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Abstract

In this paper, we propose a max-min entropy framework for reinforcement learning
(RL) to overcome the limitation of the soft actor-critic (SAC) algorithm implement-
ing the maximum entropy RL in model-free sample-based learning. Whereas the
maximum entropy RL guides learning for policies to reach states with high entropy
in the future, the proposed max-min entropy framework aims to learn to visit states
with low entropy and maximize the entropy of these low-entropy states to promote
better exploration. For general Markov decision processes (MDPs), an efficient
algorithm is constructed under the proposed max-min entropy framework based
on disentanglement of exploration and exploitation. Numerical results show that
the proposed algorithm yields drastic performance improvement over the current
state-of-the-art RL algorithms.

1 Introduction

The maximum entropy framework has been considered in various RL domains [22, 23, 30, 45,
51, 53, 58]. Maximum entropy RL adds the expected policy entropy to the return objective of
standard RL in order to maximize both the return and the entropy of policy distribution. Maximum
entropy RL encourages the policy to choose multiple actions probabilistically and yields a significant
improvement in exploration and robustness and good final performance in various control tasks
[15, 20, 21, 25, 26, 29, 50]. In particular, soft actor-critic (SAC) implements maximum entropy RL in
an efficient iterative manner based on soft policy iteration and guarantees convergence to the optimal
policy for finite MDPs, yielding significant performance improvement over various on-policy and
off-policy recent RL algorithms in many continuous control tasks. However, we observe that such an
iterative implementation of the maximum entropy strategy of optimizing for policies that aim to reach
states with high entropy in the future does not necessarily result in the desired exploration behavior
but may yield positive feedback hindering exploration in model-free sample-based learning with
function approximation. In order to overcome such limitations associated with implementation of the
maximum entropy RL, we propose a max-min entropy framework for RL, which aims to learn policies
reaching states with low entropy and maximizing the entropy of these low-entropy states, whereas the
conventional maximum entropy RL optimizes for policies that aim to visit states with high entropy
and maximize the entropy of those high-entropy states for high entropy of the entire trajectory. We
implemented the proposed max-min entropy framework into a practical iterative actor-critic algorithm
based on policy iteration with disentangled exploration and exploitation. It is demonstrated that the
proposed algorithm significantly enhances exploration capability due to the fairness across states
induced by the max-min framework and yields drastic performance improvement over existing RL
algorithms including maximum-entropy SAC on difficult control tasks.
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2 Related Works

Maximum Entropy RL: The maximum entropy framework has been considered in various RL
domains: inverse reinforcement learning [58], stochastic optimal control [45, 51, 53], guided policy
search [30], and off-policy learning [22, 23]. There is a connection between value-based and
policy-based RL under the policy entropy regularization [38], [42] combines them, and finally [46]
proves that they are equivalent. Maximum entropy RL is also related to probabilistic inference
[40, 45]. Recently, maximizing the entropy of state distribution instead of the policy distribution
[26] and maximizing the entropy considering the previous sample action distribution [25] have been
investigated for better exploration.

Max-Min Optimization: Max-min optimization aims to maximize the minimum of the objective
function [11]. Under the convex-concave assumption, there exist many algorithms to find the solution
to a max-min problem by using optimistic mirror descent [44], Frank-Wolfe algorithm [17], and
Primal-Dual method [24]. However, non-convex max-min problems are more challenging [37] and
there are several recent studies to find (approximate) solutions to non-convex max-min optimization
problems [6, 41, 43]. This framework has been used in various optimization/control domains: fair
resource allocation [31], inference [4, 56], generative adversarial network (GAN) [2, 18], robust
training [33], and reinforcement learning [54].

Exploration in RL: Exploration is one of the most important issues in model-free RL, as there is the
key assumption that all state-action pairs must be visited infinitely often to guarantee the convergence
ofQ-function [55]. In order to explore diverse state-action pairs in the joint state-action space, various
methods have been considered in prior works: intrinsically-motivated reward based on curiosity
[5, 10], model prediction error [1, 9], information gain [25, 27, 28], and counting states [32, 34].
These exploration techniques improve exploration and performance in challenging sparse-reward
environments [3, 9, 12].

