
A Supplementary Materials

A.1 Related Work

Neural Network Pruning. A number of neural network pruning techniques have been proposed for
reducing the computational expense of large-scale neural networks for deployment on low-resource
systems. To estimate the impact of removing a parameter, these methods often use importance
measures that were originally designed to prune neural networks. Existing techniques on neural
network pruning can be broadly classified into three categories: (1) Pruning after training which
consists of three steps: training the original network to convergence, prune redundant weights based
on some criteria, and retrain the pruned model to regain the performance loss due to pruning [20, 62,
34, 23, 41, 67, 49, 68, 52, 57, 3, 30, 48, 60, 50, 36]; (2) Pruning during training techniques aim to
update the pruning mask while training the network from scratch, which allows pruned neurons to be
recovered [74, 24, 25, 63, 35, 64, 39, 27, 29, 4, 40]; and (3) Pruning before training approaches try to
find the sparsity mask at initialization and train the pruned network from scratch without changing
the mask [32, 61, 33, 56, 16, 21]. A recent literature has demonstrated that traditional neural network
pruning often fall-short compared to the LTH techniques [33].

Lottery Ticket Hypothesis. The Lottery Ticket Hypothesis (LTH) states that a randomly-initialized,
dense neural network contains a subnetwork that is initialized such that, when trained in isolation,
it can match the test accuracy of the original network after training for at most the same number
of iterations [13, 73, 70, 42, 6, 72, 37]. If this hypothesis is true, it has great potential to covert
the inefficient training process on a large network to the scalable training process over a small
one with comparable test accuracy. Most of existing LTH techniques provide empirical evidence
to verify the LTH, although these methods raise very intriguing observations [71, 12, 1, 47, 69,
54, 5, 53, 26, 8, 7, 11]. Some LTH techniques utilize unstructured weight magnitude pruning to
obtain the matching subnetworks [13, 70]. The original LTH papers utilize the Iterative Magnitude
Pruning (IMP) algorithm to run multiple cycles of training, pruning, and weight rewinding to discover
extremely sparse neural networks at initialization that can be trained to match the test accuracy of
the original network [13, 14]. However, multiple cycles of training and pruning over large neural
networks are time-consuming. In order to scale over large models and datasets, a late-rewinding
technique is proposed to reinitialize ticket training from the early training stage rather than rewinding
to initialization [14, 49, 15]. Other methods employ the loss gradients at initialization to prune the
network in a single-shot for improving the LTH efficiency [32, 59]. Two recent works analyze the
LTH transferability, i.e., the ticket discovered from one source task can be transferred to another
target task [44, 43].

Several recent works attempt to theoretically verify the LTH [42, 45, 46, 48]. A common characteristic
of these methods is to validate that target neural networks can be approximated as pruned subnetworks
with bounded error with a certain success probability (i.e., confidence). This implies that they only
discuss the validity of approximate subnetworks (i.e., lossy pruning) and may fail to generate a good
approximation with some failure probability. In addition, these findings cannot offer much insights
for how to develop effective pruning algorithms that are applied on the target network directly. The
proof strategies rely on the heuristics that a subnetwork with a specific structure that can replicate a
single neuron of the target network exists.

To our best knowledge, this work is the first to theoretically verify the LTH and the existence of
winning lottery tickets by leveraging dynamical systems theory and inertial manifold theory. We
theoretically identify the precondition and existence of exact pruned subnetworks (i.e., one-time
lossless pruning) with 100% confidence and directly prune the original neural networks in terms of
the gap in their spectrum.

A.2 Proof of Theorems

Lemma 1. If f(x) is globally Lipschitz in X , then the ODE in Eq.(1) has a unique global solution
in X for any initial condition x(0) = x0.

Proof. Please refer to the book [9] for detailed proof.

Theorem 1. The global attractor A of the dynamical system derived by Eq.(7) is the union of
equilibria W ∗ and their unstable manifoldsMu(W ∗) [19].

16



Proof. Let ϕ(t,W (0)) be the dynamical system derived by Eq.(7). For any initial value W (0) ∈ Rd,
the Ω-limit set of W (0) is defined as follows.

Ω(W (0)) = {W̄ ∈ Rd : ∃tn →∞ as n→∞, s.t. ϕ(tn,W (0))→ W̄} (24)

For any W̄ ∈ Ω(W (0)) and any t ≥ 0, when n→∞, we have

ϕ(t+ tn,W (0)) = ϕ(t, ϕ(tn,W (0)))→ ϕ(t, W̄ ) (25)

This implies ϕ(t, W̄ ) ∈ Ω(W (0)) and further indicates that Ω(W (0)) is invariant under the dynami-
cal system ϕ. Since L(ϕ(t,W (0))) that decreases with t and the loss function L has a lower bound,
there exists a constant D such that

L(φ(t,W (0)))→ D as t→∞ (26)

According to the definition of Ω(W (0)), we have L(W̄ ) = D for any W̄ ∈ Ω(W (0)). Since
ϕ(t, W̄ ) ∈ Ω(W (0)), for any t ≥ 0, we get

L(ϕ(t, W̄ )) = L(W̄ ) (27)

This implies

d

dt
L(ϕ(t, W̄ )) = −|∇L(φ(t, W̄ ))|2 = 0 (28)

Therefore, for any W̄ ∈ Ω(W (0)), ∇L(W̄ ) = 0, i.e., W̄ is an equilibrium of ϕ. This indicates
that for any W ∈ Rd, ϕ(t,W ) → W ∗ for a certain equilibrium W ∗. Since the unstable manifold
Mu(W ∗) of W ∗ is attracting all orbits in a neighborhood of W ∗, the global attractor A contains
all equilibria W ∗ and their unstable manifoldsMu(W ∗).
Theorem 2. The global attractor A of the dynamical system derived by Eq.(7) is unique.

