
Supplementary Material: Efficient hierarchical Bayesian
inference for spatio-temporal regression models in neuroimaging

Summary of the proposed algorithms and derived update rules

We proposed two algorithms in the main paper, namely full and thin Dugh, which are summarized in
Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: Full Dugh

Input :The lead field matrix L ∈ RM×N and G trials of measurement vectors {Yg}Gg=1, where
Yg ∈ RM×T .

Result: Estimates of the source and noise variances h = [γ1, . . . , γN , σ
2
1 , . . . , σ

2
M ]>, the temporal

covariance B, and the posterior mean {x̄g}Gg=1 and covariance Σx of the sources.
1 Choose a random initial value for B as well as h = [γ1, . . . , γN , σ

2
1 , . . . , σ

2
M ]>, and construct

H = diag(h) and Γ = diag([γ1, . . . , γN ]>).
2 Construct the augmented lead field Φ = [L, IM ].
3 Calculate the lead field D = L⊗ IT for vectorized sources.
4 Calculate the prior spatio-temporal covariance for the sources as Σ0 = Γ⊗B.
5 Calculate the spatial statistical covariance Σy = ΦHΦ>.
6 Calculate the spatio-temporal statistical covariance Σ̃y = Σy ⊗B.
7 Initialize k ← 1

repeat
8 Calculate the posterior mean as x̄g = Σ0D

>Σ̃−1y yg , for g = 1, . . . , G, where
yg = vec

(
Y>g
)
∈ RMT×1.

9 Calculate Mk
time based on Eq. (6), and update B based on Eq. (7) according to the Riemannian

update on the manifold of P.D. matrices.
10 Calculate Mk

SN based on Eq. (9), and update H based on Eq. (10).
11 k ← k + 1

until stopping condition is satisfied:
∥∥x̄k+1 − x̄k

∥∥2
2
≤ ε or k = kmax;

12 Calculate the posterior covariance as Σx = Σ0 −Σ0D
>Σ̃−1y DΣ0.
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Algorithm 2: Thin Dugh

Input :The lead field matrix L ∈ RM×N , and G trials of measurement vectors {Yg}Gg=1, where
Yg ∈ RM×T .

Result: Estimates of the source and noise variances h = [γ1, . . . , γN , σ
2
1 , . . . , σ

2
M ]>, the temporal

covariance B, and the posterior mean {x̄g}Gg=1.
1 Choose a random initial value for p as well as h, and construct H = diag(h) and P = diag(p).
2 Construct B = QPQH , where Q = [IM ,0]FL with L = 2T + 1 and FL as DFT.
3 Construct the augmented lead field Φ := [L, IM ].
4 Calculate the lead field D = L⊗ IT for vectorized sources.
5 Calculate the statistical covariance Σy = ΦHΦ>.
6 Calculate the statistical covariance Σy = ΦHΦ>.
7 Calculate the spatio-temporal statistical covariance Σ̃y = Σy ⊗B.
8 Initialize k ← 1

repeat
9 Calculate the posterior mean efficiently based on Eq. (19) as

x̄g = tr
(
QP

(
Π�QHY>g Ux

) (
U>x LΓ>

))
, where LΓL> = UxDxU>x and

[Π]l,m = 1
σ2
m+pldm

for l = 1, . . . , L and m = 1, . . . ,M .
10 Calculate Mk

time based on Eq. (6), and update B based on Eq. (16) according to Riemannian
update for Toeplitz matrices using circulant embedding.

11 Calculate Mk
SN based on Eq. (9), and update H based on Eq. (10).

12 k ← k + 1

until stopping condition is satisfied:
∥∥x̄k+1 − x̄k

∥∥2
2
≤ ε or k = kmax;

13 Calculate the posterior covariance as Σx = Σ0 −Σ0D
>Σ̃−1y DΣ0.

A Derivation of Type-II Bayesian cost function for full-structural
spatio-temporal models

In this section, we provide a detailed derivation of Type-II Bayesian learning for full-structural
spatio-temporal models. To this end, we first briefly explain the multiple measurement vector (MMV)
model and then formulate Type-II Bayesian learning with full-structural spatio-temporal covariance
structure for this setting. Note that, to simplify the problem, we first present the derivations of the
MMV model only for a single trial. We later extend this simplified setting to the multi-trials case.

A.1 Multiple measurement vector (MMV) model

In M/EEG brain source imaging, a sequence of measurement vectors are often available. Thus, the
following multiple measurement vector (MMV) model can be formulated1:

Y = LX + E ,

where Y = [y(1), . . . ,y(T )] ∈ RM×T consists of T measurement vectors for a sequence of T time
samples. X = [x(1), . . . ,x(T )] ∈ RN×T is the desired solution matrix (the amplitude of N brain
sources during T time samples in our setting), and E is an unknown noise matrix. A key assumption
in the MMV model is that the support (i.e., the indices of the nonzero entries) of every column in X
is identical (referred to as the common sparsity assumption in the literature). The number of nonzero
rows in X needs to be below a threshold to ensure unique and global solution. This implies that X
has only a small number of non-zero rows. It has been shown that the recovery of the support can be
greatly improved by increasing the number of measurements [50–52].

A.2 Type-II Bayesian cost function for full-structural spatio-temporal models

To exploit temporal correlations between measurements, we first assume that the voxels are mutually
independent. Given the column vector γ = [γ1, . . . , γN ]> and a Gaussian probability density for
each brain source, the prior distribution with time correlation is modeled as follows:

p(Xi|γi,B) ∼ N (0, γiB), i = 1, . . . , N . (20)
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Xi denotes the i-th row of source matrix X and models the probability distribution of the i-th brain
source. Note that γi is a non-negative hyper-parameter that controls the row sparsity of X; i.e., the
values of source Xi become all zero if γi = 0. Finally, B is a positive definite matrix that captures
the time correlation structure, which is assumed to be shared across all sources. The goal is to obtain
the prior distribution of sources, p(X|γ,B), by estimating the hyper-parameters, {γ,B}. Next, we
reformulate the joint MMV model of all sources using vectorization of matrices and Kronecker
product operations:

y = Dx + e ,

where y = vec
(
Y>
)
∈ RMT×1, x = vec

(
X>
)
∈ RNT×1, e = vec

(
E>
)
∈ RMT×1 and

D=L⊗ IT .

The prior distribution of x is given as

p(x|γ,B) ∼ N (0,Σ0)

where Σ0 is defined as

Σ0 =

 γ1B
. . .

γNB

 = Γ⊗B ,

in which Γ = diag(γ) = diag(γ1, . . . , γN ).