3 Background

3.1 Basic RL Setup

We consider an infinite-horizon MDP (S,A, P, γ, r), where S is the state space, A is the action
space, P is the transition probability, γ is the discount factor, and r is the bounded reward function.
We assume that each action dimension is bounded. The RL agent has a policy π : S ×A → R+ ∈ Π,
which chooses an action at for given state st according to at ∼ π(·|st) at each time step t, where
Π is the policy space. For action at, the environment yields the reward rt := r(st, at) and the
next state st+1 ∼ P (st+1|st, at). Standard RL learns policy π to maximize the discounted return
Es0∼p0, τ0∼π[

∑∞
t=0 γ

trt], where τt = (st, at, st+1, at+1, · · · ) is an episode trajectory.

3.2 Maximum Entropy RL and Soft Actor-Critic

Maximum entropy RL maximizes both the expected return and the expected policy entropy simulta-
neously to achieve an improvement in exploration and robustness. The entropy-augmented objective
function of maximum entropy RL is given by

JMaxEnt(π) = Es0∼p0, τ0∼π

[ ∞∑
t=0

γt(rt + αH(π(·|st)))

]
, (1)

whereH(π(·|s)) = Ea∼π(·|s)[− log π(a|s)] is the entropy function and α > 0 is the entropy coeffi-
cient. A key point here is that the policy entropy is included in the reward not used as an external
regularizer at each time step. Thus, this maximum entropy RL framework optimizes for policies that
aim to reach states on which policies have high entropy in the future [21].

Soft actor-critic (SAC) is an efficient off-policy actor-critic algorithm to solve the maximum entropy
RL problem [22]. SAC maximizes (1) based on soft policy iteration, which consists of soft policy
evaluation and soft policy improvement. For this, the soft Q-value of given (st, at) is defined as

Qπ(st, at) := rt + Eτt+1∼π

[ ∞∑
l=t+1

γl−t(rl + αH(π(·|sl)))

]
, (2)
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which does not include the policy entropy of the current time step but includes the sum of all future
policy entropy and the sum of all current and future rewards. For given π, soft policy evaluation
guarantees the convergence of soft Q-function estimation, which estimates Qπ by iteratively applying
a modified Bellman operator T π to a real-valued estimate function Q : S ×A → R, given by

T πQ(st, at) = rt + γEst+1∼P (·|st,at)[V (st+1)], where (3)

V (st) = Eat∼π(·|st)[Q(st, at)− α log π(at|st)]

and V (st) is the soft state value function. Then, at each iteration, SAC updates the policy as

πnew = arg min
π∈Π

DKL

(
π(·|st)||

exp(Qπold(st, at)/α)

Zπold(st)

)
(4)

= arg max
π∈Π

Eat∼π(·|st)[Q
πold(st, at)− α log π(at|st)] (5)

where Zπold(st) is the log partition function which is a function of st only. Soft policy improvement
guarantees Qπnew(st, at) ≥ Qπold(st, at) for all (st, at) ∈ S × A. Finally, soft policy evaluation
and soft policy improvement are repeated. Then, any initial policy π ∈ Π converges to the optimal
policy π∗, i.e., Qπ

∗
(st, at) ≥ Qπ

′
(st, at) for all π′ ∈ Π and all (st, at) ∈ S ×A, and π∗ maximizes

JMaxEnt [22]. Proof of soft policy iteration assumes finite MDPs. SAC approximates the soft policy
iteration by sample-based learning with function approximation in continuous-space cases.

4 Motivation: Limitation of Maximum Entropy SAC in Pure Exploration

In this section, we will consider only the maximum entropy SAC in a pure exploration setup without
the reward function (the reward function r = 0 in MDPs). As seen in Sec. 3, SAC efficiently solves the
maximum entropy RL problem to maximize (1) in an iterative manner based on judiciously-defined
state and action value functions and the step-wise optimization cost (5). The well-defined value
functions and the local cost function as such enable proof of soft policy improvement for finite MDPs
in a similar way to the proof of the classical policy improvement theorem. Note that at each time step,
SAC updates the policy to maximize the cost (5), composed of two terms: Eat∼π(·|st)[Q

πold(st, at)]
and αEat∼π(·|st)[− log π(at|st)] = αH(π(at|st)). As aforementioned, the soft Q-function contains
the sum of current and future rewards and the sum of only future policy entropy. Since we consider
only the entropy terms without rewards here, the first term Eat∼π(·|st)[Q

πold(st, at)] is the current
estimate of the sum of future entropy when action at is taken from policy π at state st, whereas the
second term αH(π(at|st)) is the entropy of the policy π itself. Hence, at each time step, SAC tries
to update the policy π to yield the maximum sum of the estimated future entropy and the policy
entropy itself. Here, the term Eat∼π(·|st)[Q

πold(st, at)] plays the role of guiding the policy towards
the direction of high future entropy.

