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Abstract

We provide a differentially private algorithm for producing synthetic data simulta-
neously useful for multiple tasks: marginal queries and multitask machine learning
(ML). A key innovation in our algorithm is the ability to directly handle numer-
ical features, in contrast to a number of related prior approaches which require
numerical features to be first converted into high cardinality categorical features
via a binning strategy. Higher binning granularity is required for better accuracy,
but this negatively impacts scalability. Eliminating the need for binning allows
us to produce synthetic data preserving large numbers of statistical queries such
as marginals on numerical features, and class conditional linear threshold queries.
Preserving the latter means that the fraction of points of each class label above a
particular half-space is roughly the same in both the real and synthetic data. This
is the property that is needed to train a linear classifier in a multitask setting. Our
algorithm also allows us to produce high quality synthetic data for mixed marginal
queries, that combine both categorical and numerical features. Our method consis-
tently runs 2-5x faster than the best comparable techniques, and provides significant
accuracy improvements in both marginal queries and linear prediction tasks for
mixed-type datasets.

1 Introduction

We study the problem of synthetic data generation subject to the formal requirement of differential
privacy [DMNS06]. Private synthetic data have the advantage that they can be reused without any
further privacy cost. As a result, they can use a limited privacy budget to simultaneously enable a
wide variety of downstream machine learning and query release tasks.

⇤Giuseppe is the lead author; all other authors are listed in alphabetical order. Giuseppe performed this work
during an internship at AWS AI/ML

†William performed this work during an internship at AWS AI/ML.
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Recent work on practical methods for private synthetic data has largely split into two categories. The
first category builds on the empirical success of deep generative models and develops the correspond-
ing private implementations, such as DP-GAN [XLW+18, BJWW+19, NWD20, JYvdS18]. The
second category follows the principle of moment-matching and generates synthetic data that preserve
a large family of marginal queries [HLM12, GAH+14, MSM19, MPSM21, ABK+21, MMSM22,
LVW21]. For both downstream machine learning and query release tasks, the moment-matching
approach has generally outperformed private deep generative models [TMH+21], which are known to
be difficult to optimize subject to differential privacy [NWD20]. In order to handle numerical features,
they are discretized into a finite number of categorical bins. This binning heuristic is impractical for
real-world datasets, which often contain a large number numerical features with wide ranges.

Our work develops a scalable, differentially private synthetic data algorithm, called RAP++, that
builds on the previous framework of "Relaxed Adaptive Projection" (RAP) [ABK+21] but can handle
a mixture of categorical and numerical features without any discretization. As with RAP, the core
algorithmic task of RAP++ is to use differentiable optimization methods (e.g. SGD or Adam) to
find synthetic data that most closely matches a noisy set of query measurements on the original data.
We introduce new techniques to be able to do this for queries defined over a mixture of categorical
and numerical features. Two key components that drive the success of our approach includes (+)
random linear projection queries to handle mixed-type data, and (+) tempered sigmoid annealing on
top of the existing work RAP. Hence, we refer to our algorithm as RAP++. Our contributions can be
summarized as follows:

Mixed-type queries. To capture the statistical relationships of a mixture of categorical and numerical
features, we consider two classes of statistical queries on continuous data that previous work can
only handle through binning of real values into high cardinality categorical features. The first class
of queries we consider is mixed marginals, which capture the marginal distributions over subsets
of features. Second, we define the class of class-conditional linear threshold functions, which
captures how accurate any linear classifier is for predicting a target label (which can be any one
of the categorical features). Therefore, we can generate synthetic data for multitask learning by
choosing a suitable set of class-conditioned queries, where the conditioning is on multiple label
columns of the data. The inability of previous work to handle mixed-type data without binning has
been acknowledged as an important problem [MMSM22], and our approach takes a significant step
towards solving it.

