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Abstract

Current transfer learning algorithm designs mainly focus on the similarities between
source and target tasks, while the impacts of the sample sizes of these tasks are
often not sufficiently addressed. This paper proposes a mathematical framework
for quantifying the transferability in multi-source transfer learning problems, with
both the task similarities and the sample complexity of learning models taken
into account. In particular, we consider the setup where the models learned from
different tasks are linearly combined for learning the target task, and use the optimal
combining coefficients to measure the transferability. Then, we demonstrate the
analytical expression of this transferability measure, characterized by the sample
sizes, model complexity, and the similarities between source and target tasks, which
provides fundamental insights of the knowledge transferring mechanism and the
guidance for algorithm designs. Furthermore, we apply our analyses for practical
learning tasks, and establish a quantifiable transferability measure by exploiting a
parameterized model. In addition, we develop an alternating iterative algorithm to
implement our theoretical results for training deep neural networks in multi-source
transfer learning tasks. Finally, experiments on image classification tasks show that
our approach outperforms existing transfer learning algorithms in multi-source and
few-shot scenarios.

1 Introduction

Transfer learning is nowadays an active research area in machine learning focusing on solving target
learning tasks by the knowledge of learnable source tasks. The transferability between source and
target tasks is the central topic in transfer learning for understanding the knowledge transferring
mechanisms and the algorithm designs [1]. In general, the transferability can be affected by several
factors, including: (i) the similarities between source tasks and the target task [2[]; (ii) the sample
sizes of the tasks; and (iii) the complexity or dimensionality of the machine learning model. Most of
the existing transfer strategies are designed based on how similar the source and target tasks are [2, 3],
without considering the impacts of the training sample sizes or the complexity of the models.
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In theoretical analyses [4} 5} 6], sample sizes and model complexity are often included in deriving
upper bounds for the transferability or the performance of transfer learning algorithms. However, it is
pointed out that such bounds derived under general learning settings are often relatively loose under
numerical simulations [[7]], and hence the algorithms designed by directly applying theoretical results
can hardly achieve satisfactory performance in practical applications. Thus, the gap between theory
and practice opposes the fundamental understandings of transfer learning algorithms.

In this paper, we propose a mathematical framework to investigate the transferability in multi-source
transfer learning problem, and establish a quantifiable transferability measure for practical learning
tasks. Specifically, for given source tasks, we learn the target task by a class of learning model
which linearly combines the models learned from individual tasks by some designable coefficients.
In addition, the performance of this combined model is measured by the empirical risk of only the
testing data of the target task, considered as the testing loss. Then, we adopt the optimal combining
coefficients that achieve the minimum testing loss as the transferability measure, which illustrates
the contribution of each model in learning the target task, and effectively quantifies the knowledge
transferable among different tasks.

In our development, we establish an analytical solution of the transferability measure, which is jointly
quantified by sample sizes, model complexity, and a similarity measure between source and target
tasks. In particular, we demonstrate that the transferability of a particular source task is typically
proportional to the number of samples and the measure of similarity to the target task, and is inversely
proportional to the model complexity. This coincides with the intuition that when more training
samples are available for a source task that is highly similar to the target task, more knowledge will
be transferable from the source task to the target task. On the other hand, when the model is very
complicated or high-dimensional, it is typically harder to train the model well, and less knowledge
can be acquired and transferred. More importantly, our theoretical results can be applied for designing
effective and efficient algorithms for real transfer learning problems, which are especially useful for
multi-source transfer learning with a large number of source tasks that are generally difficult to deal
with.

The contribution of this paper can be summarized as follows:

* We propose a mathematical framework for transfer learning analyses, and establish a
transferability measure on discrete data, quantified by the number of samples, the complexity
of the model, and the X2 -distance between source and target tasks.

* We extend the transferability analyses to the continuous data, and establish a similar transfer-
ability measure that can be evaluated in practical tasks, by exploiting paramerized models.

* We apply our theoretical results to develop an iterative algorithm for training deep neural
networks in general supervised transfer learning scenarios. Moreover, our algorithm can be
practically applied for multi-source transfer learning.

* The experiments in real datasets validate our proposed algorithm, in which we show that our
approach outperforms many existing transfer learning algorithms.

Due to the space limitations, the proofs of theorems and propositions are presented in the supplemental
material.