Saturation: In sample-based update with function approximation, however, the SAC iteration does
not yield the desired result, contrary to the intention behind maximum entropy. To see this, let us
consider a pure exploration task in which there is no reward. The considered task is a 100 × 100
continuous 4-room maze proposed in [25], modified from the continuous grid map available at
https://github.com/huyaoyu/GridMap. Fig. 1(a) shows the maze environment, where
state is the (x, y)-position of the agent in the map, action is (dx, dy) bounded by [−1, 1]× [−1, 1],
and the next state of the agent is (x + dx, y + dy). Starting from the left-lower corner (0.5, 0.5),
the agent explores the maze without any external reward. First, note that for this pure exploration
task, the optimal policy maximizing JMaxEnt(π) is given by the uniform policy that selects all
actions in A = [−1, 1]× [−1, 1] uniformly regardless of the value of st. This is because the uniform
distribution has maximum entropy for a bounded space [13]. Then, we compare the exploration
behaviour of SAC and the uniform policy in the maze task. Fig. 1(b) shows the mean accumulated
number of different visited states averaged over 30 random seeds as time goes, where the shaded
region in the curve represents standard deviation (1σ) from the mean and a different state is meant as
a nonoverlapping quantized 1× 1 square. As seen in Fig. 1(b), SAC explores more states than the
uniform policy at the early stage of learning. As learning progresses, however, SAC fails to visit new
states after 300k time steps, whereas the uniform policy continues visiting new states. As a result,
SAC eventually visits fewer states than the uniform policy on average. The result shows that SAC
fails to converge to the optimal uniform policy and its performance become saturated.
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Figure 1: Comparison of SAC and the uniform policy in the continuous 4-room maze

Narrow Exploration Radius: To examine the saturation behavior of SAC in the above pure explo-
ration task, we investigate the policy update of SAC in (5). Since the current Q-function estimate
(implemented by a neural network) replaces Qπold in (5) in implementation with function approxima-
tion, the policy update is rewritten as

arg max
π∈Π

{Eat∼π(·|st)[Q(st, at)] + αH(π(·|st))}. (6)

As mentioned already, the first term Eat∼π(·|st)[Q(st, at)] is the current estimate of the sum of future
entropy in this pure exploration case when action at is taken from policy π at state st, whereas the
second term αH(π(at|st)) is the entropy of the policy π itself. The first term Eat∼π(·|st)[Q(st, at)]
intends to direct the policy towards the direction of high future entropy. Note that maximizing the
second term already yields the uniform policy, but the Q-function term affects the policy update.
In order to see how the Q-function term actually affects the policy update, we differentiate the
entropy coefficient α in the policy update part (5) or (6) as the policy entropy coefficient απ and
that in the soft value function part (2) and (3) as the value entropy coefficient αQ. We fix απ as
απ = 1 and change αQ as 0, 0.1, and 1 (note that the case of αQ = 1 is original SAC). With this
change of αQ, we conducted the same pure exploration maze task. Fig. 1(c) shows the average
norm of the gradient of Q-function with respect to action, i.e., Est∼D[||∇aQ(st, a)|a=at ||] over
time with at ∼ π(·|st) and st from a mini-batch drawn from the replay buffer D of SAC update,
where the Q neural network weights were initialized randomly. Fig. 1(d) shows the histogram
of states that the policy visits over 50k time steps starting from 300k, 350k, 400k, and 450k time
steps. When αQ = 0 with no reward, the Q-function update by the Bellman operator T π in (3) is
trivial as Q(s, a)← Es′∼P (·|s,a),a′∼π(·|s′)[Q(s′, a′)], i.e., replacement. When the initial Q(s, a) is
(nearly) flat over S × A by initial random weight assignment for the Q-neural network, the flat Q
is maintained by this trivial update. Indeed, it is seen in Fig. 1(c) that Est∼D[||∇aQ(st, a)|a=at ||]
with at ∼ π(·|st) is nearly zero across all time for αQ = 0. With a flat function Q(st, ·) ≈ c over the
action space A, the first term Eat∼π(·|st)[Q(st, at)] in (6) does not affect the policy update, only the
second termH(π(·|st)) works, and thus the policy update yields π to converge to the uniform policy
for every state maximizing the total entropy. Hence, the exploration radius in the case of αQ = 0
is almost the same as that of the uniform policy, as seen in Fig. 1(d). When αQ > 0, on the other
hand, the Q-function starts to be updated nontrivially by the Bellman operator T π in (3) due to the
− log π(at+1|st+1) term in V (st+1) in (3), with π given by the current policy. It is now seen in Fig.
1(c) that Est∼D[||∇aQ(st, a)|a=at ||] is not zero anymore and the gradient norm becomes larger as
αQ increases from 0.1 to 1.0. Non-zero Est∼D[||∇aQ(st, a)|a=at ||] means that Q(st, ·) as a function
of action at for given st is not flat anymore and the first term in (6) affects the policy update so that
the policy is updated for the direction of high Q-value (with intention for high future entropy) as well
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(d) Cross-section of Q-function and log π along the action line at square center