Proof. Let A1 and A2 be two global attractors. Since A2 is bounded, it is attracted by A1, we have

dist (ϕ(t, A2), A1)→ 0 as t→∞ (29)

In addition, A2 is invariant, ϕ(t, A2) = A2, from which it follows that dist (A2, A1) = 0. Notice
that the statement is symmetric, so dist (A1, A2) = 0, from which it follows that A1 = A2.
Theorem 3. Let A ⊂ W be a compact subset of a Banach spaceW , and W (t) ∈ W be a sequence
with limt→∞ dist(W (t), A) = 0, then W (t) has a convergent subsequence, whose limit lies in A.

Proof. Write W (t) = R(t) + S(t), where R(t) ∈ A and |S(t)| → 0 as t → ∞. Then there is a
subsequence such that R(tj)→ R∗ ∈ A, so W (tj)→ R∗ too.
Theorem 4. The global attractor A of the dynamical system derived by Eq.(7) is the maximal
compact invariant set, and the minimal set that attracts all bounded sets B ⊂ W .

Proof. Let X be compact and invariant. Since X is compact, it is bounded and thus is attracted
to A. Therefore, dist(ϕ(t,X), A) = dist(X,A) → 0 as t → ∞, i.e., dist(X,A) = 0 so X ⊆ A.
Similarly, if Y attracts all bounded sets, then Y attracts A. The same argument shows that A ⊆ Y
by using invariance of A. In conclusion, X ⊆ A ⊆ Y .
Theorem 5. LetW be a Banach space with dimension d, given a semi-linear ODE

W ′(t) = AW (t) + f(W (t)), W (t) ∈ W (30)

17



where A is a d× d matrix and f :W →W . The spectrum of A is denoted as follows.

λ1 ≤ λ2 ≤ · · · ≤ λd (31)

Assuming that f(0) = 0, let K be the Lipschitz constant of f(x), that is,

‖f(x)− f(y)‖W ≤ K‖x− y‖W for any x, y ∈ W (32)

If there exits an integer k, such that λk+1 − λk > 4K, letW+ be the generalized eigenspace for
λk+1, . . . , λd andW− be the generalized eigenspace for λ1, . . . , λk, then there exists an inertial
manifoldMW as follows.

MW = (W+, h(W+)) (33)

where h is a mapping fromW+ toW−.

Proof. Let Π+ and Π− be the projection maps associated with subspacesW+ andW− respectively.
Π+ and Π− satisfy

Π+W =W+, Π−W =W−, Π+Π+ = Π+, Π−Π− = Π− (34)

Now, we view the matrix A as a linear operator defined with matrix multiplication. In order to study
the ODE inW+ andW− respectively, let

A+ = A|W+ = AΠ+, A− = A|W− = AΠ− (35)

and

f+(W (t)) = Π+f(W (t)), f−(W (t)) = Π−f(W (t)) (36)

By using the spectrum gap condition, we have the following exponential dichotomy.

‖eA
−t‖op ≤ Ceλkt for any t ≥ 0

‖eA
+t‖op ≤ Ceλk+1t for any t ≤ 0

(37)

where ‖ · ‖op is the operator norm fromW toW .

For any W (t) ∈ W , we decompose W (t) into two subspaces.

W (t) = W (t)+ +W (t)− (38)

where W (t)+ = Π+W (t) and W (t)− = Π−W (t).

Based on the decomposition of W (t), we rewrite f+(W (t)) and f−(W (t)) as f+(W+(t),W−(t))
and f−(W+(t),W−(t)) respectively. Thus, by applying Π+,Π− to Eq.(30), the semi-linear ODE is
rewritten as follows.

{
d
dt
W+(t) = A+W+(t) + f+(W+(t),W−(t))

d
dt
W−(t) = A−W−(t) + f−(W+(t),W−(t)),

(39)

18



By utilizing the Constant Variation formula, we rewrite Eq.(39) in the integral form .

W+(t) = eA
+tW+(0) +

∫ t

0

eA
+(t−s)f+(W+(s),W−(s))ds

W−(t) = eA
−(t−t0)W−(t0) +

∫ t

t0

eA
−(t−s)f−(W+(s),W−(s))ds

(40)

Now, we employ the Lyapunov-Perron method to construct the inertial manifold. Let α = (λk +
λk+1)/2, a weighted norm ‖ · ‖α on continuous function space C(R−;W) is defined as follows.

‖P (t)‖α = sup
t≤0

e−αt‖P (t)‖W , P (t) ∈ C(R−;W) (41)

We defineWα as a continuous function space C(R−;W) equipped with ‖ · ‖α norm.