Similarly, we may assume zero-mean Gaussian noise with covariance Σe = Λ ⊗Υ, where e ∼
N (0,Σe), and Λ and Υ denote the spatial and temporal noise covariance matrices, respectively.
Here, we use the same prior for the temporal structure of noise and sources, i.e., Υ = B.

The parameters of the spatio-temporal Type-II model are the unknown source, noise and temporal
covariance matrices, i.e., Γ, Λ, and B. The unknown parameters Γ, Λ, and B are optimized based on
the current estimates of the source, noise and temporal covariances in an alternating iterative process.
Given initial estimates of Γ, Λ, and B, the posterior distribution of the sources is a Gaussian of the
form p(x|y,Γ,Λ,B) ∼ N (x̄,Σx), whose mean and covariance are obtained as follows:

x̄ = Σ0D
>(Λ⊗B + DΣ0D

>)−1y = Σ0D
>Σ̃−1y y , (21)

Σx = Σ0 −Σ0D
>Σ̃−1y DΣ0 , (22)

where Σy = LΓL>+ Λ, and where Σ̃y = Σy ⊗B denotes the spatio-temporal variant of statistical
model covariance matrix. The estimated posterior parameters x̄ and Σx are then in turn used to
update Γ, Λ, and B as the minimizers of the negative log of the marginal likelihood p(Y|Γ,Λ,B),
which is given by

Lkron(Γ,Λ,B) = log|Σ̃y|+ tr
(
y>Σ̃−1y y

)
. (23)

Using the same temporal covariance prior for noise and sources, i.e., Υ = B, the statistical model
covariance matrix, Σ̃y, can be written as:

Σ̃y = Λ⊗Υ + (DΣ0D
>) = Λ⊗Υ +

((
L⊗ I>

)
(Γ⊗B)

(
L⊗ I>

)>)
= Λ⊗Υ +

(
LΓL> ⊗B

) (Υ=B)
= (Λ + LΓL>)⊗B

= Σy ⊗B , . (24)

which leads to the following spatio-temporal Type-II Bayesian learning cost function:

Lkron(Γ,Λ,B) = log|Σ̃y|+ tr
(
y>Σ̃−1y y

)
= log|Σy ⊗B|+ tr

(
y> (Σy ⊗B)

−1
y
)

= log
(
|Σy|T |B|M

)
+ tr

(
y> (Σy ⊗B)

−1
y
)
. (25)

Here, we assume the presence of G sample blocks Yg ∈ RM×T , for g = 1, . . . , G. These block
samples can be obtained by segmenting a time series into smaller parts that are assumed to independent
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and identically distributed. These blocks may represent epochs, trials or experimentl tasks depending
on the applications. Lkron(Γ,Λ,B) can then be reformulated as

Lkron(Γ,Λ,B) = T log |Σy|+M log |B|+ 1

G

G∑
g=1

tr(Σ−1y YgB
−1Y>g ) (26)

by applying the following matrix equality to Eq. (25):

tr(A>BCD>) = vec(A)>(D⊗B)vec(C) .

B Proof of Theorem 1

Proof. We start by recalling Lkron(Γ,Λ,B) in Eq. (4):

Lkron(Γ,Λ,B) = T log |Σy|+M log |B|+ 1

G

G∑
g=1

tr(Σ−1y YgB
−1Y>g ).

Let Σk
y, Γk, and Λk be the values of statistical model covariance and the source and noise covariances

at the k-th iteration, respectively. By ignoring terms that do not depend on B, Lkron(Γ,Λ,B) can be
written as follows:

Ltime
kron (Γk,Λk,B) = M log |B|+ 1

G

G∑
g=1

tr
((

Σk
y

)−1
YgB

−1Y>g

)

= log |B|+ 1

MG

G∑
g=1

tr
((

Σk
y

)−1
YgB

−1Y>g

)

= log |B|+ tr

(
B−1

1

MG

G∑
g=1

Y>g
(
Σk

y

)−1
Yg

)
= log |B|+ tr

(
B−1Mk

time

)
, (27)

where Mk
time := 1

MG

∑G
g=1 Y>g

(
Σk

y

)−1
Yg .

By virtue of the concavity of the log-determinant function and its first order Taylor expansion around
Bk, the following inequality holds:

Ltime
kron (Γk,Λk,B) = log |B|+ tr

(
B−1Mk

time

)
≤ log

∣∣Bk
∣∣+ tr

((
Bk
)−1 (

B−Bk
))

+ tr
(
B−1Mk

time

)
= log

∣∣Bk
∣∣+ tr

((
Bk
)−1

B
)
− tr

((
Bk
)−1

Bk
)

+ tr
(
B−1Mk

time

)
= tr

(
(Bk)−1B

)
+ tr(B−1Mk

time) + const

= Ltime
conv(Γk,Λk,B) + const . (28)

Note that constant values in (28) do not depend on B; hence, they can be ignored in the optimization
procedure. Hence, we have shown that minimizing Eq. (4) with respect to B is equivalent to
minimizing Ltime

conv(Γk,Λk,B), which concludes the proof.

C Proof of Theorem 2

Before presenting the proof, the subsequent definitions and propositions are required:
Definition 1 (Geodesic path). LetM be a Riemannian manifold, i.e., a differentiable manifold whose
tangent space is endowed with an inner product that defines local Euclidean structures. Then, a
geodesic between two points onM, denoted by p0,p1 ∈M, is defined as the shortest connecting
path between those two points along the manifold, ζl(p0,p1) ∈ M for l ∈ [0, 1], where l = 0 and
l = 1 defines the starting and end points of the path, respectively.
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In the current context, ζl(p0,p1) defines a geodesic curve on the P.D. manifold joining two P.D.
matrices, P0,P1 > 0. The specific pair of matrices we will deal with is {Bk,Mk

time}.
Definition 2 (Geodesic on the P.D. manifold). Geodesics on the manifold of P.D. matrices can be
shown to form a cone within the embedding space. We denote this manifold by S++. Assume two P.D.
matrices P0,P1 ∈ S++. Then, for l ∈ [0, 1], the geodesic curve joining P0 to P1 is defined as [53,
Chapter. 6]:

ξl(P0,P1) = (P0)
1
2

(
(P0)

−1/2P1(P0)
−1/2
)l

(P0)
1
2 l ∈ [0, 1] . (29)

Note that P0 and P1 are obtained as the starting and end points of the geodesic path by choosing
l = 0 and l = 1, respectively. The midpoint of the geodesic, obtained by setting l = 1