Figure 2: Analysis on sample trajectories of SAC in the continuous maze task

as high policy entropy H(π). As seen in Fig. 1(d), however, the exploration radius reduces as αQ
increases from 0 to 1. The iteration process does not evolves for wider exploration as intended.

5 Methodology

5.1 A Deeper Look at Pure Exploration

In order to propose our new approach overcoming the limitation of SAC implementation of the
maximum entropy framework, we first take a deeper look at how the Q-function term in (6) hinders
exploration, as SAC (with απ = αQ = 1) learns the maze task. For this, we consider four 2 × 2
squares centered at (5, 5), (10, 10), (20, 20), and (30, 30) in the 100×100 maze, where every episode
starts from (0.5,0.5). Fig. 2(a) shows the number of accumulated visits to each square as time elapses.
Figs. 2(b) and 2(c) show the estimated Q value and the average empirical entropy of each square,
respectively, as time goes. For Fig. 2(b), every 1000 time steps, we sampled 1000 states uniformly
from each square and an action from the current policy for each sampled state, and computed the
Q-value average over the 1000 state-action samples for each square. Then, we computed the mean
value of the four average values of the four squares. Fig. 2(b) shows the average Q value of each
square relative to the four-square mean value as time goes. For Fig 2(c), every 1000 time steps,
we sampled 1000 states uniformly from each square and computed the average empirical entropy
Est [Eat∼π(·|st)[− log π(at|st)]] of the current policy π at time t averaged over the 1000 sampled
states {st} from each square. The upper row of Fig. 2(d) shows the cross-section of the estimate
Q-function Q(s, a) along the diagonal action line from (−1,−1) to (1, 1) at the center state s of
each square, as time goes, where each curve is shifted in y-axis so that the mean value averaged over
samples along the action line is matched to zero in y-axis. The lower row of Fig. 2(d) shows the
value of log π(a|s) of the current policy π at time step t along the diagonal action line from (−1,−1)
to (1, 1) at the center state s for each square as time goes, where the curve is shifted in y-axis to
match the mean value to zero in y-axis.