2 Problem Formulation and Analysis

Let X and Y be the random variables denoting the data and label with domains X and Y, respectively,
and let P denote the set of all distributions on X x Y. For the convenience of illustration, here we
assume X to be discrete, and will extend our analyses to continuous cases later. Throughout our
analyses, we will use Ay = {(ag,...,ax): Zf:o a; = 1,04 > 0,4 = 0,...,k} to denote the
k-dimensional simplex.

2.1 Single-Source Transfer Learning

To begin, we consider the transfer learning setting with one source task and one target task, denoted
as task 1 and O, respectively. Specifically, for each task 7+ = 0,1, we assume that n; training



samples {(ac , ,y£ } , are i.i.d. generated from some underlying joint distribution P(Zg/ eP witl'i
P)((%,(.Z' y) > 0, for all z, y, and the empirical distributions P)((Y € P of the samples are defined as

P () 2 le{w =a,y" =y}, (1)

where 1{-} denotes the indicator function [8]. Then, the empirical distributions P)(a)/ and P)%), can
be regarded as the models learned from the target task and the source task, respectively, when all the
entries of the mass functions are required to determine.

To develop the transferability measure, our proposed framework focuses on a convex combination of
both learned models’t

QLo (z,y) £ agP ) (2, y) + an PY) (2,y), forall (z,y) € X x Y, @)

where (g, @1) € A are parameters to be designed. Notice that these parameters characterize the
knowledge transferred from the source task to target task, and the designing of these parameters will
be affected by the sample sizes and the task similarities, which essentially leads to a transferability
measure adjusted by the sample complexity.

Then, the performance of the model Q(ao’al) is evaluated by the testing loss, measured by its
empirical risk on the testing data of target task. Conventionally, such empirical risk is often computed
by the logarithm loss. However, the logarithm risk can be ill—deﬁne(ﬂ in our setting. Therefore, we
alternatively apply the referenced x2-distance as the measure, defined as follows.

Definition 1. Given a reference distribution R xy, for any distribution Pxy and Q xvy, the referenced
x2-distance between them is defined as

(Pxy (z,y) *QXY(CU»Z/))Q'

2 P A
XRxy ( XYaQXY) Z RXY(-T,]/)

zeX,yeY

Specifically, we denote x*(Pxy,Qxy) = X%’xy (Pxy,Qxy), which corresponds to the Pearson
x2-divergence.

We choose the underlying target distribution P)((Ol), as the reference, and define the testing loss as the
averaged Pearson y2-divergence

rig) 2 [ (A Q)] ®

where the expectation is taken over all i.i.d. samples generated from the source and target distributions.
Moreover, we define the optimal coefficients

2 argmin L9 )
(avo,01) €A

(ag, a1)
as our transferability measure, which effectively quantifies the contributions of the source and target
tasks in obtaining the optimal performance.

Then, we have the following characterization.
Theorem 2. The testing loss as defined in (3) is

2 2
Lleoe) — g2y (P)(g),,P(l)) 4 Xy 4 Yy (5)
no ny

3The assumption on positive entries is without loss of generality, since in practice such joint distributions are
typically modeled by some positive parameterized families, e.g., the softmax function.

“We shall emphasize that such combination forms are naturally led by the transfer learning model proposed by
[4} Section 1] from optimizing a convex combination of Log-Loss, where we refer to Section A of supplementary
material for a detailed discussion.

’Note that when some (z,%) pair is missing in training samples, we have Q()‘;{i’“l) (z,y) = 0 while

P)({Ol), (z,y) > 0, which would lead to an infinite logarithm risk.



and the transferability measures as defined in (@) are
1 10
ol = 5 T , and of=1-— 0], (6)
(P PRY) + VO + Ly
where, for eachi = 0,1, V) is defined as
P (2, (1 — P (a, )
OP Z v (%) v (2,y) .

(0)
zeX,yeY PXY(‘Tv Y)

(7

From (@)), and the fact that V' (*) = |X||Y| — 1, the transferability is determined by three key factors: (i)

the similarity between source and target tasks, measured by the y2-divergence XQ(P)((O}),, P)((l})/); (ii)
the sample sizes ny and n; for source and target tasks; and (iii) the model complexity, characterized
by the number of model parameter (|X||Y] — 1) in V(O)EI

Current transfer learning algorithm designs often focus on the similarities between source and target
tasks, while the sample sizes and model complexity are often not sufficiently addressed. In Theorem |2}
we show that the transferability is in fact proportional to the number of model parameters, and is
inversely proportional to the number of samples in source tasks and the similarity between source
and target tasks. Therefore, for a source task with a complex model or few training samples, even
though it is similar to the target task, the knowledge transferable from this source task can still be
very limited. Such insight was not well captured in many existing transfer learning algorithms, and
our result essentially provides the optimal characterization of the task transferability adjusted by the
sample complexity in transfer learning.