2 , is called the
geometric mean. Note that, according to Definition 2, the following equality holds :

ξl(B0,B1)−1 =

(
(B0)

1/2
(

(B0)
−1/2B1(B0)

−1/2
)l

(B0)
1/2

)−1
=

(
(B0)

−1/2
(

(B0)
1/2(B1)−1(B0)

1/2
)l

(B0)
−1/2

)
= ξl(B

−1
0 ,B−11 ) . (30)

Definition 3 (Geodesic convexity). Let p0 and p1 be two arbitrary points on a subset A of a
Riemannian manifoldM. Then, a real-valued functionf : A → R with domain A ⊂M is called
geodesic convex (g-convex) if the following relation holds:

f (ζl(p0,p1)) ≤ lf(p0) + (1− l)f(p1) , (31)

where l ∈ [0, 1] and ζ(p0,p1) denotes the geodesic path connecting two points p0 and p1 as defined
in Definition 1. Thus, in analogy to classical convexity, the function f is g-convex if every geodesic
ζ(p0,p1) ofM between p0,p1 ∈ A, lies in the g-convex set A. Note that the set A ⊂M is called
g-convex, if any geodesics joining an arbitrary pair of points lies completely in A.
Remark 2. Note that g-convexity is a generalization of classical (linear) convexity to non-Euclidean
(non-linear) geometry and metric spaces. Therefore, it is straightforward to show that all convex
functions in Euclidean geometry are also g-convex, where the geodesics between pairs of matrices
are simply line segments:

ζl(p0,p1) = lp0 + (1− l)p1 . (32)

For the sake of brevity, we omit a detailed theoretical introduction of g-convexity, and only borrow a
result from [54]. Interested readers are referred to [55, Chapter 1] for a gentle introduction to this
topic, and [56, Chapter. 2]; [57–64] for more in-depth technical details. Now we are ready to state
the proof, which parallels the one provided in Zadeh et al. [54, Theorem. 3].

Proof. We proceed in two steps. First, we consider P.D. manifolds and express (31) in terms of
geodesic paths and functions that lie on this particular space. We then show that Ltime

conv(Γk,Λk,B) is
strictly g-convex on this specific domain. In the second step, we then derive the update rule proposed
in (7).

C.1 Part I: G-convexity of the majorizing cost function

We consider geodesics along the P.D. manifold by setting ζl(p0,p1) to ξl(B0,B1) as presented in
Definition 2, and define f(.) to be f(B) = tr

((
Bk
)−1

B
)

+ tr(Mk
timeB

−1), representing the cost

function Ltime
conv(Γk,Λk,B).

We now show that f(B) is strictly g-convex on this specific domain. For continuous functions as
considered in this paper, fulfilling (31) for f(B) and ξl(B0,B1) with l = 1/2 is sufficient for strict
g-convexity according to mid-point convexity [65]:

tr
((

Bk
)−1

ξ1/2(B0,B1)
)

+ tr
(
Mk

timeξ1/2(B0,B1)
−1
)

<
1

2
tr
((

Bk
)−1

B0

)
+

1

2
tr
(
Mk

timeB0
−1)

+
1

2
tr
((

Bk
)−1

B1

)
+

1

2
tr
(
Mk

timeB1
−1) . (33)
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Given
(
Bk
)−1 ∈ S++, i.e.,

(
Bk
)−1

> 0 and the operator inequality [53, Chapter. 4]

ξ1/2(B0,B1) ≺ 1

2
B0 +

1

2
B1 , (34)

we have:

tr
((

Bk
)−1

ξ1/2(B0,B1)
)
<

1

2
tr
((

Bk
)−1

B0

)
+

1

2
tr
((

Bk
)−1

B1

)
, (35)

which is derived by multiplying both sides of Eq. (34) with
(
Bk
)−1

followed by taking the trace on
both sides.

Similarly, we can write the operator inequality for {B−10 ,B−11 } using Eq. (30) as:

ξ1/2(B0,B1)−1 = ξ1/2(B
−1
0 ,B−11 ) ≺ 1

2
B−10 +

1

2
B−11 . (36)

Multiplying both sides of Eq. (36) by Mk
time ∈ S++ and applying the trace operator on both sides

leads to:

tr
(
Mk

timeξ1/2(B0,B1)
−1
)
<

1

2
tr
(
Mk

timeB0
−1)+

1

2
tr
(
Mk

timeB1
−1) . (37)

Summing up (35) and (37) proves inequality (33) and concludes the first part of the proof.

C.2 Part II: Derivation of the update rule in Eq. (7)

We now present the second part of the proof by deriving the update rule in Eq. (7). Since the cost
function Ltime

conv(Γk,Λk,B) is strictly g-convex, its optimal solution in the k-th iteration is unique.
More concretely, the optimum can be analytically derived by taking the derivative of Eq. (7) and
setting the result to zero as follows:

∇Ltime
conv(Γk,Λk,B) =

(
Bk
)−1 −B−1Mk

timeB
−1 = 0 , (38)

which results in

B
(
Bk
)−1

B = Mk
time . (39)

This solution is known as the Riccati equation and is the geometric mean between Bk and Mk
time

[61, 66]:

Bk+1 ← (Bk)
1
2

(
(Bk)

−1/2Mk
time(B

k)
−1/2
) 1

2

(Bk)
1
2 .

Deriving the update rule in Eq. (7) concludes the second part of the proof of Theorem 2.

D Proof of Theorem 3

Proof. Analogous to the proof of Theorem 1 in Appendix B, we start by recalling Lkron(Γ,Λ,B) in
Eq. (4):

Lkron(Γ,Λ,B) = T log |Σy|+M log |B|+ 1

G

G∑
g=1

tr(Σ−1y YgB
−1Y>g ).

Let Bk be the value of the temporal covariance matrix learned using Eq. (7) at k-th iteration. Then, by
ignoring the term M log |Bk| that is only a function of Bk, Lkron(Γ,Λ,B) can be written as follows:

Lspace
kron (Γ,Λ,Bk) = T log |Σy|+

1

G

G∑
g=1

tr
(
Σ−1y Yg(B

k)−1Y>g
)

= log |Σy|+
1

TG

G∑
g=1

tr
(
Σ−1y Yg(B

k)−1Y>g
)

= log |Σy|+ tr

(
Σ−1y

1

TG

G∑
g=1

Yg(B
k)−1Y>g

)
= log |Σy|+ tr

(
Σ−1y Mk

space

)
, (40)
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where Mk
space := 1

TG

∑G
g=1 Yg(B

k)−1Y>g .