First, note from Fig. 2(a) that the farther a state is from the starting point (0.5, 0.5), the less the
agent visits the state, and the visitation difference is large. At the early stage of learning starting with
random Q-network weight initialization and random policy-network weight initialization, there is
little Q-value difference with respect to either state or action, as seen in Figs. 2(b) and 2(d), so the
entropy term is dominant in the policy update (6) and the policy entropy increases with the policy
distribution approaching the uniform distribution, as seen in Fig. 2(c). As time goes, learning of
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the Q-function with the Bellman backup (3) progresses. Basically, the Bellman backup (3) with no
reward adds ∆Qt = γ{Eat+1∼π(·|st+1)[Q(st+1, at+1)] + αH(π(·|st+1))} −Q(st, at) to Q(st, at)
for every (st, at) ∈ S×A. However, this is approximated in practical RL. In sample-based off-policy
learning with function approximation, RL typically stores visited state-action pairs in the replay buffer
D and the above Bellman backup is approximated as updating the Q-function by minimizing the loss
E(st,at)∼D[(Q(st, at)−Qtarget(st, at))2] based on a mini-batch uniformly drawn from the buffer.
Under this off-policy learning with experience replay, when the initial Q-function is roughly flat and
small, ∆Qt soon becomes positive (the policy update increases the entropy of the visited states and
∆Qt soon becomes positive for the visited states), and hence the Q-values of frequently-visited states
are updated more and thus have higher Q-values as seen in Fig.2(b). This is because these states are
stored more into D and sampled more from D at mini-batch generation. Then, the initial Q-value
difference biases the policy to visit the states with high Q-values more frequently than the states
with low Q-values because the policy is updated to choose actions that maximizes the expectation
of Q-value Eat∼π(·|st)[Q(st, at)] in the policy update (6). This is evident in the Fig. 2(d), which
shows the estimate of Q-function and the value of log π along the diagonal line. At the early stage
of learning (10k time step in the figure), Q-function is roughly flat and the policy is almost close to
the uniform distribution for the action line. As the time steps go on, the Q-values of actions close
to (−1,−1) becomes higher than the Q-value of actions near (1, 1) due to the off-policy learning
with experience replay, as explained above. Then, the policy is updated to choose actions with high
Q-values more frequently to maximize the Q-value expectation, so the probability of choosing action
(−1,−1) towards the left-lower corner becomes higher than that of action (1, 1) for the opposite
direction. As the policy distribution leans toward a certain action and becomes asymmetric away
from uniformity, the policy entropy decreases further. As seen in Fig. 2(c), the speed of the policy
entropy decrease varies depending on the Q-value difference along the action line in Fig. 2(d), and
the policy entropy difference deepens the Q-value difference between states in Fig. 2(b) because the
Q-value estimates the policy entropy sum of future states. This positive feedback continues until
saturation, as seen in Fig. 2(b), and it results in the narrow exploration radius in Fig. 1(d) because the
policy will be forced to visit states with high Q-values only. Note that this positive feedback reduces
the policy entropy due to the Q-value difference, contrary to the intention behind maximum entropy.

5.2 Max-Min Entropy RL

In order to break the unwanted positive feedback loop occurring when implementing the maximum
entropy framework (i.e., max-max entropy framework) in the previous subsection, we must reduce
the policy entropy difference between states to reduce the Q-value difference between states in the
feedback loop. For this, we aim to learn the Q-function so that the policy visits states with low
entropy, and the policy update increases the policy entropy of these low-entropy states. Under this
principle, we propose a new max-min entropy (MME) framework that aims to learn the Q-function
to estimate the negative sum of policy entropy, while maintaining the policy entropy maximization
term H(π(·|st)) in the policy update to increase the policy entropy of the visited states. Thus, we
define the reversed soft Q-function QπR(st, at) for MME as

QπR(st, at) := rt + Eτt+1∼π

[ ∞∑
l=t+1

γl−t(rl − αQH(π(·|sl)))

]
, (7)

whereas the original soft Q-function of SAC in (2) is given by

Qπ(st, at) := rt + Eτt+1∼π

[ ∞∑
l=t+1

γl−t(rl + απH(π(·|sl)))

]
.

Note that the original soft Q-function Qπ adds the policy entropy to the reward and drives the policy
to visit states with high entropy. On the other hand, our reversed soft Q-function subtracts the policy
entropy from the reward and drives the policy to visit states with low entropy. In this sense, we call
QR as the “reversed” soft Q-function because it desires the reverse behavior of soft Q-function.