The established transferability measure is also related to the optimal bias-variance trade-off [9] of
this transfer learning problem. Indeed, note that the bias-variance trade-off in testing loss (9) is tuned
by ag and o, as

2 2
Ly = o (PO PEY ) + 22V 4 Sy ®), ®)
no ny
bias term variance term(s)

where the bias term does not decay with the sample sizes ng, n1, while the variance terms vanish
with sufficient samples. Then, the transferability measure corresponds to the coefficients o), o] that
achieve the optimal bias-variance trade-off, such that the testing loss is minimized.

2.2 Multi-source Transfer Learning

Theorem [2] can be readily generalized to multi-source transfer learning problems. Specifically,

suppose that there are k source tasks, referred to as task ¢, fori = 1, ..., k, and a target task, referred
to as task 0. Similarly, for each task i = 0, ..., k, we use P)(g,, {(a:gl), y((f)) vy, and ]5)(3/ to denote

the underlying distribution, n; i.i.d. samples generated from P)(;%,, and the corresponding empirical
distribution as defined in (I)), respectively.

Similar to (2), we consider the convex combination of the models learned from different tasks

k
QWY 23 Py, ae A 9)
i=0
Then, we define the testing loss ngb)t and the corresponding transferability measure o, as [cf. (3),
@)
ngb)t 2R [X2 (P)(g),, g?))/)} and o £ argmin ng)t (10)
acAg

Similar to Theorem [2] we have the following result for multi-source transfer learning.

SWhen evaluating V) this quantity is related to the source distribution. From this perspective, the model
complexity reflects how hard the task is.



(a) Feature Extractor (b) Classifier

Figure 1: A pre-trained neural network for classification can be divided into (a) a feature extractor
which generates feature f(z) = [f1(z), -, fa(z)]T € R?, and (b) a classifier with the weights g.
With f fixed, our framework optimizes the weights g in the topmost layer for each task, to obtain the
corresponding parameterized representation.

Theorem 3. For the model (), the testing loss under the target task is

k E 9
[e 3 lo'n .
L) = (PQ%ZmP&L) + v, (11)

i=0 i=0 "

where V\)’s are as defined in @, for all .

From Theorem 3] the transferability measure o* as defined in (I0) can be computed by solving a
non-negative quadratic programming problem [10]. Similar to the discussions in Section [2.1] such
transferability measure quantifies the knowledge transferable from different source tasks to the target
task with the sample complexity being considered.

3 Parametric Models and Transfer Learning Algorithm

3.1 Transferability Measure with Pre-trained Neural Network

This section extends the analyses in the discrete data domain to continuous data in practical problems.
In such cases, the previously adopted learning model (1)) has infinite parameters due to the infinite
cardinality |X|, and thus can not be effectively represented. In order to apply the previous analyzing
framework, we first propose a parameterized representation for modeling features of the continuous
data by exploiting a pre-trained model.

As shown in Figure[I] a pre-trained network can be divided into two parts: (a) the previous layers for
extracting d-dimensional features f(x) = [f1(x), -, fa(z)]T from the data variable x, and (b) the
topmost layer for linear classification, with weights g(y) = [g1(y), - - - , 9a(y)]T indexed by label y.
When the feature f(z) is given and fixed, the models learned from different tasks can be effectively
represented by a finite collection of parameters, i.e., g(1),...,g(|Y|).

In particular, our framework considers the discriminative model in the factorization form

P2 (yl2) £ PP (y) (14 £ (2)g(v)) (12)

which is similar to the ones introduced in factorization machines [11]] and natural language processing
applications [12]]. Then, for each task ¢ = 0, .. ., k, we learn corresponding weights g;, such that the

learned model I:’}(,fl )’?i) fits the training sample The weight g; can be formally defined as

gi = arggmin X?%xy (P)((ig/,P)(f)p}(,flkg)) , (13)

"The approach of retraining (fine-tuning) the topmost layer is sometimes referred to as the retrain-head
method [13]], which has also been widely adopted in transfer learning applications.



where the fitness is measured as the referenced x?-distance [cf. Definition|1]] between the empirical

distribution 15)(;%, and the joint distributio P)((0 )15}(,"‘3?). For convenience, we adopt a unified

reference Rxy 2 P)((O )PX(,O) in fitting different tasks.