Tempered sigmoid annealing. Since both classes of mixed-type queries involve threshold functions
that are not differentiable, we introduce sigmoid approximation in order to apply the differentiable
optimization technique in RAP. The sigmoid approximation is a smooth approximation to a threshold
function of the form 1

1+exp(��(x�b)) , where � is called the inverse temperature parameter controlling
the slope of the function near the threshold b. However, choosing the right parameter � involves a
delicate trade-off between approximation and optimization. To balance such trade-offs, we provide
an adaptive gradient-based optimization method that dynamically increases the inverse temperature
� based on the gradient norms of iterates. We show that our method can still reliably optimize the
moment-matching error even when no fixed value of � can ensure both faithful approximation and
non-vanishing gradient.

Empirical evaluations. We provide comprehensive empirical evaluations comparing RAP++ against
several benchmarks, including PGM [MSM19], DP-CTGAN [FDK22], and DP-MERF [HAP21] on
datasets derived from the US Census. In terms of accuracy, RAP++ outperforms these benchmark
methods in preserving the answers for the two classes of mixed-type queries. We also train linear
models for multiple classification tasks using the synthetic datasets generated from different algo-
rithms. We find that RAP++ provides the highest accuracy when the numeric features are predictive
of the target label, and closely tracks all benchmark accuracy in all other cases.

2 Preliminaries

We use X = X1⇥ . . .⇥Xd to denote a d-dimensional data domain, where i-th feature has domain Xi.
For a set S of features, we denote the projected domain onto S as XS =

Q
i2S Xi. This work assumes

that each feature domain Xi can be either categorical or continuous. If a feature i is categorical, it
follows that Xi is a finite unordered set with cardinality |Xi| and if it is continuous then Xi = R. A
dataset D 2 X ⇤ is a multiset of points of arbitrary size from the domain. For any point x 2 X , we
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use xi 2 Xi to denote the value of the i-th feature and for any set of features S, let xS = (xi)i2S

be the projection of x 2 X onto XS . The algorithm in this work is based on privately releasing
statistical queries, which are formally defined here.
Definition 1 (Statistical Queries [Kea98]). A statistical query (also known as a linear query or

counting query) is defined by a function q : X ! [0, 1]. Given a dataset D, we denote the average

value of q on D as: q(D) = 1
|D|

P
x2D q(x) .

2.1 Mixed-type Data and Threshold Queries

In this section we consider multiple classes of statistical queries of interest. Most previous work on
private synthetic data generation focuses on categorical data and in particular preserving marginal
queries, which are formally defined as follows:
Definition 2 (Categorical Marginal queries ). A k-way marginal query is defined by a set of categori-

cal features S of cardinality |S| = k, together with a particular element c 2
Q

i2S Xi in the domain

of S. Given such a pair (S, c), let X (S, c) = {x 2 X : xS = c} denote the set of points that match

c. The corresponding statistical query qS,c is defined as qS,c(x) = {x 2 X (S, c)}, where is the

indicator function.

Prior work on private query release [BLR08, GAH+14, MSM19, ABK+21, MMSM22, VTB+20,
GAH+14, LVW21] considered only categorical marginal queries and handled mixed-type data
by binning numerical features. This work considers query classes that model relations between
categorical and numerical features, which we call Mixed Marginals, without needing to discretize the
data first. One example of a Mixed Marginal query is: "the number of people with college degrees and

income at most $50K". This example is mixed-marginal because it references a categorical feature
(i.e., education) and a numerical feature (i.e., income).
Definition 3 (Mixed Marginal Queries). A k-way mixed-marginal query is defined by a set of

categorical features C, an element y 2 XC , a set of numerical features R and a set of thresholds

⌧ , with |C| + |R| = k and |R| = |⌧ |. Let X (C, y) be as in definition 2 and let X (R, ⌧) = {x 2
X : xj  ⌧j 8j2R} denote the set of points where each feature j 2 R fall below its corresponding

threshold value ⌧j . Then the statistical query qC,y,R,⌧ is defined as

qC,y,R,⌧ (x) = {x 2 X (C, y)} · {x 2 X (R, ⌧)}.