Then, QπR is estimated by a real-valued function QR : S ×A → R based on a Bellman operator T πR :
T πRQR(st, at) = rt + γEst+1∼P (·|st,at)[VR(st+1)], (8)

where VR(st) = Eat∼π(·|st)[QR(st, at) + αQ log π(at|st)] is the reversed soft state value function.
At each iteration, the policy of MME is updated as

πnew = arg max
π∈Π

Eat∼π(·|st)[Q
πold
R (st, at)− απ log π(at|st)], (9)

6



where QπoldR is substituted by the estimate function QR at the iteration. Then, in pure exploration
with no reward rt = 0,∀t, the policy of MME will visit the states with low entropy due to the first
term Eat∼π(·|st)[Q

πold
R (st, at)], and the policy entropy of those states will increase by the second

term Eat∼π(·|st)[− log π(at|st)] = H(π(·|st)), as we intended. Note that the behaviour of the
proposed method follows the max-min principle [11], so we expect that our MME fairly increase the
policy entropy of all states based on the fairness perspective of max-min optimization, whereas SAC
increases the policy entropy of states with high entropy only. The MME is expected to reduce the
entropy difference and the Q-value difference between states to reduce the unwanted feedback loop
and solve the saturation problem. Furthermore, SAC considers the same entropy coefficient απ for its
policy update and the soft Q-function Qπ , but our MME distinguishes the policy entropy coefficient
απ in the policy update (9) and the value-entropy coefficient αQ in the reversed soft Q-function QπR
in (7), as we experimented in Section 4. Changing αQ and απ allows for us to control the amount of
the reversed Q-function in the policy update, and it will determine the ratio between the exploration
due to the policy entropy and the exploration due to the reversed soft Q-function.

In actual implementation, the negative entropy in (7) is plus-offsetted to make the Q-update increase
the Q-value. The detailed implementation and algorithm of MME are provided in Appendix A.

5.3 Disentangled Exploration and Exploitation for Rewarded Setup

In the previous subsection, we considered the problem from a pure exploration perspective. However,
the ultimate goal of RL is to maximize the sum of rewards in rewarded environments, and the goal
of exploration is to receive higher rewards without falling into local optima. With non-zero reward
in (7) - (9), the policy will not only visit states with low entropy but also states with higher return.
In this case, the reward and the entropy are intertwined in the Q-function and then it is difficult to
expect the intended MME exploration behavior through the intertwined Q-function. Therefore, we
disentangle exploration from exploitation for rewarded setup, as considered in several previous works
[7, 49], and propose disentangled MME (DE-MME) for rewarded setup. For this, we consider two
policies: pure exploration policy πE that samples actions for pure exploration as described in Sec.
5.2, and target policy πT that actually interacts with the environment. We decompose the reversed
soft Q-function QπR in (7) into two terms QπR = QπR,R +QπR,E , where QπR,R is the expected current
and future reward sum considered in standard RL and QπR,E is the expected sum of future entropy:

QπR,R(st, at) = rt + Eτt+1∼π

[
∞∑

l=t+1

γl−trl

]
, QπR,E(st, at) =−αQEτt+1∼π

[
∞∑

l=t+1

γl−tH(π(·|st))

]
.

Then, we update the policy πE for pure exploration as

πE,new = arg max
π′∈Π

Eat∼π′(·|st)
[
Q
πE,old
R,E (st, at)− απ log π′(at|st)

]
. (10)

Note that increasing the expectation of QπE,oldR,E makes the policy visit states with low entropy of πE ,
as we intended in the pure exploration case in Sec. 5.2. Finally, we update the target policy πT by
using QπE,oldR,E as

πT,new = arg max
π′∈Π

Eat∼π′(·|st)
[
Q
πT,old
R,R (st, at) +Q

πE,old
R,E (st, at)− απ log π′(at|st)

]
. (11)

For implementation, QπT,oldR,R and QπE,oldR,E are estimated by real-valued functions QR,R and QR,E
based on their own Bellman operators (see Appendix A). Note that the policy update (9) in Sec.
5.2 can be expressed as maximizing Eat∼π′(·|st)[Q

πT,old
R (st, at)− απ log π′(at|st)] over the target

policy, where QπT,oldR = Q
πT,old
R,R +Q

πT,old
R,E . Thus, we can view that the policy update in (11) replaces

Q
πT,old
R,E in the previous policy update (9) withQπE,oldR,E to disentangle exploration from exploitation. In

this way, the policy update (11) will simultaneously increase the expectation of QπT,oldR,R to maximize
the reward sum, the expectation of QπE,oldR,E to visit states with low entropy, and the policy entropy for
diverse action. The detailed implementation and algorithm for DE-MME are provided in Appendix
A.