Wα(δ) = {W (t) ∈ Wα| ‖P‖α ≤ δ, ‖W+(0)‖W ≤ δ/2} (42)

For any (W+(t),W−(t)) ∈ Wα(δ), we define

W̃+(t) = eA
+tW+(0) +

∫ t

0

eA
+(t−s)f+(W+(s),W−(s))ds (43)

W̃−(t) = eA
−(t−t0)W−(t0) +

∫ t

t0

eA
−(t−s)f−(W+(s),W−(s))ds (44)

By applying the dichotomy property in Eq.(37) to the linear term in Eq.(44), we obtain

‖eA
−(t−t0)W−(t0)‖W ≤ Ceλk(t−t0)‖W−(t0)‖W for t0 ≤ t ≤ 0 (45)

By multiplying the weight e−αt to Eq.(45), we have

e−αt‖eA
−(t−t0)W−(t0)‖W ≤Ce(λk−α)(t−t0)

(
e−αt0‖W−(t0)‖W

)
≤Ce(λk−α)(t−t0)‖W−(t)‖α

(46)

This implies

‖eA
−(t−t0)W−(t0)‖α ≤ Ce(λk−α)(t−t0)‖W−(t)‖α (47)

By taking t0 → −∞, we have

‖eA
−(t−t0)W−(t0)‖α → 0 (48)

Therefore, letting t0 → −∞ in Eq.(44), we have

W̃−(t) =

∫ t

−∞
eA

−(t−s)f−(W+(s),W−(s))ds (49)

Now, we consider the system consisting of Eqs.(43) and (49), i.e.,

{
W̃+(t) = eA

+tW+(0) +
∫ t
0
eA

+(t−s)f+(W+(s),W−(s))ds

W̃−(t) =
∫ t
−∞ e

A−(t−s)f−(W+(s),W−(s))ds
(50)

19



The above system can be viewed as a mapping Γ : (W+(t),W−(t))→ (W̃+(t), W̃−(t)). We will
use the Banach fixed-point theorem to prove there exists a unique fixed point for the mapping Γ.

By using the dichotomy property in Eq.(37) and the properties of f in Eq.(43), we get that for any
t ≤ 0

‖W̃+(t)‖W ≤eλk+1t‖W+(0)‖W +

∫ t

0

eλk+1(t−s)‖f+(W+(s),W−(s))‖Wds

≤eλk+1t‖W+(0)‖W +K+

∫ t

0

eλk+1(t−s)(‖W+(s)‖W + ‖W−(s))‖W)ds

(51)

where K+ be the Lipschitz constant of f+(x).

By multiplying e−αt to Eq.(51), we obtain

‖W̃+(t)‖α ≤e(λk+1−α)t‖W+(0)‖W +K+

∫ t

0

e(λk+1−α)(t−s)e−αs(‖W+(s)‖W + ‖W−(s))‖W)ds

≤‖W+(0)‖W +K+(‖W+(t)‖α + ‖W−(t))‖α)

∫ 0

−∞
e(λk+1−α)(t−s)ds

≤δ/2 +K+(λk+1 − α)−1(‖W+(t)‖α + ‖W−(t)‖α)
(52)

where we use ‖W+(0)‖α ≤ δ/2 as the definition ofWα(δ) in Eq.(42).

Similarly, for Eq.(49), we have

‖W̃−(t)‖α ≤ K−(α− λk)−1(‖W+(t)‖α + ‖W−(t)‖α) (53)

where K− be the Lipschitz constant of f−(x).

Since α = (λk+λk+1)/2, we have α−λk > 2K and λk+1−α > 2K. Therefore, λk+1−λk > 4K.
In addition, as f = f+ + f−, we have K+ +K− = K. Therefore, by combining Eqs.(52) and (53),
we obtain

‖W̃+(t)‖α + ‖W̃−(t)‖α < δ/2 +
(K+ +K−)

2K
(‖W+(t)‖α + ‖W−(t)‖α)

≤ δ/2 +
(K+ +K−)

2K
(δ/2 + δ/2)

= δ

(54)

This implies the mapping Γ mapsWα(δ) to itself. By taking (W+
i (t),W−i (t)) ∈ Wα(δ) for i = 1, 2

that satisfies W+
1 (0) = W+

2 (0), (W̃+
i (t), W̃−i (t)) has the same definition as the one in Eq.(50), i.e.,

{
W̃+
i (t) = eA

+tW+
i (0) +

∫ t
0
eA

+(t−s)f+(W+
i (s),W−i (s))ds

W̃−i (t) =
∫ t
−∞ e

A−(t−s)f−(W+
i (s),W−i (s))ds

(55)

By following the similar strategy in Eqs.(52) and (53), we have

‖W̃+
1 (t)− W̃+

2 (t)‖α ≤ K+(λk+1 − α)−1(‖W+
1 (t)−W+

2 (t)‖α + ‖W−1 (t)−W−2 (t)‖α) (56)

20



and

‖W̃−1 (t)− W̃−2 (t)‖α ≤ K−(α− λk)−1(‖W+
1 (t)−W+

2 (t)‖α + ‖W−1 (t)−W−2 (t)‖α) (57)

By combining Eqs.(56) and (57) together, we get

‖W̃+
1 (t)− W̃+

2 (t)‖α + ‖W̃−1 (t)− W̃−2 (t)‖α
≤(K+(λk+1 − α)−1 +K−(α− λk)−1)(‖W+

1 (t)−W+
2 (t)‖α + ‖W−1 (t)−W−2 (t)‖α)

<
‖W+

1 (t)−W+
2 (t)‖α + ‖W−1 (t)−W−2 (t)‖α

2

(58)

This implies that Γ is a contraction mapping. Therefore, for any W+(0), Γ admits a unique fixed
point (W ∗+(t),W ∗−(t)), i.e.,

{
W ∗+(t) = eA

+tW+(0) +
∫ t
0
eA

+(t−s)f+(W ∗+(s),W ∗−(s))ds

W ∗−(t) =
∫ t
−∞ e

A−(t−s)f−(W ∗+(s),W ∗−(s))ds
(59)

We define a mapping h fromW+ toW− as follows.

h(W+) = W ∗−(0) (60)

where (W ∗+(t),W ∗−(t)) is the fixed point of Γ (i.e., the solution of Eq.(59)) with W+(0) = W+.
Then the inertial manifoldMW is given as follows.