Another natural query class that we can define on continuous valued data is a linear threshold query
— which counts the number of points that lie above a halfspace defined over the numeric features. A
class conditional linear threshold query is defined by a target feature i, and counts the number of
points that lie above a halfspace that take a particular value of feature i.
Definition 4 (Class Conditional Linear Threshold Query). A class conditional linear threshold query

is defined by a categorical feature i, a target value y 2 Xi, a set of numerical features R, a vector

✓ 2 R|R|
and a threshold ⌧ 2 R as qi,y,R,✓,⌧ (x) = {h✓, xRi  ⌧ and xi = y}.

The quality of synthetic data can be evaluated in task-specific ways. Since the goal is to accurately
answer a set of queries over numerical features, we can evaluate the difference between answers to
the queries on the synthetic data and those on the real data, summarized by an `1 norm.
Definition 5 (Query Error). Given a set of m statistical queries Q = {q1, . . . , qm}, the average

error of a synthetic dataset bD is given by:
1
m

Pm
i=1 |qi(D)� qi( bD)|.

2.2 Differential Privacy

The notion of privacy that we adopt in this paper is differential privacy, which measures the effect
of small changes in a dataset on a randomized algorithm. Formally, we say that two datasets are
neighboring if they are different in at most one data point.
Definition 6 (Differential Privacy [DMNS06]). A randomized algorithm M : Xn ! R satisfies

(✏, �)-differential privacy if for all neighboring datasets D,D0
and for all outcomes S ✓ R we have

Pr [M(D) 2 S]  e✏Pr [M(D0) 2 S] + �.

In our analysis we adopt a variant of DP known as (zero) Concentrated Differential Privacy which
more tightly tracks composition and can be used to bound the differential privacy parameters ✏ and �:
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Definition 7 (Zero Concentrated Differential Privacy [BS16a]). A randomized algorithm M : Xn !
R satisfies ⇢-zero Concentrated Differential Privacy (⇢-zCDP) if for all neighboring datasets D,D0

,

and for all ↵ 2 (0,1): D↵(M(D),M(D0))  ⇢↵, where D↵(M(D),M(D0)) is ↵-Renyi diver-

gence between the distributions M(D) and M(D0).

We use two basic DP mechanisms that provide the basic functionality of selecting high information
queries and estimating their answers. To answer statistical queries privately, we use the Gaussian
mechanism, which we define in the context of statistical queries:
Definition 8 (Gaussian Mechanism). The Gaussian mechanism G(D, q, ⇢) takes as input a dataset

D 2 X ⇤
, a statistical query q : X ⇤ ! [0, 1], and a zCDP parameter ⇢. It outputs noisy answer

â = q(D) + Z, where Z ⇠ N (0, 1
2n2⇢ ), where n is the number of rows in D.

Lemma 1 (Gaussian Mechanism Privacy [BS16a]). For any statistical query q, and parameter ⇢ > 0,

the Gaussian mechanism G(·, q, ⇢) satisfies ⇢-zCDP.

Answering all possible queries from a large set may be expensive in terms of privacy, as the noise
added to each query scales polynomially with the number of queries. A useful technique from
[GHRU11] is to iteratively construct synthetic data by repeatedly selecting queries on which the
synthetic data currently represents poorly, answering those queries with the Gaussian mechanism,
and then re-constituting the synthetic data. Thus, we need a private selection mechanism. We use the
Report Noisy Top-K mechanism [DR19], defined here in context of selecting statistical queries.
Definition 9 (One-shot Report Noisy Top-K With Gumbel Noise). The “Report Noisy Top-K”

mechanism RNK(D, bD,Q, ⇢), takes as input a dataset D 2 Xn
with n rows, a "synthetic dataset"

bD 2 X ⇤
, a set of m statistical queries Q = {q1, . . . , qm}, and a zCDP parameter ⇢. First, it adds

Gumbel noise to the error of each qi 2 Q:

ŷi =
���qi(D)� qi( bD)

���+ Zi, where Zi ⇠ Gumbel
�
K/

p
2⇢n

�
,

Let i(1), . . . , i(m) be an ordered set of indices such that ŷi(1) �, . . . ,� ŷi(m)
. The algorithm outputs

the top-K indices {i(1), . . . , i(K)} corresponding to the K queries where the answers between D

and D̂ differ most.