Similar to the argument made in Appendix B, a first order Taylor expansion of the log-determinant
function around Σy provides the following inequality:

log |Σy| ≤ log
∣∣Σk

y

∣∣+ tr
((

Σk
y

)−1 (
Σy −Σk

y

))
= log

∣∣Σk
y

∣∣+ tr
((

Σk
y

)−1
Σy

)
− tr

((
Σk

y

)−1
Σk

y

)
= tr(Φ>(Σk

y)−1ΦH) + const , (41)

where the last step is derived using the augmented source and noise covariances, H := [Γ,0; 0,Λ],
Φ := [L, I] and Σy = ΦHΦ>.

By inserting Eq. (40) into Eq. (41), the first term of Eq. (8), tr(Φ>(Σk
y)−1ΦH), can be directly

inferred:

Lspace
kron (Γ,Λ,Bk) = Lspace

kron (H,Bk) = log |Σy|+ tr
(
Σ−1y Mk

space

)
≤ tr(Φ>(Σk

y)−1ΦH) + tr
(
Σ−1y Mk

space

)
+ const , (42)

We further show how the second term in Eq. (8) can be derived. To this end, we construct an
upper bound on tr

(
Σ−1y Mk

space

)
using an inequality derived from the Schur complement of Σy.

Before presenting this inequality, the subsequent definition of the Schur complement of matrix Σy is
required:

Definition 4. For a positive semidefinite (PSD) matrix Σy, and a partitioning

X =

[
D G

G> B

]
, (43)

its Schur complement is defined as

S := D−GΣ−1y G> (44)

(45)

The Schur complement condition states that the matrix X is PSD, X ≥ 0, if and only if the Schur
complement of Σy is PSD, S ≥ 0.

Now we are ready to construct an upper bound on tr
(
Σ−1y Mk

space

)
. To this end, we show that

tr
(
Σ−1y Mk

space

)
can be majorized as follows:

tr
(
Σ−1y Mk

space

)
≤ tr(HkΦ>(Σk

y)−1Mk
space(Σ

k
y)−1ΦHkH−1) . (46)

By defining V as:

V =

[
(Σk

y)−1ΦHkH
−1
2

ΦH
1
2

]
, (47)

the PSD property of S can be inferred as:

S =

[
(Σk

y)−1ΦHkH−1HkΦ>(Σk
y)−1 I

I ΦHΦ>

]
= VV> ≥ 0 . (48)

By employing the definition of the Schur complement with D = (Σk
y)−1ΦHkH−1HkΦ>(Σk

y)−1,
G = I and Σy = ΦHΦ>, we have:

(Σk
y)−1ΦHkH−1HkΦ>(Σk

y)−1 ≥
(
ΦHΦ>

)−1
. (49)

The inequality in Eq. (46) can be directly inferred by multiplying Mk
space to both sides of Eq. (49),

applying trace operator, and rearranging the arguments in the trace operator:

tr(Mk
spaceΣ

−1
y ] ≤ tr(Mk

space(Σ
k
y)−1ΦHkH−1HkΦ>(Σk

y)−1)

= tr(HkΦ>(Σk
y)−1Mk

space(Σ
k
y)−1ΦHkH−1)

= tr
(
Mk

SNH−1
)
. (50)
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By inserting Eq. (50) into Eq. (42), we have
Lspace

kron (Γ,Λ,Bk) = Lspace
kron (H,Bk) ≤ tr(Φ>(Σk

y)−1ΦH) + tr
(
Σ−1y Mk

space

)
+ const

≤ tr(Φ>(Σk
y)−1ΦH) + tr

(
Mk

SNH−1
)

+ const

= Lspace
conv (H,Bk) + const . (51)

Note that constant values in (51) do not depend on H; hence, they can be ignored in the optimization
procedure. We have shown that minimizing Eq. (4) with respect to H is equivalent to minimizing
Lspace
conv (H,Bk), which concludes the proof.

E Proof of Theorem 4

Proof. We proceed in two steps. First, we show that Lspace
conv (H,Bk) is convex in h. Then, we derive

the update rule proposed in Eq. (10).

E.1 Part I: Convexity of the majorizing cost function

We start the proof by constraining H to the set of diagonal matrices with non-negative entries S,
i.e., S = {H | H = diag(h) = diag([h1, . . . , hN+M ]>), hn ≥ 0, for i = 1, . . . , N + M}. We
continue by reformulating the constrained optimization with respect to the source covariance matrix,

Hk+1 = arg min
H∈S, B=Bk

tr
(
Φ>

(
Σk

y

)−1
ΦH

)
+ tr(Mk

SNH−1) , (52)

as follows:

hk+1 = arg min
h≥0, B=Bk

diag
(
Φ>

(
Σk

y

)−1
Φ
)

h + diag
(
Mk

SN

)
h−1︸ ︷︷ ︸

Lspace
diag (h|hk)

, (53)

where h−1 = [h−11 , . . . , h−1N ]> is defined as the element-wise inversion of h. Let Vk :=

Φ>
(
Σk

y

)−1
Φ. Then, we rewrite Lspace

diag (h|hk) as

Lspace
diag (h|hk) = diag

(
Vk
)
h + diag

(
Mk

SN

)
h−1 . (54)

The convexity of Lspace
diag (h|hk) can be directly inferred from the convexity of diag

[
Vk
]
h and

diag
[
Mk

SN

]
h−1 with respect to h [67, Chapter. 3].

E.2 Part II: Derivation of the update rule in Eq. (10)

We now present the second part of the proof by deriving the update rule in Eq. (10). Since the cost
function Lspace

diag (h|hk) is convex, its optimal solution in the k-th iteration is unique. Therefore, the
optimization with respect to heteroscedastic source and noise variances is carried out by taking the
derivative of (53) with respect to hi, for n = 1, . . . ,M +N , and setting it to zero:

∂

∂hi

([
Φ>

(
Σk

y

)−1
Φ
]
hi +

[
Mk

SN

]
h−1i

)
=
[
Φ>

(
Σk

y

)−1
Φ
]
i,i
− 1

(hi)2
[
Mk

SN

]
i,i

= 0 for i = 1, . . . , N +M ,

where Φi denotes the n-th column of the augmented lead field matrix. This yields the following
update rule:

Hk+1 = diag(hk+1), where, hk+1
i ←

√√√√√
[
Mk

SN

]
i,i[

Φ>
(
Σk

y

)−1
Φ
]
i,i

=

√√√√ 1
T

∑T
t=1(η̄kn(t))2

Φ>n
(
Σk

y

)−1
Φi

for i = 1, . . . , N +M . (55)

The updates rule in Eq. (10) can be directly inferred by defining g := diag(Mk
SN) and z :=

diag(Φ>(Σk
y)−1Φ), which leads to: gki =

[
Mk

SN

]
i,i

and zki =
[
Φ>

(
Σk

y

)−1
Φ
]
i,i

. This concludes

the proof.
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F Champagne with heteroscedastic noise learning

Interestingly, identical update rules as those proposed in Champagne [33] and heteroscedastic
noise learning [68] can be derived for source and noise variances, respectively, by selecting the
corresponding indices of matrix H associated to noise and source covariances.