MW = {
(
W+, h(W+)

)
|W+ ∈ W+} = (W+, h(W+)) (61)

Therefore, the proof is concluded.

A.3 Additional Experiments

Accuracy and sparsity of pruned subnetworks over CIFAR-100. Table 6 exhibits the accuracy of
pruned subnetworks obtained by thirteenth network pruning and LTH approaches with found sparsity
by our IMC method on CIFAR-100. Table 7 presents the sparsity of pruned subnetworks obtained by
thirteenth methods with highest accuracy within a range of sparsity levels over CIFAR-100. Similar
trends are observed for the neural network pruning comparison in these two tables: our IMC method
achieves the largest accuracy values (>73.9) with the same sparsity levels and the largest sparsity
(>0.18) with the highest accuracy, which are better than other nine baseline methods in all tests.
Notice that even if the noise level is very high, such as 0.29, three versions of our IMC method still can
achieve considerable accuracy improvement. It demonstrates that IMC is relatively robust to sparsity
levels. This advantage is very important for the usage of deep learning models in resource-intensive
scenarios with the requirement of low latency and energy consumption, such as Internet of Things
and mobile computing.

21



Table 6: Accuracy with found sparsity by our IMC method on CIFAR-100
Neural Network ResNet-20 ResNet-32
Metric Sparsity Accuracy Epoch Runtime (s) Sparsity Accuracy Epoch Runtime (s)
Baseline 0 74.1 160 2,761 0 75.9 160 4,109
Flow&Prune 0.18 71.0 160 6,245 0.29 73.4 160 8,512
SNIP 0.18 65.6 160 2,645 0.29 70.0 160 4,112
SynFlow 0.18 65.3 160 2,650 0.29 70.2 160 4,074
LTH+Reinitialization 0.19 72.5 480 11,926 0.27 74.5 640 21,296
LTH+Rewinding 0.19 72.7 480 10,647 0.27 74.0 640 21,870
LTH+FineTuning 0.19 72.0 480 10,522 0.27 73.7 640 22,239
GraSP 0.18 64.7 160 3,082 0.29 69.4 160 4,692
sanity-check 0.18 71.9 160 2,683 0.29 73.4 160 4,215
Continuous Sparsification 0.16 73.4 320 4,955 0.27 72.9 320 7,463
IMC-Reinitialization 0.18 74.4 160 3,092 0.29 76.3 160 4,507
IMC-Rewinding 0.18 74.3 160 3,118 0.29 75.8 160 4,559
IMC-FineTuning 0.18 74.2 160 3,048 0.29 75.7 160 4,626

Table 7: Sparsity with highest accuracy on CIFAR-100
Neural Network ResNet-20 ResNet-32
Metric Sparsity Accuracy Epoch Runtime (s) Sparsity Accuracy Epoch Runtime (s)
Baseline 0 74.1 160 2,761 0 75.9 160 4,109
Flow&Prune 0.10 72.3 160 6,189 0.10 74.7 160 8,436
SNIP 0.10 69.8 160 2,645 0.10 71.0 160 4,051
SynFlow 0.10 70.7 160 2,623 0.10 71.2 160 4,108
LTH+Reinitialization 0.10 72.8 320 8,347 0.10 75.1 320 10,585
LTH+Rewinding 0.10 73.5 320 7,082 0.10 75.0 320 10,949
LTH+FineTuning 0.10 72.8 320 6,996 0.10 74.8 320 11,057
GraSP 0.10 69.1 160 3,048 0.10 70.7 160 4,654
sanity-check 0.10 72.5 160 2,683 0.10 73.4 160 4,223
Continuous Sparsification 0.16 73.4 320 4,955 0.09 74.2 320 6,551
IMC-Reinitialization 0.18 74.4 160 3,092 0.29 76.3 160 4,507
IMC-Rewinding 0.18 74.3 160 3,118 0.29 75.8 160 4,559
IMC-FineTuning 0.18 74.2 160 3,048 0.29 75.7 160 4,626

Table 8: Accuracy with found sparsity by our IMC method on CIFAR-10 (reduced training samples)
Neural Network ResNet-20 ResNet-32
Metric Sparsity Accuracy Epoch Runtime (s) Sparsity Accuracy Epoch Runtime (s)
Baseline 0 81.3 160 552 0 81.4 160 670
Flow&Prune 0.40 75.8 160 1,206 0.50 74.6 160 1,560
SNIP 0.40 72.9 160 592 0.50 73.0 160 732
SynFlow 0.40 72.3 160 608 0.50 72.8 160 713
LTH+Reinitialization 0.41 79.6 960 3,566 0.52 78.9 1,280 7,182
LTH+Rewinding 0.41 79.3 960 3,504 0.52 78.0 1,280 7,135
LTH+FineTuning 0.41 81.3 960 3,487 0.52 81.0 1,280 6,971
GraSP 0.40 56.8 160 885 0.50 49.0 160 1,344
sanity-check 0.40 79.2 160 556 0.50 78.5 160 714
Continuous Sparsification 0.41 77.4 320 941 0.51 77.3 320 1,141
IMC-Reinitialization 0.40 81.4 160 596 0.50 81.4 160 729
IMC-Rewinding 0.40 81.2 160 589 0.50 81.3 160 756
IMC-FineTuning 0.40 81.0 160 624 0.50 81.3 160 746