Lemma 2 (Report Noisy Top-K Privacy [ABK+21]). For a dataset D, a synthetic dataset bD, a set

of statistical queries Q, and zCDP parameter ⇢, RNK(D, bD,Q, ⇢) satisfies ⇢-zCDP.

3 Relaxed Projection with Threshold Queries

In this section we propose a gradient-based optimization routine for learning a mixed-type synthetic
datasets that approximate answers to threshold based queries over continuous data. The technique
is an extension of the relaxed projection mechanism from [ABK+21], which in turn extends the
projection mechanism of [NTZ13].

Given a dataset D, a collection of m statistical queries Q = {q1, . . . , qm} and zCDP parameter ⇢,
the projection mechanism [NTZ13] consists of two steps: (1) For each query index i 2 [m], evaluate
qi on D using the Gaussian mechanism: âi = G(D, qi, ⇢/m), and then (2) Find a synthetic dataset
D0 2 X ⇤ whose query values minimize the distance to the noisy answers {âi}i2[m]:

argminD02X⇤
P

i2[m] (âi � qi(D0))2 . (1)

The projection step produces synthetic data that implicitly encodes the answers to all queries in
the query set Q. In addition to producing synthetic data (which can be used for downstream
tasks like machine learning which cannot easily be accomplished with the raw outputs of the
Gaussian mechanism), by producing a synthetic dataset, the projection step by definition enforces
consistency constraints across all query answers, which is accuracy improving. Unfortunately, the
projection step is generally an intractable computation since it is a minimization of a non-convex
and non-differentiable objective over an exponentially large discrete space. To address this problem,
[ABK+21] gives an algorithm that relaxes the space of datasets Xn to a continuous space, and
generalizes the statistical queries to be differentiable over this space:

Domain relaxation. The first step is to represent categorical features as binary features using one-hot
encoding. Let d0 :=

P
i2C |Xi|, where C is the set of categorical features, be the dimension of the
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feature vector under the one-hot encoding. Then, we consider a continuous relaxation denoted by eX
of the one-hot encoding feature space. Using �(Xi) to denote a probability space over the elements
of Xi, we choose eX :=

Q
i2C �(Xi) to be the product measure over probability distributions over

the one-hot encodings. The advantage of representing the relaxed domain as a probability space is
that one can quickly recover a dataset in the original discrete domain by random sampling.

Differentiable queries. The next step is to replace the set of queries Q by a set of continuous and
differentiable queries eQ over the relaxed domain eX . Informally, in order to solve our optimization
problem, the queries must be differentiable over the relaxed domain X̃ (and have informative
gradients), but must also be a good approximation to the original queries in Q so that optimizing for
the values of the relaxed queries produces a synthetic dataset that is representative of the original
queries. For categorical marginal queries following [ABK+21], we use the set of product queries
over the relaxed domain which are equal to categorical marginal queries on the original domain:
Definition 10. Given a subset of features T ✓ [d0] of the relaxed domain eX , the product query

qT : eX is defined as qT (x) =
Q

i2T xi.

Next we give a differentiable relaxation for any class of threshold based statistical queries such as
those in definition 3 and definition 4. A linear threshold query is a threshold applied to a linear
function of the data, which is not differentiable. We choose to approximate thresholds with sigmoid
functions. They are a simple parametric class of functions with well-behaved gradients with adjustable
magnitudes for the approximation error via the inverse temperature parameter:

Definition 11 (Tempered Sigmoid). The sigmoid threshold function f [�]
⌧ : R ! [0, 1] with threshold

⌧ 2 R and inverse temperature � > 0 is defined as f [�]
⌧ (x) =

⇣
1

1+e��(x�⌧)

⌘
for any x 2 R.