F.1 Update rule for source variances

Given [Φ]1:M,1:N = L, [H]1:N,1:N = Γ, and [η̄(t)]1:N = x̄(t), the update rule for Γk+1 =

diag(γk+1) is derived by replacing H, Φ and η̄kn(t) in Eq. (55) with Γ, L and x̄kn(t), respectively,
and defining the counterpart of Mk

SN for sources accordingly as Mk
S := ωkSMk

space(ω
k
S)>, where

ωkS := ΓkL>(Σk
y)−1. The update rule for the source variances is then obtained as follows:

γk+1
n ←

√√√√√
[
Mk

S

]
n,n[

L>
(
Σk

y

)−1
L
]
n,n

=

√√√√ 1
T

∑T
t=1(x̄kn(t))2

L>n
(
Σk

y

)−1
Ln

for n = 1, . . . , N , (56)

where Ln denotes the n-th column of the lead field matrix.

F.2 Update rule for noise variances

Similarly, given [Φ]1:M,N+1:N+M = I, [H]N+1:N+M,N+1:N+M = Λ, and [η̄(t)]N+1:N+M =

ē(t) := y(t) − Lx̄(t), the update rule for Λk+1 = diag(λk+1) is derived by replacing H, Φ and
η̄kn(t) in Eq. (55) with Λ, I and ēkn(t), respectively, and defining the counterpart of Mk

SN for the
noise accordingly as Mk

N := ωkNMk
space(ω

k
N)> with ωkN = Λk(Σk

y)−1. The update rule for the
noise variances is then derived as follows:

λk+1
m ←

√√√√√
[
Mk

N

]
m,m[(

Σk
y

)−1]
m,m

=

√√√√√∑T
t=1(ēkn(t))2[(
Σk

y

)−1]
m,m

for m = 1, . . . ,M , (57)

which is identical to the update rule of the Champagne with heteroscedastic noise learning as presented
in Cai et al. [68].

G Proof of Theorem 5

We prove Theorem 5 by showing that the alternating update rules for B and H, Eqs. (7) and (10),
are guaranteed to converge to a stationary point of the Bayesian Type-II likelihood Lkron(Γ,Λ,B)
Eq. (4). More generally, we prove that full Dugh is an instance of the general class of majorization-
minimization (MM) algorithms, for which this property follows by construction. To this end, we
first briefly review theoretical concepts behind the majorization-minimization (MM) algorithmic
framework [69–72].

G.1 Required conditions for majorization-minimization algorithms

MM is a versatile framework for optimizing general non-linear optimization programs. The main idea
behind MM is to replace the original cost function in each iteration by an upper bound, also known
as majorizing function, whose minimum is easy to find. Compared to other popular optimization
paradigms such as (quasi)-Newton methods, MM algorithms enjoy guaranteed convergence to a
stationary point [27]. The MM class covers a broad range of common optimization algorithms
such as convex-concave procedures (CCCP) and proximal methods [27, Section IV], [73–75]. Such
algorithms have been applied in various domains such as non-negative matrix factorization [76],
graph learning [77], robust portfolio optimization in finance [78], direction of arrival (DoA) and
channel estimation in wireless communications [79–82], internet of things (IoT) [83, 84], and brain
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source imaging [26, 68, 85–87]. Interested readers are referred to Sun et al. [27] for an extensive list
of applications on MM.

We define an original optimization problem with the objective of minimizing a continuous function
f(u) within a closed convex set U ⊂ Rn:

min
u

f(u) subject to u ∈ U . (58)

Then, the idea of MM can be summarized as follows. First, construct a continuous surrogate function
g(u|uk) that majorizes, or upper-bounds, the original function f(u) and coincides with f(u) at a
given point uk:

[A1] g(uk|uk) = f(uk) ∀ uk ∈ U
[A2] g(u|uk) ≥ f(u) ∀ u,uk ∈ U .

Second, starting from an initial value u0, generate a sequence of feasible points u1,u2, . . . ,uk,uk+1

as solutions of a series of successive simple optimization problems, where

[A3] uk+1 := arg min
u∈U

g(u|uk) .

Definition 5. Any algorithm fulfilling conditions [A1]–[A3] is called a Majorization Minimization
(MM) algorithm.

If a surrogate function fulfills conditions [A1]–[A3], then the value of the cost function f decreases
in each iteration:

Corollary 1. An MM algorithm has a descending trend property, whereby the value of the cost
function f decreases in each iteration: f(uk+1) ≤ f(uk).

Proof. To verify the descending trend in the MM framework, it is sufficient to show that f(uk+1) ≤
f(uk). To this end, we have f(uk+1) ≤ g(uk+1|uk) from condition [A2]. Condition [A3] further
states that g(uk+1|uk) ≤ g(uk|uk), while g(uk|uk) = f(uk) holds according to [A1]. Putting
everything together, we have:

f(uk+1)
[A2]
≤ g(uk+1|uk)

[A3]
≤ g(uk|uk)

[A1]
= f(uk) ,

which concludes the proof.

While Corollary 1 guarantees a descending trend, convergence requires additional assumptions on
particular properties of f and g [70, 71]. For the smooth functions considered in this paper, we
require that the derivatives of the original and surrogate functions coincide at uk:

[A4] ∇g(uk|uk) = ∇f(uk) ∀ uk ∈ U .

We can then formulate the following, stronger, theorem:

Theorem 8. For an MM algorithm that additionally satisfies [A4], every limit point of the sequence
of minimizers generated through [A3] is a stationary point of the original optimization problem
Eq. (58).

Proof. A detailed proof is provided in Razaviyayn et al. [70, Theorem 1].

Note that since we are working with smooth functions, conditions [A1]–[A4] are sufficient to prove
convergence to a stationary point according to Theorem 8.

