97,238 107 5,874,271 4,111,989 587,428 1,174,854

1Implementation code: https://github.com/Akirato/PERM-GaussianKG
2https://www.kaggle.com/danofer/dbpedia-classes
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More detailed statistics of these datasets are provided in Table 1. For our experiments, we select the
following baselines based on (i) their performance on the logical reasoning task and (ii) their ability
to extend to all FOE query combinations.

• Graph Query Embedding (GQE) [6] embeds entities and relations as a vector and utilizes
TransE [17] to learn the query embeddings. The distance of the answer entities is calculated using
L1-norm.

• Query2Box (Q2B) [7] embeds entities and relations as axis aligned hyper-rectangles or boxes and
utilize FOE queries to learn query representations. The distance of answer entities is given by a
weighted combination of the answer’s distance from the center and the border of the query box.

• Beta Query Embedding (BQE) [11] utilizes beta distribution to learn query representations
from FOE queries with a novel addition of negation queries. The distance is calculated as the
dimension-wise KL divergence between the answer entity and the query beta embedding.

• Complex Query Decomposition (CQD) [10] answers complex queries by reducing them to
simpler sub-queries and aggregating the resultant scores with t-norms.

Some of the other baselines [27, 18] focus solely on the multi-hop problem. They could not be
intuitively extended to handle all FOE queries, and hence, we did not include them in our study.

Table 2: Performance comparison of PERM against the baselines to study the efficacy of the
query representations. The columns present the different query structures and the overall average
performance. The last row presents the Average Relative Improvement (%) of PERM compared to
CQD over all datasets across different query types. Best results for each dataset are shown in bold.
The MRR results for experiments are given in Appendix C.

HITS@3
Dataset Model 1t 2t 3t 2\ 3\ 2[ \t t\ [t Avg
FB15k-237 GQE .404 .214 .147 .262 .390 .164 .087 .162 .155 .221

BQE .455 .122 .102 .232 .459 .141 .224 .124 .101 .218
Q2B .467 .240 .186 .324 .453 .239 .050 .108 .193 .251
CQD .512 .288 .221 .352 .457 .284 .129 .249 .121 .290
PERM .520 .286 .216 .361 .490 .305 .128 .212 .239 .306

NELL995 GQE .417 .231 .203 .318 .454 .200 .081 .188 .139 .248
BQE .711 .156 .132 .438 .540 .153 .250 .160 .091 .292
Q2B .555 .266 .233 .343 .480 .369 .132 .212 .163 .306
CQD .667 .350 .288 .410 .529 .531 .171 .277 .156 .375
PERM .581 .286 .243 .352 .508 .460 .143 .195 .200 .328

DBPedia GQE .673 .0063 N.A. .873 .879 .402 .160 .668 0.00 .458
BQE .881 .0073 N.A. 1.00 1.00 .384 .435 .590 0.00 .565
Q2B .832 .0073 N.A. 1.00 1.00 .649 .224 .856 0.00 .571
CQD .870 .0073 N.A. 1.00 1.00 .673 .218 .787 0.00 .569
PERM .950 .0073 N.A. 1.00 1.00 .782 .232 .952 0.00 .615

DRKG GQE .420 .218 .153 .270 .409 .181 .101 .186 .174 .235
BQE .554 .141 .123 .347 .512 .185 .281 .173 .124 .271
Q2B .499 .263 .199 .337 .489 .284 .068 .134 .235 .279
CQD .554 .323 .238 .369 .495 .341 .184 .310 .150 .329
PERM .565 .322 .236 .387 .540 .376 .190 .273 .297 .354

PERM vs Q2B (%) 10.9 12.3 13.0 7.20 6.10 26.3 84.2 50.8 24.3 15.9
PERM vs CQD (%) 3.80 -0.9 -2.4 2.00 5.80 9.50 1.80 -5.5 93.0 6.2

5.2 (RQ1) Reasoning over KGs

To evaluate the efficacy of PERM’s query representations, we compare it against the baselines on
different FOE query types; (i) Single Operator: 1t, 2t, 3t, 2\, 3\, 2[ and (ii) Compound Queries:
\t, t\, [t. We follow the standard evaluation protocol [7, 11, 8] and utilize the three splits of a KG