The sigmoid function in definition 11 is a differentiable approximation of the class of 1-way prefix
marginal queries, which serves as a basic building block for approximating other interesting classes
of threshold-based queries, such as the class of conditional linear threshold queries.
Definition 12 (Tempered Sigmoid Class Conditional Linear Threshold Queries). A sigmoid con-

ditional linear threshold query is defined by a categorical feature i 2 [d0] of the relaxed domain

space, a set of numerical features T ✓ [d0] in the relaxed domain space, a vector ✓ 2 R|T |
, and

threshold ⌧ 2 R. Fixing the sigmoid temperature �, let f [�]
⌧ be defined as in definition 11 then the

corresponding differentiable statistical query is q[�]i,T,✓,⌧ (x) = xi · f [�]
⌧ (h✓, xT i).

By relaxing the data domain to its continuous representation eX ⇤ and replacing the query set Q =
{q1, . . . , qm} by its differentiable counterpart eQ = {q̃1, . . . , q̃m} we obtain the new objective:

argminD02 eX⇤
eL(D0) :=

P
i2[m] (âi � q̃i(D0))2 (2)

Figure 1: Comparison of the Maximum error (left)
and the Mean error (right) of optimizing mixed
marginals using our temperature annealing (red
line) and using a fixed � parameter (blue curve). It
is clear that annealing the � parameter strategically
during optimization leads to lower error than using
any fixed � parameter during the continuous pro-
jection step. The error is over a set of 1000 random
2-way mixed-marginal queries (see definition 3).
And the underlying dataset is described in detail in
section 5.

Since the new objective is differentiable everywhere
in eX ⇤, we can run any first-order continuous opti-
mization method to attempt to solve (2). Were q̃i
a good approximation for qi everywhere in eX for
all queries i 2 [m], then the solution to eq. (2)
would approximate the solution to eq. (1). How-
ever, there are two other challenges that arise when
we use the sigmoid approximation: flat gradients
and near-threshold approximation quality. If the sig-
moid function has a large � (inverse temperature), its
derivatives at points far from the threshold ⌧ have
small magnitudes. In other words, sigmoid approx-
imations to linear threshold functions have nearly flat
gradients far from the threshold. In the flat gradi-
ent regime, first order optimization algorithms fail
because they get “stuck”. This can be mitigated by
using a small �. But there is another issue: because
threshold functions are discontinuous, any continu-
ous approximation to a threshold function must be
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Algorithm 1 Relaxed Projection with Sigmoid Temperature Annealing

1: Input: A set of m sigmoid differentiable queries {q̃[·]i }i2[m], a set of m target answers â = {âi}i2[m],
initial inverse temperature �1 2 R+, stopping condition � > 0, and initial dataset bD1.

2: for j = 1 to J do

3: Set inverse temperature �j = �1 · 2j�1.

4: Define the sigmoid differentiable loss function: Lj( bD) =
P

i2[m]

⇣
q̃
[�j ]
i ( bD)� âi

⌘2

5: Starting with bD  bDj . Run gradient descent on Lj( bD) until krLj( bD)k  �. Set bDj+1  bD.
6: end for

7: Output bDJ+1

Algorithm 2 Relaxed Adaptive Projection + Mixed Type + Temperature Annealing (RAP++ )
1: Input A dataset D with n records, a collection of m statistical queries Q = {q1, . . . , qm}, query samples

per round K  m, number of adaptive epochs T  m/K, the size of the synthetic dataset n̂, a sigmoid
temperature parameter �1 and differential privacy parameters ", �.

2: Let ⇢ by such that: " = ⇢+ 2
p

⇢ log(1/�).
3: Initialize relaxed dataset bD1 2 eX n̂ uniformly at random, and �1 2 Rm.
4: for t = 1 to T do

5: Choose K queries {qt,j}j2[K] ⇢ Q using RNK(D, bDt, Q \Qt�1,
⇢
2T ).