G.2 Detailed derivation of the proof of Theorem 5

We now show that full Dugh is an instance of majorization-minimization as defined above, which
fulfills Theorem 8.
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Proof. We need to prove that conditions [A1]–[A4] are fulfilled for full Dugh. To this end, we first
prove conditions [A1]–[A4] for the optimization with respect to B based on the convex surrogate
function in Eq. (5), Ltime

conv(Γk,Λk,B). For this purpose, we recall the upper bound on log |B| in
Eq. (28), which fulfills condition [A2] since it majorizes log |B| as a result of the concavity of the
log-determinant function and its first-order Taylor expansion around Bk. Besides, it automatically
satisfies conditions [A1] and [A4] by construction, because the majorizing function in Eq. (28) is
obtained through a Taylor expansion around Bk. Concretely, [A1] is satisfied because the equality
in Eq. (28) holds for B = Bk. Similarly, [A4] is satisfied because the gradient of log |B| at point
Bk,

(
Bk
)−1

defines the linear Taylor approximation log
∣∣Bk

∣∣ + tr
((

Bk
)−1 (

B−Bk
))

. Thus,

both gradients coincide in Bk by construction. We can further prove that [A3] can be satisfied by
showing that Ltime

conv(Γk,Λk,B) reaches its global minimum in each MM iteration. This is guaranteed
if Ltime

conv(Γk,Λk,B) can be shown to be convex or g-convex with respect to B. To this end, we first
require the subsequent proposition:

Proposition 2. Any local minimum of a g-convex function over a g-convex set is a global minimum.

Proof. A detailed proof is presented in Rapcsak [57, Theorem 2.1].

Given the proof presented in Appendix C.1, we can conclude that Ltime
conv(Hk,B) is g-convex; hence,

any local minimum of Ltime
conv(Hk,B) is a global minimum according to Proposition 2. This proves

that condition [A3] is fulfilled and completes the proof that the optimization of Eq. (4) with respect
to B using the convex surrogate cost function Eq. (5) leads to an MM algorithm.

The proof of conditions [A1], [A2] and [A4] for the optimization with respect to H based on the
convex surrogate function in Eq. (8), Lspace

conv (H,Bk), can be presented analogously. To this end, we
recall the upper bound on log |Σy| in Eq. (41), which fulfills condition [A2] since it majorizes log |Σy|
as a result of the concavity of the log-determinant function and its first-order Taylor expansion around
Σk

y. Besides, it automatically satisfies conditions [A1] and [A4] by construction, because the
majorizing function in Eq. (41) is obtained through a Taylor expansion around Σk

y. Concretely,
[A1] is satisfied because the equality in Eq. (41) holds for Σy = Σk

y. Similarly, [A4] is satisfied

because the gradient of log |Σy| at point Σk
y,
(
Σk

y

)−1
defines the linear Taylor approximation

log
∣∣Σk

y

∣∣+ tr
[(

Σk
y

)−1 (
Σy −Σk

y

)]
. Thus, both gradients coincide in Σk

y by construction. We can

further prove that [A3] can be satisfied by showing that Ltime
conv(Hk,B) reaches its global minimum

in each MM iteration. This is guaranteed if Ltime
conv(Hk,B) can be shown to be convex with respect

to H = diag(h). Given the proof presented in Appendix E.2, we can show that [A3] is also
satisfied since Lspace

conv (H,Bk) in Eq. (8) is a convex function with respect to h. The convexity of
Lspace
conv (H,Bk), which ensures that condition [A3] can be satisfied using standard optimization,

along with the fulfillment of conditions [A1], [A2] and [A4], ensure that Theorem 8 holds for
Lspace
conv (H,Bk). This completes the proof that the optimization of Eq. (4) with respect to H using the

convex surrogate cost function Eq. (8) leads to an MM algorithm that is guaranteed to converge.

H Proof of Proposition 1

This is a well-established classical results of the signal processing literature. Therefore, we only
provide two remarks highlighting important connections between Preposition 1 and our proposed
method, and refer the interested reader to Grenander and Szegö [32, Chapter 5] for a detailed proof
of the theorem.
Remark 3. As indicated in Babu [88], the set of embedded circulant matrices with size L× L, BL,
does not constist exclusively of positive definite Toeplitz matrices. Therefore, we restrict ourselves
to embedded circulant matrices P that are also positive definite. This restriction indeed makes
the diagonalization inaccurate, but we can improve the accuracy by choosing a large L. Practical
evaluations have shown that choosing L ≥ 2T − 1 provides sufficient approximation result.

Remark 4. The Carathéodory parametrization of a Toeplitz matrix [89, Section 4.9.2] states
that any PD matrix can be represented as B = AP

′
AH with [A]m,l = ei(wl)(m−1) and

P
′

= diag(p
′

0, p
′

1, . . . , p
′

L−1) where wl and pl are specific frequencies and their corresponding
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amplitudes. By comparing the Carathéodory parametrization of B with its Fourier diagonalization
(Eq. (15)), it can be seen that Fourier diagonalization force the frequencies to lie on the Fourier grid,
i.e. wl = 2π(l−1)

L , which indeed makes the diagonalization slightly inaccurate. The approximation
accuracy can, however, be improved by increasing L. The Szegö theorem [32, 90] states that a
Toeplitz matrix is asymptotically (L→∞) diagonalized by the DFT matrix.

I Proof of Theorem 6

Proof. We proceed in two steps. First, we show that the cost function in Eq. (13) is convex with
respect to p. In the second step, we then derive the update rule proposed in (16).

I.1 Part I: Convexity of the majorizing cost function

The proof of this section parallels the one provided in [91, Proposition 4]. We start by recalling
Eq. (13):

B∗ = arg min
B∈B, H=Hk

tr((Bk)−1B) + tr(Mk
timeB

−1) . (59)

We then show that the second term in Eq. (59) can be upper-bounded as follows:

tr(Mk
timeB

−1) ≤ tr(PkQH(Bk)−1Mk
time(B

k)−1QPkP−1) . (60)

By defining V as

V =

[
(Bk)−1QPkP

−1
2

QP
1
2

]
, (61)

the PSD property of S can be inferred as

S =

[
(Bk)−1QPkP−1PkQH(Bk)−1 I

I QPQH

]
= VVH ≥ 0 . (62)

Therefore by virtue of the Schur complement with D = (Bk)−1QPkP−1PkQH(Bk)−1, G = I
and B = QPQH , we have:

(Bk)−1QPkP−1PkQH(Bk)−1 ≥
(
QPQH

)−1
. (63)

The inequality (Eq. (60)) can be directly obtained by multiplying Mk
time to both sides of Eq. (63),

applying the trace operator, using Eq. (14) and finally rearranging the terms within the trace operator:

tr(Mk
time(B

k)−1QPkP−1PkQH(Bk)−1) ≥ tr(Mk
timeB

−1) . (64)
Let Bk = QPkQH be the Fourier diagonalization of a fixed matrix Bk in the k-th iteration, one
can derive an efficient update rule for the temporal covariance by rewriting Eq. (13) and exploiting
Propositions 1 and Eq. (60):

tr((Bk)−1B) + tr(B−1Mk
time)

≤ tr((Bk)−1QPQH) + tr(PkQH(Bk)−1Mk
time(B

k)−1QPkP−1)

= diag(QH(Bk)−1Q)p + diag(PkQH(Bk)−1Mk
time(B

k)−1QPk)p−1 , (65)

where p = vec(P), and p−1 is defined as the element-wise inversion of p.