6 Experiments

We provide numerical results to show the performance of the proposed MME and DE-MME in
pure exploration and various control tasks. We provide source code for the proposed method at
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Figure 3: Comparison of MME (Proposed), SAC, and the uniform policy in the 4-room maze

http://github.com/seungyulhan/mme/ that requires Python Tensorflow. For all plots,
the solid line represents the mean over random seeds and the shaded region represents 1 standard
deviation from the mean.

6.1 Pure Exploration
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Figure 4: Performance of MME

To see how the proposed method be-
haves in pure exploration, we con-
sidered the maze task described in
Sec.4 again. We compared the ex-
ploration performance of MME in
Sec.5.2, SAC, and the uniform pol-
icy. For MME, we considered several
αQ ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10} with
απ = 1. Fig. 3(a) in the next page
shows the mean number of accumu-
lated quantized visited states averaged
over 30 random seeds corresponding
to Fig. 1(b), and Fig. 3(b) shows the
histogram of visited states, of which setup is the same as Fig.1(d). As seen in Fig. 3(a), the proposed
MME visits much more states than SAC or the uniform policy. In addition, we observe that MME
continues discovering new states throughout the learning, while SAC rarely visits new states as
learning progresses. As seen in Fig. 3(b), MME explores far and rare states as compared to SAC or
the uniform policy, and this leads to a large enhancement in exploration performance, as intended
in Sec. 5.2. Note that the larger αQ in update (7) (9) with rt = 0, the stronger is the effect of the
Q-function term to visit states with low entropy and the weaker is the effect of the policy entropy
term to explore widely in the action space, as we expected in Section 5.2. Hence, there is a trade-off
between the two terms and αQ = 0.5 seems best in the maze task when απ = 1.0, as seen in Fig. 3(a).
Thus, the result clearly shows why we distinguish the policy entropy coefficient απ and the value
entropy coefficient αQ for MME, whereas SAC uses the common entropy coefficient α = απ = αQ.
We also plotted the Q-value difference and the empirical entropy of the four squares centered at (5,5),
(10,10), (20,20) and (30,30) for MME, as done in Figs. 2(b) and 2(c). The result is shown in Fig. 4.
It is seen that the Q-value difference and the entropy difference among the states are clearly reduced
as compared to Figs. 2(b) and 2(c). It means that MME breaks the unwanted positive feedback loop
and improves the policy entropy of diverse states more uniformly as compared to SAC in terms of
fairness under our max-min framework. This leads to better exploration, as seen in Fig 3.

6.2 Performance in Rewarded Environments

As mentioned in Sec.5.3, the ultimate goal of RL is to maximize the reward sum in rewarded
environments and exploration is one of the means to achieve this goal. Based on the enhanced
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Figure 5: Performance comparison on Sparse Mujoco tasks
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Figure 6: Performance comparison on Delayed Mujoco tasks

exploration performance of MME, we expect MME/DE-MME to show good performance in rewarded
environments too. In order to verify this, we considered three types of difficult control tasks for
which current state-of-the-art RL algorithms do not show satisfactory performance: Two types of
sparse-reward tasks (SparseMujoco tasks and DelayedMujoco tasks) and high dimensional Humanoid
tasks. SparseMujoco [27, 35] is a sparse version of Mujoco [52] in OpenAI Gym [8], and the reward
is 1 if the agent crosses the x-axis threshold τ , otherwise 0. DelayedMujoco [19, 57] is a delayed
version of Mujoco in which the reward is accumulated for D time steps and the agent receives
the accumulated reward sum once every D time steps. During the accumulation time, the agent
receives no reward. These sparse-reward environments have widely been considered as challenging
environments for validating the performance of exploration in many previous works [9, 25, 27].