6: For each j 2 [K], ât,j  G
�
D, qt,j ,

�
⇢

2TK

��
.

7: Let Qt = {qi,j}i2[t],j2[K] and ât = {âi,j}i2[t],j2[K].
8: Let eQt be the set of differentiable queries corresponding to Qt

9: Project step: bDt+1  RP-Sigmoid-Temperature-Annealing( eQt,bat, bDt,�1, �).
10: end for

11: Output: bDT+1

a poor approximation for points that are sufficiently close to the threshold. To make this poor
approximation regime arbitrarily narrow, we would have to choose a large � , but this is in tension
with the flat gradients problem mentioned earlier. As a result, it is not clear how to choose an optimal
value for � .

We overcome this issue by using a “temperature annealing” approach, described in detail in algo-
rithm 1. Informally, we start with a small � , and run our optimization until the magnitude of the
gradients of our objective function fall below a pre-defined threshold. At that point, we double � and
repeat, until convergence. The intuition behind this technique is that if the magnitude of the gradients
has become small, we must be near a local optimum of the relaxed objective (eq. (2)), since we have
stopped making progress towards the relaxed objective for the current value of �. However, this might
not be close to a local optimum of the actual objective function eq. (1). By increasing � at this stage,
we make the relaxed objective a closer approximation to the real objective; we continue optimization
until we are close to a local optimum of the new relaxed objective, and then repeat. We find that this
annealing approach worked well in practice. Figure 1 shows comparison of temperature annealing to
optimization with fixed sigmoid temperature parameters. It can be seen that the annealing approach
improves over every fixed setting of the parameter.

4 Threshold Query Answering with RAP++

We described the tools for optimizing the relaxed objective in Eq. 2. In this section, we introduce our
private synthetic data generation algorithm RAP++ for mixed-type data (Alg. 2). RAP++ accepts as
input mixed-type data and supports releasing answers to both mixed marginal and class conditional
threshold queries. Our approach for synthetic data generation differs from prior work in that previous
mechanisms [MSM19, MMSM22, GAH+14, VTB+20, ABK+21] only operate on discrete data for
answering categorical marginal queries. For mixed-type data, one could simply discretize the data
and run one of the previously known mechanisms, however, we will show that directly optimizing
over threshold based queries has an advantage in terms of accuracy and scalability.

Given an input dataset D 2 X ⇤ and a collection of statistical queries Q, RAP++ operates over a
sequence of T rounds to produce a synthetic dataset that approximates D on the queries Q. First,
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RAP initializes a relaxed synthetic dataset bD1 2 X n̂, of size n̂, uniformly at random from the
data domain of the original dataset. On each round t = 1, . . . , T , the algorithm then calls the RN
mechanism to select K queries (denoted by Qt) on which the current synthetic data bDt is a poor
approximation, and uses the Gaussian mechanism to privately estimate the selected queries. Using
these new queries and noisy estimates, the algorithm calls algorithm 1 to solve (2) and find the next
synthetic dataset bDt+1, such that bDt+1 is consistent with D on the current set of queries Qt. The
process continues until the number of iterations reach T .

The way algorithm RAP is described in algorithm 2 is specific to the setting of answering threshold-
based queries, since it uses a temperature annealing step which applies only to queries which
use sigmoid threshold functions like mixed marginals (definition 3) or linear threshold queries
(definition 4). We can also use the algorithm to handle non-threshold based queries such as categorical
marginals — but in this case our algorithm reduces to the RAP algorithm due to [ABK+21]. We can
also run the algorithm using multiple query classes, using threshold annealing for those query classes
on which it applies.