We formulate the optimization problem as follows:

Ltime
toeplitz(p) = diag(QH(Bk)−1Q)p

+diag(PkQH(Bk)−1Mk
time(B

k)−1QPk)p−1 . (66)

Let Wk := QH(Bk)−1Q and Ok := PkQH(Bk)−1Mk
time(B

k)−1QPk. Then, we rewrite
Ltime
toeplitz(p) as

Ltime
toeplitz(p) = diag(Wk)p + diag(Ok)p−1 . (67)

The convexity of Ltime
toeplitz(p) can be directly inferred from the convexity of diag

[
Wk

]
p and

diag
[
Ok
]
p−1 with respect to p [67, Chapter. 3].
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I.2 Part II: Derivation of the update rule in Eq. (16)

We now present the second part of the proof by deriving the update rule in Eq. (16). Since the cost
function Ltime

toeplitz(p) is convex, its optimal solution in the k-th iteration is unique. More concretely, a
closed-form solution of the final update rule can be obtained by taking the derivative of Eq. (67) with
respect to p and setting it to zero:

pk+1
l ←

√
ĝkl
ẑkl

for l = 0, . . . , L− 1 ,where (68)

ĝ = diag(PkQH(Bk)−1Mk
time(B

k)−1QPk) (69)

ẑ = diag(QH(Bk)−1Q) , (70)

which concludes the proof.

J Proof of Theorem 7

Proof. The proof is inspired by ideas presented in Rakitsch et al. [2], Wu et al. [49], Saatçi [92]
for spatio-temporal Gaussian process inference, and parallels the one proposed in Solin et al. [93].
Rakitsch et al. [2], Wu et al. [49] provide an efficient method for computing the non-convex spatio-
temporal ML cost function by exploiting the compatibility between diagonalization and the Kronecker
product. Here we use similar ideas to obtain the posterior mean in an efficient way.

Recalling the diagonalization of the temporal correlation matrix as B = QPQH and considering
the eigenvalue decomposition of LΓL> as LΓL> = UxDxU>x with Dx = diag(d1, . . . , dM ), we
have:

x̄g = (Γ⊗B) D>Σ̃−1y yg

= (Γ⊗B) (L⊗ I)>
(
Λ⊗B + DΣ0D

>)−1 vec(Y>g )

= (Γ⊗B) (L> ⊗ I)
(
(Λ + LΓL>)⊗B

)−1
vec(Y>g )

=
(
ΓL> ⊗B

) (
(Λ + LΓL>)⊗B

)−1
vec(Y>g )

=
(
ΓL>Ux ⊗QP

)
(Ω)−1(U>x ⊗QH)vec(Y>g )

=
(
ΓL>Ux ⊗QP

)
(Ω)−1 tr

(
QHY>g Ux

)
=
(
ΓL>Ux ⊗QP

)
tr
(
Π�QHY>g Ux

)
= tr

(
QP

(
Π�QHY>g Ux

) (
U>x LΓ>

))
, (71)

where � denotes the Hadamard product between corresponding elements of two matrices. Ω and Π
are defined as follows: Ω = Λ + Dx⊗P and [Π]l,m = 1

σ2
m+pldm

for l = 1, . . . , L; m = 1, . . . ,M .
Note that the last four lines are derived based on the following matrix equality:

tr(A>BCD>) = vec(A)>(D⊗B)vec(C). (72)

Together with the update rule in Eq. (19), this concludes the proof of Theorem 7.

K Details on the simulation set-up

K.1 Forward modeling

Populations of pyramidal neurons in the cortical gray matter are known to be the main drivers of
the EEG signal [14, 19]. Here, we use a realistic volume conductor model of the human head to
model the linear relationship between primary electrical source currents generated within these
populations and the resulting scalp surface potentials captured by EEG electrodes. The lead field
matrix, L ∈ R58×2004, which serves as the forward model in our simulations, was generated using
the New York Head model [36]. The New York Head model provides a segmentation of an average
human head into six different tissue types, taking into account the realistic anatomy and electrical
tissue conductivities. In this model, 2004 dipolar current sources were placed evenly on the cortical
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surface and 58 sensors were placed on the scalp according to the extended 10-20 system [94]. Finally,
the lead field matrix was computed using the finite element method (FEM) for a given head geometry
and exploiting the quasi-static approximation of Maxwell’s equations [14, 19, 36, 95].

Note that in accordance with the predominant orientation of pyramidal neuron assemblies, the
orientation of all simulated source currents was fixed to be perpendicular to the cortical surface, so that
only the scalar deflection of each source along the fixed orientation needs to be estimated. In real data
analyses in Section 6 and Appendix L, however, surface normals are hard to estimate or even undefined
in case of volumetric reconstructions. Consequently, we model each source in real data analyses as a
full 3-dimensional current vector. This is achieved by introducing three variance parameters for each
source within the source covariance matrix, Γ3D = diag(γ3D) = [γx1 , γ

y
1 , γ

z
1 , . . . , γ

x
N , γ

y
N , γ

z
N ]>. As

all algorithms considered here model the source covariance matrix Γ to be diagonal, this extension
can be readily implemented. Correspondingly, a full 3D leadfield matrix, L3D ∈ RM×3N , is used.