22



Table 9: Sparsity with highest accuracy on CIFAR-10 (reduced training samples)
Neural Network ResNet-20 ResNet-32
Metric Sparsity Accuracy Epoch Runtime (s) Sparsity Accuracy Epoch Runtime (s)
Baseline 0 81.3 160 552 0 81.4 160 670
Flow&Prune 0.10 75.9 160 1,201 0.10 79.4 160 1,531
SNIP 0.10 74.7 160 591 0.10 74.5 160 733
SynFlow 0.05 74.1 160 612 0.10 75.1 160 720
LTH+Reinitialization 0.19 80.1 640 2,353 0.27 80.1 640 3,210
LTH+Rewinding 0.27 80.1 640 2,317 0.10 80.2 320 1,594
LTH+FineTuning 0.10 81.4 640 2,322 0.19 81.3 480 2,421
GraSP 0.05 72.8 160 896 0.10 67.1 160 1,366
sanity-check 0.10 79.5 160 576 0.10 78.6 160 681
Continuous Sparsification 0.17 77.7 320 941 0.15 77.8 320 1,248
IMC-Reinitialization 0.40 81.4 160 596 0.50 81.4 160 729
IMC-Rewinding 0.40 81.2 160 589 0.50 81.3 160 756
IMC-FineTuning 0.40 81.0 160 624 0.50 81.3 160 746

Table 10: Accuracy with found sparsity by our IMC method on ImageNet (reduced training samples)
Neural Network ResNet-20 ResNet-32
Metric Sparsity Accuracy Epoch Runtime (s) Sparsity Accuracy Epoch Runtime (s)
Baseline 0 30.8 160 1,874 0 30.8 160 2,759
Flow&Prune 0.35 26.9 160 5,168 0.45 25.9 160 7,623
SNIP 0.35 24.9 160 2,211 0.45 23.7 160 3,578
SynFlow 0.35 24.3 160 2,125 0.45 24.1 160 3,445
LTH+Reinitialization 0.34 27.0 800 12,219 0.47 27.5 1,120 26,242
LTH+Rewinding 0.34 27.3 800 12,181 0.47 26.3 1,120 26,518
LTH+FineTuning 0.34 28.1 800 12,287 0.47 29.3 1,120 27,276
GraSP 0.35 13.2 160 4,389 0.45 24.8 160 6,975
sanity-check 0.35 26.5 160 1,510 0.45 26.9 160 2,296
Continuous Sparsification 0.33 23.1 320 3,080 0.46 23.1 320 4,419
IMC-Reinitialization 0.35 30.7 160 1,952 0.45 30.8 160 2,859
IMC-Rewinding 0.35 30.6 160 1,952 0.45 30.7 160 2,907
IMC-FineTuning 0.35 30.3 160 1,926 0.45 31.0 160 2,847

Table 11: Sparsity with highest accuracy on ImageNet (reduced training samples)
Neural Network ResNet-20 ResNet-32
Metric Sparsity Accuracy Epoch Runtime (s) Sparsity Accuracy Epoch Runtime (s)
Baseline 0 30.8 160 1,874 0 30.8 160 2,759
Flow&Prune 0.10 29.1 160 4,705 0.10 29.2 160 7,511
SNIP 0.10 25.0 160 2,229 0.10 24.3 160 3,517
SynFlow 0.10 25.4 160 2,162 0.10 24.7 160 3,395
LTH+Reinitialization 0.10 29.1 320 4,864 0.19 29.1 480 11,315
LTH+Rewinding 0.10 29.0 320 4,853 0.10 29.9 320 7,539
LTH+FineTuning 0.10 29.4 320 4,913 0.10 30.2 320 7,539
GraSP 0.10 23.0 160 4,396 0.45 24.8 160 6,946
sanity-check 0.10 26.9 160 1,584 0.10 27.7 160 2,366
Continuous Sparsification 0.10 24.1 320 3,089 0.05 25.2 320 4,359
IMC-Reinitialization 0.35 30.7 160 1,952 0.45 30.8 160 2,859
IMC-Rewinding 0.35 30.6 160 1,952 0.45 30.7 160 2,907
IMC-FineTuning 0.35 30.3 160 1,926 0.45 31.0 160 2,847

23



Table 12: Accuracy with found sparsity by our IMC method on CIFAR-100 (reduced training samples)
Neural Network ResNet-20 ResNet-32
Metric Sparsity Accuracy Epoch Runtime (s) Sparsity Accuracy Epoch Runtime (s)
Baseline 0 40.7 160 539 0 41.3 160 685
Flow&Prune 0.13 33.7 160 1,293 0.22 30.5 160 1,589
SNIP 0.13 31.5 160 508 0.22 30.0 160 722
SynFlow 0.13 31.4 160 510 0.22 28.2 160 697
LTH+Reinitialization 0.10 38.1 320 1,083 0.19 38.1 480 2,263
LTH+Rewinding 0.10 37.5 320 1,100 0.19 38.7 480 2,362
LTH+FineTuning 0.10 39.2 320 1,086 0.19 38.1 480 2,377
GraSP 0.13 25.1 160 891 0.22 19.8 160 1,315
sanity-check 0.13 36.0 160 534 0.22 34.3 160 688
Continuous Sparsification 0.13 36.0 320 1,071 0.22 32.8 320 1,344
IMC-Reinitialization 0.13 40.6 160 587 0.22 40.7 160 718
IMC-Rewinding 0.13 40.3 160 578 0.22 41.7 160 722
IMC-FineTuning 0.13 40.9 160 557 0.22 42.4 160 704