From (T3)), P)((O )Pg}?i) plays the role in the continuous case corresponding to 15)@/ in the discrete

case. This allows us to apply previous analyses and focus on the discriminative model f’l(/"c }?i)’s.
Analogous to (9), we consider the convex combination of these discriminative models
( g (f,8:) (£.9)
@) a p(f.9:) _ p(f.a
QY|X = Zaipwx = Pyx (14)
i=0

with g £ Zf:o a;g;. Then, we define the testing loss and corresponding transferability measure as

[cf. (O]

L 2E [ (PP )] and o” £ argmin L), (15)
acAg

for which we have the following characterization.
Theorem 4. The testing loss (13)) associated with the model (T4) is

k E 9
0) p(f, 0) p(f.gi QG (i 0 0) »(F,
L& = X4, (P)(()Px(/p?())a Zaip)(()Px(vp? )> + Z ;V( Xy (P)(Q)’v P)(()Px(mng)) ’
i=0 i=0
(16)
where g; = arg min, X%%!xy (P)(g,, P)((O)P)(,f;?)), and where V9 is a constant independent of o
characterized in the supplementary material [cf. (32)].

Moreover, note that from the definition of g;, the joint distribution P)(g )Pyﬁ?i) can be interpreted

as a projection of P)(g/ onto the distribution family {P)((O )153(/{;?) g:Y— Rd}, with referenced

x>-distance used as the distance measure. Therefore, the terms of (T6)) share similar interpretations
as their counterparts in Theorem 2] with the distances measured in the projected space. Again, o*
can be efficiently computed by solving a non-negative quadratic programming problem.

3.2 Multi-source Transfer Learning Algorithm

With our theoretic analyses in Theorem [ we develop a knowledge transfer algorithm for multi-
source transfer learning. Different from the previous analyses where f is fixed, our algorithm jointly
optimizes the extracted feature f, the weights g, together with the combining coefficients « to obtain
better performance.

To begin, for given f, g, and a, we introduce the loss function

k
(e f.9) & Z aiX?%xy (P.g(l%” P§(0)P5(/.T-;?)> ' (17)
=0

The following result illustrates that, the g can be computed via directly minimizing this loss, without
evaluating each g; individually.

Proposition 5. The g as defined in (T4) satisfies

g = arg min L(ef9),
g/

8The joint distribution P)((O)P;f;?) is defined as [P)((O)Py‘c;?)} (z,y) £ P (90)]5%}?) (y|z), for all (x,y).

Note that when the discriminative model ﬁ}(,f }?) is fixed, P)((0 Uﬁg ;?) corresponds to the optimal approximation

of the target distribution P)((O }),



Table 1: Test accuracies (%) on the target task, with the network trained on samples from single
source. All reported accuracies are averaged over 5 repeated experiments.

Source Task 1 2 3 4
Acc. on the target task ~ 66.5 59.7 562 77.1

Table 2: Test accuracies (%) on the target task, compared with the combining coefficients « deter-
mined by 20 rounds of random searches (RS).

Target Sample Size 6 20 100
Acc. with only target samples  70.9 744 815
Average acc. by 20 RS 67.8 739 754
Highest acc. by 20 RS 744 78.0 80.8
Acc. by Algorithm 789 812 83.7

Then, with training samples from different tasks, our algorithm alternates between two different
kinds of optimizations: (i) the optimization of c for given (f, g) to minimize the testing loss LE:;)t as
defined in (T6)), via solving a non-negative quadratic programming problem; and (ii) the optimization
of (f,g) for given a to minimize the loss L(®¥9) as defined in (T7) via training the neural network.

We summarize the procedures as Algorithm T]

Specifically, it can be shown that both the testing loss LE;’;{ and the loss L(®+9) can be represented by

some expectations of features f and g. In computing these losses, these expectations are approximated
by corresponding empirical means, with details provided in the supplementary material.

Algorithm 1 Multi-Source Knowledge Transfer Algorithm

Input: target and source data samples {(xl(i), yl(i)) 7;1 (i=0,---,k)
Randomly initialize o
repeat

(f*,g") « argming / Le"f.9)

* : ()
a” < argminge 4, Liost

until a* converges
(f*,g*) + arg minf_’g (e f.9)
return f*, g*

PRDIN RN

With the f* and g* computed by the algorithm, for a newly observed target sample z, the predicted
label ¢ is given by the MAP (maximum a posterior) decision rule

j(z) = arg max P (ylw) = arg max PP (y) (1+ £ (2)g" ) - (18)
ye ye

4 Experiments

To validate the effectiveness of our algorithms in multi-source learning and few-shot transfer learning
scenarios, we conduct a series of experiments on common datasets for image recognition, including
CIFAR-10 [14], Office-31 and Office-Caltech [15]. In all experiments, the g in the classifier is simply
generated by an embedding layer.