K.2 Pseudo-EEG signal generation

We simulated a sparse set of N0 = 3 active sources, which were placed at random positions on the
cortex. To simulate the electrical neural activity of these sources, T = {10, 20, 50, 100} time points
were sampled from a univariate linear autoregressive (AR) process, which models the activity at time
t as a linear combination of the P past values:

xi(t) =

P∑
p=1

ai(p)xi(t− p) + ξi(t), for i = 1, 2, 3 . (73)

Here, ai(p) for i = 1, 2, 3 are linear AR coefficients, and P is the order of the AR model. The model
residuals ξi(·) for i = 1, 2, 3 are also referred to as the innovation process; their variance determines
the stability of the overall AR process. We here assume uncorrelated standard normal distributed
innovations, which are independent for all sources. In this experiment, we use stable AR systems
of order P = {1, 2, 5, 7}. The resulting source distribution, represented as X = [x(1), . . . ,x(T )],
was projected to the EEG sensors through application of lead field matrix: Ysignal = LX. Next
we added Gaussian white noise to the sensor space signal. To this end, the same number of data
points as the sources were sampled from a zero-mean normal distribution, where the time points
assumed to be independent and identically distributed. The resulting noise distribution, represented
as E = [e(1), . . . , e(T )], is then normalized by its Frobenius norm and added to the signal matrix

Ysignal as follows: Y = Ysignal +
(1−α)‖Ysignal‖

F

α‖E‖F
E, where α determines the signal-to-noise ratio

(SNR) in sensor space. Precisely, SNR is defined as follows: SNR = 20log10 (α/1−α). In this
experiment the following values of α were used: α={0.55, 0.65, 0.7, 0.8}, which correspond to the
following SNRs: SNR={1.7, 5.4, 7.4, 12} (dB). Interested reader can refer to Haufe and Ewald [37]
for a more details on this simulation framework.

K.3 Source reconstruction and evaluation metrics

We applied thin Dugh to the synthetic datasets described above. In addition to thin Dugh, one further
Type-II Bayesian learning scheme, namely Champagne [33], and two Type-I source reconstruction
schemes, namely S-FLEX [35] and eLORETA [34], were also included as benchmarks with respect
to source reconstruction performance. S-FLEX is used as an example of a sparse Type-I Bayesian
learning method based on `1-norm minimization. As spatial basis functions, unit impulses were
used, so that the resulting estimate was identical to the so-called minimum-current estimate (MCE)
[96]. eLORETA estimate, as an example of a smooth inverse solution based on weighted `22-norm
minimization, was used with 5% regularization, whereas S-FLEX was fitted so that the residual
variance was consistent with the ground-truth noise level. Note that the 5% rule is chosen as it
gives the best performance across a subset of regularization values ranging between 0.5% to 15%.
For thin Dugh, the noise variances as well as the variances of all voxels were initialized randomly
by sampling from a standard normal distribution. The optimization program was terminated after
reaching convergence. Convergence was defined if the relative change of the Frobenius-norm of
the reconstructed sources between subsequent iterations was less than 10−8. A maximum of 1000
iterations was carried out if no convergence was reached beforehand.

Source reconstruction performance was evaluated according to two different measures, the earth
mover’s distance (EMD), used to quantify the spatial localization accuracy, and the correlation
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between the original and reconstructed sources, X̂ and X. The EMD metric measures the cost needed
to map two probability distributions, defined on the same metric domain, into each other, see [21, 38].
It was applied here to the power of the true and estimated source activations defined on the cortical
surface of the brain, which were obtained by taking the voxel-wise `2-norm along the time domain.
EMD was normalized to [0, 1]. The correlation between simulated and reconstructed source time
courses was assessed as the mean of the absolute correlations obtained for each source, after optimally
matching simulated and reconstructed sources. To this end, Pearson correlation between all pairs
of simulated and reconstructed (i.e., those with non-zero activations) sources was measured. Each
simulated source was matched to a reconstructed source based on maximum absolute correlation.
Time-course correlation error (TCE) was then defined as one minus the average of these absolute
correlations across sources. Each simulation was carried out 100 times using different instances of
X and E, and the mean and standard error of the mean (SEM) of each performance measure across
repetitions was calculated.

L Real data analysis

L.1 Auditory and visual evoked fields (AEF and VEF)

The MEG data used in this article were acquired in the Biomagnetic Imaging Laboratory at the
University of California San Francisco (UCSF) with a CTF Omega 2000 whole-head MEG system
from VSM MedTech (Coquitlam, BC, Canada) with 1200 Hz sampling rate. The neural responses
for one subject’s auditory evoked fields (AEF) and visual evoked fields (VEF) were localized. The
AEF response was elicited while subjects were passively listening to 600 ms duration tones (1 kHz)
presented binaurally. Data from 120 trial epochs were analysed. The VEF response was elicited
while subjects were viewing images of objects projected onto a screen and subjects were instructed to
name the objects verbally. Both AEF and VEF data were first digitally filtered from 1 to 70 Hz to
remove artifacts and DC offset, time-aligned to the stimulus. Different number of trials were included
for algorithm analyses. The pre-stimulus window was selected to be −100 ms to −5 ms and the
post-stimulus time window was selected to be 60 ms to 180 ms, where 0 ms is the onset of the tone.
The lead field for each subject was calculated with NUTMEG [97] using a single-sphere head model
(two spherical orientation lead fields) and an 8 mm voxel grid. Each column was normalized to have
a norm of unity. Further details on these datasets can be found in [33, 98–100].

Figure 6 shows the reconstructed sources of the Auditory Evoked Fields (AEF) from a representative
subject using Champagne, thin and full Dugh. In this case, we tested the reconstruction performance
of all algorithms with the number of trials limited to 20 and 120. As Figure 6 demonstrates, the
performance of Dugh remains robust as the number of trials is increased to 20 and 120 in Figure 6.
Finally, the VEF performance of benchmark algorithm eLORETA is demonstrated in Figure 7.

L.2 EEG Data: Faces vs scrambled pictures

A publicly available EEG dataset (128-channel Biosemi ActiveTwo system) was downloaded from
the SPM website (http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces) and the lead field was calculated
in SPM8 using a three-shell spherical model at the coarse resolution of 5124 voxels at approximately
8 mm spacing. These EEG data were also obtained during a visual response paradigm that involved
randomized presentation of at least 86 faces and 86 scrambled faces. To examine the differential
responses to faces across all trials, the averaged responses to scrambled-faces were subtracted from
the averaged responses to faces. The result is demonstrated in Figure 8.
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Figure 6: Robustness of Dugh and Champagne performance when the number of trials is increased to
20 and 120.

Figure 7: VEF performance of benchmark algorithm eLORETA. This benchmark did not yield
reliable results for 5 trial epochs. Even when the number of trials were increased to 20, benchmark’s
performance yielded neither good spatial localization of the two visual cortical areas nor good
estimation of the time courses of these activations.
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Figure 8: Performance of Dugh and benchmarks on EEG data acquired during a face recognition
task. Dugh was able to provide more focal and distinct activations for the M100 and M170 responses
that were not clearly identified using the benchmarks eLORETA and MCE.
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