Table 13: Sparsity with highest accuracy on CIFAR-100 (reduced training samples)

Neural Network ResNet-20 ResNet-32
Metric Sparsity Accuracy Epoch Runtime (s) Sparsity Accuracy Epoch Runtime (s)
Baseline 0 40.7 160 539 0 41.3 160 685
Flow&Prune 0.10 33.7 160 1,305 0.10 31.7 160 1,523
SNIP 0.10 31.7 160 505 0.22 30.0 160 728
SynFlow 0.10 31.4 160 510 0.10 30.0 160 704
LTH+Reinitialization 0.10 38.1 320 1,083 0.10 38.1 480 2,341
LTH+Rewinding 0.10 37.5 320 1,100 0.19 38.7 480 2,362
LTH+FineTuning 0.10 39.2 320 1,086 0.19 38.1 320 1,575
GraSP 0.10 26.7 160 872 0.10 26.6 160 1,368
sanity-check 0.13 36.0 160 534 0.10 35.3 160 688
Continuous Sparsification 0.13 36.0 320 1,071 0.08 33.9 320 1,344
IMC-Reinitialization 0.13 40.6 160 587 0.22 40.7 160 718
IMC-Rewinding 0.13 40.3 160 578 0.22 41.7 160 722
IMC-FineTuning 0.13 40.9 160 557 0.22 42.4 160 704

Accuracy and sparsity of pruned subnetworks over datasets with reduced training samples. In
order to perform a comprehensive study about the applicability of neural network pruning by our
IMC method under limited training samples. We randomly decrease the number of training samples
over CIFAR-10, ImageNet, and CIFAR-100 by 90%, i.e., reduce the number of training samples
over CIFAR-10, ImageNet, and CIFAR-100 from 50,000, 100,000, and 50,000 to 5,000, 10,000, and
5,000 respectively. The number of test samples keep unchanged, 10,000, 10,000, and 10,000 on
CIFAR-10, ImageNet, and CIFAR-100 respectively. Tables 8-13 shows the accuracy and sparsity of
pruned subnetworks obtained by thirteenth network pruning and LTH approaches over three datasets
respectively. We have observed similar results, i.e., the generated pruned networks by three variants
of our IMC method achieve the best accuracy and sparsity in most experiments, showing the superior
performance of IMC in the presence of limited training samples. A reasonable explanation is that the
rigorous mathematical analysis based on the dynamical systems theory and inertial manifold theory
substantially improves the effectiveness and applicability of our IMC method in different scenarios.

A.4 Parameter Sensitivity

In this section, we conduct more experiments to validate the sensitivity of various parameters in our
IMC method for the neural network pruning task.

Impact of rewinding strategies. IMC-Rewinding rewinds unpruned weights to their values from
earlier in training and retrains them from there using the original training schedule. Figure 3 measures
the performance effect of the ith training epochs of the original large neural networks in which
IMC-Rewinding rewinds the unpruned parameters to the ones in the ith training epochs of the original
large neural networks. We have observed that the accuracy curves keep relatively stable when we

24



Baseline 0 5 10 15 20

50

60

70

80

90

Rewinding to Training Epoch of Original Neural Networks

A
c
c
u

ra
c
y

 

 

IMC−Rewinding on CIFAR−10
IMC−Rewinding on ImageNet
IMC−Rewinding on CIFAR−100

Figure 3: Accuracy
with varying rewinding
epochs

16 32 48 64 128

50

60

70

80

90

Batch Size for Computing Hessian Matrix

A
c
c
u

ra
c
y

 

 

IMC−Reinitialization on CIFAR−10
IMC−Rewinding on CIFAR−10
IMC−FineTuning on CIFAR−10
IMC−Reinitialization on ImageNet
IMC−Rewinding on ImageNet
IMC−FineTuning on ImageNet
IMC−Reinitialization on CIFAR−100
IMC−Rewinding on CIFAR−100
IMC−FineTuning on CIFAR−100

Figure 4: Accuracy with
varying batch sizes for
Hessian matrix

5 10 15 20 25

0

0.2

0.4

0.6

Training Epoch of Original Neural Networks

F
in

a
l 
L

o
s
s
 o

n
 P

ru
n

e
d

 S
u

b
n

e
tw

o
rk

s

 

 

IMC−Reinitialization on CIFAR−10
IMC−Rewinding on CIFAR−10
IMC−FineTuning on CIFAR−10
IMC−Reinitialization on ImageNet
IMC−Rewinding on ImageNet
IMC−FineTuning on ImageNet
IMC−Reinitialization on CIFAR−100
IMC−Rewinding on CIFAR−100
IMC−FineTuning on CIFAR−100

Figure 5: Final loss on
subnetworks with vary-
ing training epochs

0.001 0.005 0.01 0.05 0.1

50

60

70

80

90

Learning Rate

A
c
c
u

ra
c
y

 