4.1 Multi-source Transfer Learning

We conduct multi-source transfer learning experiments on CIFAR-10, which contains 50 000 training
images and 10000 testing images in 10 classes. To begin, we construct the source tasks and target
task by dividing the original CIFAR-10 dataset into five disjoint subdatasets, each containing two
classes of the original data, which corresponds to a binary classification task. Then, we choose one as
our target task (task 0), and use the other four as source tasks for transferring knowledge, referred to
astask 1, 2, 3, 4.

Moreover, for each source task, 2000 images are used for training, with 1000 images per binary
class, and we set target sample size ng to ng = 6, 20, 100, respectively. Throughout this experiment,



Table 3: Test accuracies for target tasks under different transfer settings (source — target) on Office-31

Method A—-D A—-W D—-W D—>A WA W-—D

SDT [20] 86.1 82.7 95.7 66.2 65.0 97.6
DAMA [21]  86.3 84.5 95.5 66.5 65.7 97.5
FADA [22] 88.2 88.1 96.4 68.1 71.1 97.5
UDDA [23] 89.0 88.2 96.4 71.8 72.1 97.6

Ours 90.0 87.3 96.5 72.4 72.1 972

Table 4: Test accuracies for target tasks under different transfer settings on Office-Caltech

Method A—-C W—-C D—C C—»A C—>»>W C—D

GFK [15] 68.4 68.4 64.5 83.8 78.7 74.6
TLDA [24] 76.1 71.0 65.4 84.2 85.2 78.9
DTML [25]  72.0 71.6 67.1 86.0 85.0 79.6
CPNN [26] 78.5 73.5 68.0 86.3 86.2 80.1

Ours 80.3 72.9 72.2 88.4 85.9 83.5

the feature f is of dimensionality d = 10, generated by GoogLeNet [[16], followed by two fully
connected layers for further dimension reduction.

Unlike common transfer learning settings where the labels for the source and target tasks are closely
related, here the binary labels for these 5 sub-datasets are in general irrelevant. Therefore, we first
establish the correspondences between labels as follows. For each given source task, we first train
the network on its training samples, while the test accuracy is evaluated on the test samples from the
target task. Then, we flip the original binary label for this source, if the test accuracy is less than 50%.
The resulting test accuracies on the target set are summarized in Table

In our implementation of Algorithm [T] we use the CVXPY [[17, [18] package for solving the non-
negative quadratic programming in line 5. In addition, the alternating iteration is stopped when the
element-wise differences for a* computed in two successive iterations are at most 0.05.

Then, the test accuracies of our algorithm on the target set are shown in Table 2] where we have
compared our performance with random search (RS) strategy. Specifically, in the RS strategy, we
generate the coefficients a from the log-uniform distribution [19] in [0.001, 1], for 20 rounds. The
results indicate that our approach outperforms the random search method. Also, the difference
in Table 2] and Table [T] also shows the performance gain of multi-source transfer learning over
single-source.

4.2 Few-shot Transfer Learning

To validate the effectiveness of our algorithm for few-shot learning tasks, we conduct experiments on
Caltech-31 and Office-Caltech datasets. These datasets provide typical transfer learning tasks with
few available training samples, where the influence of sample complexity is shown.

4.2.1 Caltech-31

Caltech-31 dataset contains images of 31 categories, which come from 3 sub-datasets: Amazon (2817
images), Dslr (498 images), and Webcam (795 images). Then, different transfer settings among
these sub-datasets are denoted by the “source — target”, as: A—D, A—W, D—W, D—A, W—A,
and W—D. We adopt the few-shot transfer learning setting in [20], illustrated as follows. Specifically,
3 target samples per category are used for training, and the training sample size (per category) for
source task is set to 20 or 8, depending on whether the source task is Amazon or not. Moreover, we
also adopt five train-test splits introduced in [20]].

In our experiment, the feature f is a 64-dimensional vector, extracted by a VGG-16 [27]] network
pre-trained on the ImageNet, succeeded by two fully connected layers for dimension reduction.