3DBPedia has an extremely large number of resultant grand-children leaves (⇡ 103 per grand-parent) for the
2t task and, thus, we notice poor performance on 2t task across all the evaluation models.
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for training Gtrain, validation Gvalid, and evaluation Gtest (details in Table 1). The models are trained
on Gtrain with validation on Gvalid. The final evaluation metrics for comparison are calculated on
Gtest. For the baselines, we calculate the relevance of the answer entities to the queries based on the
distance measures proposed in their respective papers. In PERM, the distance of the answer entity
from the query Gaussian density is computed according to the measures discussed in Sections 3 and
4. We use the evaluation metrics of HITS@K and MRR to compare the ranked set of results obtained
from different models. Given the ground truth Ê and model outputs {e1, e2, ..., en} 2 E, the metrics
are calculated as follows:

HITS@K =
1

K

KX

k=1

f(ek); f(ek) =

⇢
1, if ek 2 Ê
0, else

MRR =
1

n

nX

i=1

1

f(ei)
; f(ei) =

⇢
i, if ei 2 Ê
1, else

From the results provided in Table 2, we observe that PERM, is able to outperform all the current
state-of-the-art approaches, on an average across all FOE queries by 6.2%. Specifically, we see a
consistent improvement for union queries; 9.5% and 93% in the case of 2[ and [t, respectively.
Comparing the models based on only geometries, we notice the clear efficacy of PERM query
representations with an average improvement of 37.9%, 15.9%, and 37.3% over vectors (GQE),
boxes (Q2B), and beta distribution (BQE), respectively. Given these improvements and the ability to
handle compound queries in an end-to-end manner, we conclude that Gaussian distributions are better
at learning query representations for FOE reasoning over KGs. Additionally, we provide PERM’s
results on sample queries from different datasets in Table 3.

Table 3: Qualitative results of PERM on samples from different datasets. Results given in green and
red indicate a correct and incorrect prediction, respectively.

Query Results
Who are European and Canadian Turing awards
winners?

Jeffrey Hinton, Yoshua Bengio, Andrew Yao

Which Actors and Football Players also became
Governors?

Arnold Schwarzenegger, Heath Shuler, Frank
White

Which treatment drugs interact with all proteins
associated with SARS diseases?

Ribavirin, Dexamethasone, Hydroxychloro-
quine

5.3 (RQ2) Ablation Study

In this section, we evaluate the need for different components and their effects on the overall
performance of our model. First, we look at the contribution of utilizing different types of queries
to the performance of our model. For this, we train our model on different subsets of queries;
(i) only 1t queries, (ii) only translation (1t,2t,3t) queries and (iii) only single operator queries
(1t,2t,3t,2\,3\,2[). Furthermore, we look at the need for attentive aggregation in the case of union
of Gaussian mixtures. We test other methods of aggregation; (i) vanilla averaging and (ii) MLP [28].

Table 4: Ablation study results. Performance comparison of PERM (final) against different variants
of our model. 1t, translation and single utilize the 1-hop queries, all translation queries and all single
operator queries, respectively. The average and MLP variants utilize vanilla averaging and MLP for
aggregation in union queries. The metrics reported here are an average over all the datasets. Finer
evaluation with results for each dataset is given in Appendix D. Best results are given in bold.

HITS@3
Model Variants 1t 2t 3t 2\ 3\ 2[ \t t\ [t Avg
PERM-1t .649 .141 .128 .410 .466 .477 .095 .257 .102 .303
PERM-translation .649 .182 .179 .463 .535 .479 .128 .308 .143 .341
PERM-single .652 .225 .228 .524 .632 .475 .167 .398 .181 .387
PERM-average .628 .222 .224 .524 .624 .444 .158 .387 .180 .377
PERM-MLP .642 .225 .228 .526 .631 .462 .166 .400 .183 .385
PERM (final) .654 .225 .232 .525 .635 .481 .170 .408 .184 .390
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From Table 4, we notice that utilizing only 1t queries significantly reduces the performance of our
model by 22.3% and even increasing the scope to all translation queries is still lower in performance
by 12.5% for this case. However, we notice that training on all single operator queries results in
comparable performance to the final PERM model. But, given the better overall performance, we
utilize all the queries in our final model. For union aggregation, we observe that attention has a clear
advantage and both vanilla averaging and MLP lead to a lower performance by 3.33% and 1.28%,
respectively. Thus, we adopt self-attention in our final model.