 

IMC−Reinitialization on CIFAR−10
IMC−Rewinding on CIFAR−10
IMC−FineTuning on CIFAR−10
IMC−Reinitialization on ImageNet
IMC−Rewinding on ImageNet
IMC−FineTuning on ImageNet
IMC−Reinitialization on CIFAR−100
IMC−Rewinding on CIFAR−100
IMC−FineTuning on CIFAR−100

Figure 6: Accuracy with
varying learning rates of
neural networks

continuously change the rewinded training epochs. This demonstrates that our IMC-Rewinding
method is insensitive to the parameter initialization of pruned subnetworks. No matter what the
rewinded training epochs are, our IMC-Rewinding method can always achieve the superior accuracy
in all tests, showing the effectiveness of IMC-Rewinding to the neural network pruning.

Sensitivity of batch sizes for Hessian matrix. Theorem 5 demonstrates the whole solution spaceW
can be decomposed into two subspacesW+ andW− when the gap between arbitrary two consecutive
eigenvalues in the spectrum of H(W ∗) is larger than 4K. Due to large size of W ∗, we employ a
scalable Hessian computation method, PyHessian, to calculate an approximate H(W ∗) [65, 66].
Figure 4 exhibits the impact of different batch sizes in training PyHessian by varying batch size
between 16 and 128. The x-axis shows different values of batch sizes. It is observed that the accuracy
values are stable with varying batch sizes. PyHessian computes approximate Hessian matrix based
on the rigorous theory of numerical linear algebra (NLA) and randomized NLA, making it less
sensitive to the batch size. In addition, PyHessian supports distributed implementation-allowing
distributed-memory execution on both cloud and supercomputer systems, for fast and efficient Hessian
computation. This significantly improves the applicability of our neural network pruning method.

Convergence study. Figure 5 presents the convergence of retraining the pruned subnetworks after
different training epochs of the original large neural networks. As we can see, the accuracy scores
keep stable when we change the number of the training epochs of the original large neural networks.
The final loss by three versions of our IMC model can always converge to the same points with
different training epochs of the original large neural networks. A rational guess that the rigorous
mathematical analysis based on the dynamical systems theory and inertial manifold theory can always
help our IMC model achieve the convergence on three datasets. This verifies the effectiveness of the
IMC method for neural network pruning.
Influence of learning rates. Figure 6 shows the influence of learning rate in our IMC model by
varying it from 0.001 to 0.1. It is observed that the accuracy values are stable with varying learning
rate. Namely, our dynamical systems theory and inertial manifold theory-based neural network
pruning method is insensitive to learning rate in the training of both the original neural networks
and the pruned subnetworks. This demonstrates that our IMC model can always result in the good
classification accuracy for neural network pruning while maintaining good efficiency, no matter
which learning rate is selected.

Impact of parameters p and ∆. Tables 14 and 15 exhibit the impact of different p with fixed ∆ and
the influence of different ∆ with fixed p in the estimation of Lipschitz constant of F (U) by utilizing
Eq.(23). In the current experiments, the estimated Lipschitz constants of all neural networks are
very tiny with order < 10−12. This implies that most of neural networks are easy to meet the gap
condition about its spectrum and Lipschitz constant in Theorem 5. Therefore, our neural network
pruning technique has great potential as a general pruning solution to other neural networks, which is
desirable in practice.

Table 14: Estimated Lipschitz constant of F (U) with PyHessian (∆ = 0.01)

p 2 5 10
CIFAR-10 6.17× 10−12 < 1× 10−38 < 1× 10−38

ImageNet 1.14× 10−24 < 1× 10−38 < 1× 10−38

CIFAR-100 2.57× 10−22 < 1× 10−38 < 1× 10−38

25



Table 15: Estimated Lipschitz constant of F (U) with PyHessian (p = 2)

∆ 0.01 0.05 0.1 0.5 1
CIFAR-100 6.17× 10−12 1.95× 10−17 3.72× 10−19 1.39× 10−22 5.93× 10−24

ImageNet 1.14× 10−24 3.25× 10−28 1.08× 10−29 3.69× 10−33 1.15× 10−34

CIFAR-100 2.57× 10−22 8.17× 10−26 4.14× 10−27 1.32× 10−30 2.69× 10−32

A.5 Experimental Details

Environment. The experiments were conducted on a compute server running on Red Hat Enterprise
Linux 7.2 with 2 CPUs of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 8 GPUs of NVIDIA GeForce
GTX 2080 Ti (with 11GB of GDDR6 on a 352-bit memory bus and memory bandwidth in the
neighborhood of 620GB/s), 256GB of RAM, and 1TB of HDD. Overall, the experiments took about
10 days in a shared resource setting. We expect that a consumer-grade single-GPU machine (e.g.,
with a 2080 Ti GPU) could complete the full set of experiments in around 17-18 days, if its full
resources were dedicated.

Training. We study image classification networks on three standard image datasets: CIFAR-10 3,
CIFAR-100 4, and ImageNet 5. The above three image datasets are all public datasets, which allow
researchers to use for non-commercial research and educational purposes. We train the baseline
classifiers on the CIFAR-10/100 training set and test it on the CIFAR-10/100 test set. We use a
subsample of 100,000 examples as training data and 10,000 examples as test data for ImageNet.
We apply the ResNet-20 and ResNet-32 architectures for the CIFAR-10/100 and ImageNet datasets
respectively 6. The neural networks are trained with Kaiming initialization [22] using SGD for 160
epochs with an initial learning rate of 0.1 and batch size 100. The learning rate is decayed by a factor
of 0.1 at 1/2 and 3/4 of the total number of epochs. In addition, we run each experiment for 3 trials
for obtaining more stable results.