Table [3]summarizes test accuracies for target tasks under different transfer settings, where all reported
accuracies are averaged over five train-test splits. The results indicate that our algorithm generally
outperforms existing few-shot transfer learning methods.
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Figure 2: The combining coefficient «; of the task A—D and test accuracies under testing samples
of Dslr during iterations.

In addition, we also investigate the convergence of the coefficient a* in Algorithm[I} As an example,
for the A—D task, the changes of the coefficient a; (the coefficient of the source loss) and the
accuracy on the Dslr test dataset during iterations are shown in Figure[2] From the figure, the value
of a1 converges under our stopping criterion, where the optimal testing accuracy is obtained.

4.2.2 Office-Caltech

Office-Caltech dataset is composed of 10 common categories in Office-31 and Caltech-256, divided
as four sub-datasets: Amazon (958 images), Caltech (1123 images), Webcam (295 images), and Dslr
(157 images). We focus on the 6 transfer settings depending on C, i.e., A—C, W—C, D—C, C—A,
C—W, and C—D, which have few common categories between source and target tasks.

In addition, we follow the setting introduced in [[15] for train-test split. The feature f is of dimen-
sionality d = 10, based on the DeCAF feature [28}29] with 2 fully connected layers for dimension
reduction.

Table 4| shows the performance for our algorithm, in comparison with several semi-supervised and
few-shot domain adaptation algorithms. It is worth mentioning that, though our approach does not use
the unlabeled data samples in training, it provides competitive performance as the semi-supervised
algorithm CPNN [26], and can be better on specific tasks.

5 Related Work

Theoretical Analyses of Transfer Learning and Transferability. Most of the theoretical works
about transfer learning focus on deriving upper bounds for the transferability or the performance of
transfer learning. For example, the generalization error can be bounded by the VC-dimension of
the hypothesis space [30], the total variance distance [4] or the mutual information between training
samples and outputs [3], and the Jensen-Shannon distance between domains [6]. The choices of
measures are determined mostly by the problem settings. Furthermore, some of these different
measures and the y2-divergence used in our work are closely related, which are generalized as
f-divergence [31]]. However, there can exist a significant gap between the theoretical bounds and the
performance for real tasks [7]].

There are also works concentrating on defining a transferability measurement in an empirical way. For
instance, the empirical log-likelihood on the target data under the network trained by source samples
can measure how much the source samples would help improve the target task [[13,32]]. Compared
with these works, we establish a transferability measure and provide an analytical expression, for
guiding algorithm designs.

Transfer Learning Algorithms. Transfer learning algorithms based on the insights from theoretical
works intuitively measure the similarities between different domains. The similarity measures include
the low-rank common information [33]], K-L divergence [34} 35| 36|, [37], I5-distance [38] 39} |40,
and Wasserstein distance [41]. Additionally, transfer learning problems also share the similar
framework with meta-learning, which concentrates on obtaining a generalized model for different



tasks, especially when lacking enough samples for all categories [42]. In comparison with the above
works, our algorithm takes the sample sizes and model complexity into consideration, and can be
more applicable for general learning tasks, including the few-shot setting.

Multi-source Domain Adaptation and Few-shot Domain Adaption. Multi-source domain adapta-
tion considers the approaches of combining multiple tasks together. Conventional methods mainly
include instance weighting [43]] and domain weighting [44, [15]], which re-weight samples or loss
functions in training, respectively. Based on deep learning, cutting-edge algorithms attempt to
maximize the domain confusion [45] 46] or learn the domain-invariant representations [47].

Semi-supervised and few-shot domain adaptation focus on transfer learning algorithms under few
labeled target samples, which is one of our work’s application scenarios. Compared with conventional
domain adaptation, this field pays attention to embedding samples into an intrinsic low-dimensional
subspace [[15]. Common algorithms aim at learning domain-invariant representations, including
simultaneous deep transfer (SDT) method [20]] and semantic alignment method [22, [23].

Compared with these empirical studies, our characterization provides a practical learning algorithm
under theoretical guarantees.

6 Conclusion

This paper introduces a mathematical framework for quantifying the transferability in multi-source
transfer learning problems. Our characterization reveals the essential roles of sample sizes and
model complexity in knowledge transferring, which demonstrates potentials in establishing a unified
understanding of various transfer learning algorithms. In addition, we develop a multi-source transfer
learning algorithm based on the theoretical analyses. Experiments on practical multi-source learning
tasks show the effectiveness of our proposed algorithm.
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