5.4 (RQ3) Case Study: Drug Recommendation

In this experiment, we utilize the expressive power of PERM’s query representations to recommend
therapeutic drugs for COVID-19 from the DRKG dataset. Drugs in the dataset are already approved
for other diseases and the aim is to utilize the drug-protein-disease networks and employ them towards
treating COVID-19. This can potentially reduce both the drug development time and cost [29]. For
this experiment, we utilize the treatment relation in DRKG and retrieve drugs D : D

treats����! X ,
where X is a set of SARS diseases related to the COVID-19 virus. Given that we only need these
limited set of entity types (only SARS diseases and drugs) and relation types (only treatments), we
only consider the DRKG subgraph that contains this necessary set of entities and relations for learning
the representations. We compare the recommendations of different models against a set of actual
candidates currently in trials for COVID-19. We use the top-10 recommendations with the evaluation
metrics of precision, recall, and F1-score for comparison.

Table 5: Performance comparison of various models on the COVID-19 drug recommendation problem
using precision (P), recall (R), and F1-score (F1) metrics. The top three drugs recommended by the
models are given in the last column. The recommendations given in green and red indicate correct
and incorrect predictions, respectively. The last two rows provide the average relative improvement
of PERM compared to the state-of-the-art baselines Q2B and CQD.

Model P@10 R@10 F1 Top Recommended Drugs
GQE .119 .174 .141 Piclidenoson, Ibuprofen, Chloroquine
BQE .159 .200 .177 Ribavirin,Oseltamivir, Ruxolitinib
Q2B .194 .255 .221 Ribavirin, Dexamethasone, Deferoxamine
CQD .209 .260 .232 Ribavirin, Dexamethasone, Tofacitinib
PERM .217 .269 .251 Ribavirin, Dexamethasone, Hydroxychloroquine
PERM vs Q2B (%) 11.9 5.5 13.6
PERM vs CQD (%) 3.8 3.5 8.2

We can observe from Table 5 that PERM is able to provide the best drug recommendations, across all
evaluation metrics. Our model is able to outperform the current methods by atleast 3.8%, 3.5%, and
8.2% in precision, recall, and F1, respectively. Also, the top recommended drugs by our PERM are
more inline with the current drug development candidates, thus, showing the better performance of
our model’s query representations.

5.5 (RQ4) Visualization of the Gaussian Representations

To visualize the entity and query in the latent space, we extract representative entity samples from the
FB15K-237 dataset and present them in a 2-dimensional space for better comprehension.

Figure 4 depicts the different entities and the mechanism through which PERM narrows down to the
particular answer set. Notice that, we are able to perform an intersection after a union operation due
to the closed form nature of our operations. This is currently not possible in state-of-the-art baseline
methods. Additionally, it should be noted that, unions widen the query space and intersections narrow
them down (as expected). Furthermore, the variance parameter acts as a control over the spatial area
that an entity should cover and more general entities such as Turing Award and Europe occupy a
larger area than their respective sub-categories, namely, winners and Europeans.
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(a) Query processing in PERM. This figure depicts a univariate version of the
entity Gaussian embeddings for better visualization of the process. The same
property, however, generalizes over an increased number of dimensions, i.e.,
multivariate case.

(b) Bivariate version of the final
query space, given in grayscale
with darker colors representing
a higher probability of answers.

Figure 4: An illustration of the flow for a sample complex query in the representational space. We
note that intersection after union is possible in our PERM model because the operations are closed in
Gaussian distributions and this is not possible in current methods including BQE, Q2B, and CQD.

6 Conclusion

In this paper, we present Probabilistic Entity Representation Model (PERM), a model to learn
query representations for chain reasoning over knowledge graphs. We show the representational
power of PERM by defining closed form solutions to FOE queries and their chains. Additionally,
we also demonstrate its superior performance compared to its state-of-the-art counterparts on the
problems of reasoning over KGs and drug recommendation for COVID-19 from the DRKG dataset.
Furthermore, we exhibit its interpretability by depicting the representational space through a sample
query processing pipeline.

7 Broader Impact

PERM is the first method that models an individual entity in knowledge graphs using Gaussian
density function, making it possible to solve FOE queries using a closed form solution. This enables
its application in domains that require chain reasoning. The main idea of the proposed solution can
also be extended to any domain that can encode its basic units as Gaussians and extend the units
through FOE queries, e.g., in topic modeling, topics can be encoded as Gaussians and documents as
union of topics.

However, PERM depends on the integrity of the knowledge graph used for training. Any malicious
attacks/errors [30, 31] that lead to incorrect relations could, further, lead to incorrect results and affect
the confidence of our model. Furthermore, due to the connected nature of complex queries, this attack
could propagate and affect a larger set of queries. Such incorrect results would be problematic in
sensitive areas of research such as drug recommendations and cybersecurity and, thus, it is necessary
to maintain the integrity of training data before learning representations and querying with PERM.
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