First, we compared the performance of MME algorithms to that of maximum entropy SAC in the
sparse-reward tasks. For MME, we considered two versions: vanilla MME proposed in Sec.5.2, and
disentangled MME (DE-MME) proposed in Sec.5.3. For MME/DE-MME, we fixed απ of MME
and DE-MME to be equal to α of SAC, and chose proper αQ for each task. Detailed experimental
setup is provided in Appendix B. Figs. 5 and 6 show the performance averaged over 10 random seeds
on SparseMujoco tasks and 5 random seeds on DelayedMujoco tasks, respectively. It is seen that
the proposed MME shows much higher performance than SAC in the considered environments with
rewards. It is also seen that MME itself performs well enough in most environments but DE-MME
indeed yields performance gain over vanilla MME and the gain is large in SparseWalker. Thus,
disentanglement of exploration from exploitation is beneficial to MME for better reward performance
in rewarded environments, as discussed in Sec.5.3. We provided the corresponding max average
return tables in Appendix C and ablation study for further analysis in Appendix D. There, one of
ablation study empirically shows that the performance enhancement by MME is caused by improved
exploration of MME as we intended.

Finally, we compared the performance of MME/DE-MME to that of popular general RL algorithms
and recent exploration methods on the considered sparse-reward environments (SparseMujoco and
DelayedMujoco tasks) and dense-reward high-dimensional Mujoco tasks (Humanoid, Humanoid-
Standup). We considered several action-based exploration methods: SAC combined with divergence
[27] (SAC-Div) and diversity actor-critic (DAC) [25], and state-based exploration methods with
random network distillation (RND) [9] and MaxEnt (State) [26]. For general RL algorithms, we con-
sidered several on-policy RL algorithms: proximal policy optimization (PPO) [48] and trust-region
policy optimization (TRPO) [47], and entropy-based off-policy RL algorithms: soft Q-learning (SQL)
[21] and SAC [22]. We provided detailed explanation and implementation for each algorithm in
Appendix C. Table 1 summarizes the max average return result. It is seen that MME/DE-MME have
superior performance to other methods.
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MME DE-MME DAC SAC-Div RND MaxEnt(State)
Sps.Hopper 902.50±4.36 893.30±6.72 900.30±3.93 817.40±253.54 897.90±6.06 879.50±30.96
Sps.HalfCheetah 903.50±34.97 924.90±39.57 915.90±50.71 394.70±405.53 827.80±85.61 924.70±24.44
Sps.Walker2d 818.00±208.60 886.60±25.77 665.10±355.66 278.50±398.23 750.90±179.09 705.30±274.88
Sps.Ant 953.70±28.39 973.60±12.55 935.80±37.08 870.70±121.14 920.60±107.50 940.70±43.84
Del. Hopper 3421.32±88.29 3435.28±39.55 3428.18±69.08 2090.64±1383.83 2721.06±1199.20 3254.10±30.75
Del. HalfCheetah 7299.28±1562.19 8451.20±1375.27 7594.70±1259.23 4080.67±3418.07 7429.94±1383.75 7907.98±535.41
Del. Walker2d 5148.58±193.78 5274.89±186.35 4067.11±257.81 4048.11±290.48 4098.63±683.36 4430.61±347.02
Del. Ant 4664.04±836.37 4851.64±830.88 4243.19±795.49 3978.34±1370.23 1361.36±704.69 1156.61±112.40

MME DE-MME SAC SQL PPO TRPO
Humanoid-
Standup

267734.03
±74302.99

250935.53
±49386.43

167394.36
±7291.99

138996.84
±33903.03

160211.90
±3268.37

153919.84
±1575.62

Humanoid 9080.54±768.52 8607.75±570.61 6760.81±267.78 5010.72±248.59 6153.54±246.95 5730.74±455.90

Table 1: Max average return of MME/DE-MME and other recent RL algorithms

7 Conclusion

In this paper, we have proposed a MME framework for RL to resolve the unwanted exploration
behavior of maximum entropy RL in off-policy learning with function approximation. In pure
exploration, to implement MME, we train the Q-function to visit states with low entropy contrary
to the maximum entropy strategy, while maintaining the policy entropy maximization term in the
policy update. Then, we extended MME to rewarded environments. In rewarded environments we
disentangle exploration from exploitation for MME to explore diverse states as in pure exploration as
well as to achieve high return. Numerical results show that the proposed MME explores farther and
wider in the state space than maximum entropy realization, alleviates possible positive feedback of
off-policy maximum entropy learning, and yields a significant enhancement in exploration and final
performance over existing RL methods in various difficult tasks. As for potential impacts, RL can be
applied to sensitive areas that require control, such as drone control. However, it is only a risk that
RL itself has, and it is not very relevant to the work that we are trying to address in this paper.
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