Implementation. For three neural network pruning models of Flow&Prune 7, SNIP 8, and SynFlow 9,
we used the open-source implementation and default parameter settings by the original authors for
the experiments. All models were run for 160 epochs, with a batch size of 100, and a learning rate
of 0.1. For six state-of-the-art LTH approaches of LTH+Reinitialization 10, LTH+Rewinding 11,
LTH+FineTuning 12, GraSP 13, sanity-check 14, and Continuous Sparsification 15, we also utilized the
same model architecture as the official implementation provided by the original authors for neural
network pruning in all experiments. All hyperparameters are standard values from reference codes
or prior works. The above open-source codes from the GitHub are licensed under the MIT License,
which only requires preservation of copyright and license notices and includes the permissions of
commercial use, modification, distribution, and private use.

For our IMC model, we performed hyperparameter selection by performing a parameter sweep on pa-
rameter p ∈ {1, 2, 5, 10,∞} in the estimation of Lipschitz constant, ∆ ∈ {0.0001, 0.001, 0.01, 0.1}
in the estimation of Lipschitz constant, training epochs of the original large neural networks
∈ {5, 10, 20, 25, 30} in LTH+Reinitialization and LTH+FineTuning, rewinding parameters to the
ones in the training epochs of the original large neural networks ∈ {0.01, 0.05, 0.1, 0.2, 0.5} in
LTH+Rewinding, batch size for computing the approximate Hessian Matrix ∈ {16, 32, 48, 64, 128},
batch size for training the neural networks ∈ {20, 50, 100, 150, 200, 250}, and learning rate

3https://www.cs.toronto.edu/∼kriz/cifar.html
4https://www.cs.toronto.edu/∼kriz/cifar.html
5https://www.image-net.org/download.php
6https://github.com/KaimingHe/deep-residual-networks
7https://github.com/EkdeepSLubana/flowandprune
8https://github.com/namhoonlee/snip-public
9https://github.com/ganguli-lab/Synaptic-Flow

10https://github.com/rahulvigneswaran/Lottery-Ticket-Hypothesis-in-Pytorch
11https://github.com/facebookresearch/open_lth
12https://github.com/Eric-mingjie/rethinking-network-pruning
13https://github.com/alecwangcq/GraSP
14https://github.com/JingtongSu/sanity-checking-pruning
15https://github.com/lolemacs/continuous-sparsification

26



∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}. We select the best parameters over 50 epochs
of training and evaluate the model at test time.

Table 16: Hyperparameter Settings

Parameter Value
Parameter p in the estimation of Lipschitz constant 2
Parameter ∆ in the estimation of Lipschitz constant 0.01

Training data ratio on CIFAR-10/100 50K/10K
Training data ratio on ImageNet 100K/10K

Training epochs of the original large neural networks 10
Rewinding parameters to the training epochs of the original large neural networks 10

Batch size for computing the approximate Hessian Matrix 128
Batch size for training the neural networks 100

Learning rate 0.1
Number of training epochs 160

A.6 Potential Negative Societal Impacts and Limitations

In this work, all the three image datasets are open-released datasets [28, 10], which allow researchers
to use for non-commercial research and educational purposes. All the three datasets are widely used
in training/evaluating the image classification. All baseline codes are open-accessed resources that are
from the GitHub and licensed under the MIT License, which only requires preservation of copyright
and license notices and includes the permissions of commercial use, modification, distribution, and
private use.

To our best knowledge, this work is the first to theoretically verify the Lottery Ticket Hypothesis
(LTH) and the existence of winning lottery tickets by leveraging dynamical systems theory and
inertial manifold theory. This work explores the possibility of theoretically lossless pruning as well
as one-time pruning, compared with existing neural network pruning and LTH techniques. Our
framework can be used in a wide variety of deep learning tasks in resource-intensive scenarios with
the requirement of low latency and energy consumption, such as Internet of Things and mobile
computing. This paper is primarily of a theoretical nature. We expect our findings to produce positive
environmental impact, i.e, significantly improve the efficiency and scalability of deep learning models
by reducing the time and space requirements of deep neural networks both at training and test time.
To our best knowledge, we do not envision any immediate negative societal impacts of our results,
such as security, privacy, and fairness issues.

An important product of this paper is to explore the possibility of theoretically lossless pruning as
well as one-time pruning. Due to large size of neural networks in real scenarios as well as limit of
current computing hardware, the approximate methods are utilized and designed to compute the
Hessian matrix and estimate the Lipschitz constant for maintaining the efficiency. Our theoretical
framework can inspire further improved development and implementations on neural network pruning
with lossless pruning as well as remarkable efficiency from the academic institutions and industrial
research labs.

27


	Introduction
	Background
	Lottery Ticket Hypothesis
	Dynamical Systems Theory

	Validating the Lottery Ticket Hypothesis
	Neural Network Pruning
	Estimation of Lipschitz Constant
	Algorithm

	Experimental Evaluation
	Conclusions
	Supplementary Materials
	Related Work
	Proof of Theorems
	Additional Experiments
	Parameter Sensitivity
	Experimental Details
	Potential Negative Societal Impacts and Limitations