Differential Privacy The algorithm’s privacy analysis follows from composition of a sequence
of RN and Gaussian mechanisms, which is similar to other approaches that select queries adap-
tively [GHRU11, GRU12, HLM12, ABK+21, VTB+20, LVW21]. The following theorem states the
privacy guarantee.
Theorem 1 (Privacy analysis of RAP++). For any dataset D, any query class Q, any set of parameters

K, T , n̂, �1, and any privacy parameters ✏, � > 0, Algorithm 2 satisfies (✏, �)-differential privacy.

Proof of theorem 1 follows the composition property of ⇢-zCDP. We defer the proof to the appendix.

Accuracy The accuracy of our method (algorithm 2) for answering a collection of statistical queries
depends mainly on the success of our optimization oracle (algorithm 1). Since the oracle algorithm 1
is a heuristic, we cannot provide a formal accuracy guarantee. However, the paper provides empirical
evidence of the oracle’s performance.

We remark that the work of [ABK+21] provided accuracy guarantees for RAP under the assumption
that their oracle solves the optimization step perfectly. Our method, which is an instantiation of RAP
with new query classes, inherits RAP ’s accuracy guarantees (again, under the assumption that the
optimization problem (1) can be solved).

5 Experiments

The experiments are performed over a collection of mixed-type real-world public datasets. The
quality of generated synthetic datasets is evaluated in terms of the error on a set of mixed-marginal
queries as well as on their usefulness for training linear models using logistic regression. We compare
our method RAP++ against existing well-known algorithms for synthetic data generation, including
PGM[MSM19], DP-MERF [HAP21], CTGAN [FDK22], RAP [ABK+21]. We use the adaptive
version of PGM, which is called MWEM+PGM in the original paper. We compare our algorithm
RAP++ with all other algorithms at various privacy levels quantified by ✏, with � always set to be
1/n2 for all algorithms.

Datasets. We use a suite of new datasets derived from US Census, which are introduced in [DHMS21].
These datasets include five pre-defined prediction tasks, predicting labels related to income, em-
ployment, health, transportation, and housing. Each task defines feature columns (categorical and
numerical) and target columns, where feature columns are used to train a model to predict the target
column. Each task consists of a subset of columns from the American Community Survey (ACS)
corpus and the target column for prediction. We use the five largest states (California, New York,
Texas, Florida, and Pennsylvania) which together with the five tasks constitute 25 datasets. We used
the folktables package [DHMS21] to extract features and tasks.3 In the appendix, we include a table
that summarizes the number of categorical and numerical features for each ACS task and the number
of rows in each of the 25 datasets.

3The Folktables package comes with MIT license, and terms of service of the ACS data can be found here:
https://www.census.gov/data/developers/about/terms-of-service.html.
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We are interested in datasets that can be used for multiple classification tasks simultaneously. To
this end, we create multitask datasets by combining all five prediction tasks. The result is five
multitask datasets corresponding to five states, where each multitask dataset has five target columns
for prediction. The learning problem given a multitask dataset per state consists of learning five
different models, one to predict each of the target columns from the feature columns. Each multitask
dataset has 25 categorical features, 9 numerical features, and five target binary labels.

5.1 Statistical Queries

Here, we describe three different classes of statistical queries that were used either for synthesizing
datasets or for evaluation. First, we introduce some notations. Given as input a dataset with columns
[d], let C,R,L be a column partition of [d], where C, R, and L denote the categorical features,
numerical features, and target columns for ML tasks, respectively.

Class Conditional Categorical Marginals (CM). This class of queries involve marginals defined
over two categorical feature columns and one target column, making it a subset of 3-way categorical
marginal queries. Using notation from definition 2, this query class is defined as Qcat = {qS,y : S 2
(C ⇥ C ⇥ L) , y 2 XS}. This query class is constructed to preserve the relationship between feature
columns and target columns with the goal of generating synthetic data useful for training ML models.
Since the possible set of queries for this class is finite we enumerate over all possible combinations
of 3-way marginals in our experiments.

Class Conditional Mixed-Marginals (MM). Similar to the class conditional categorical marginals,
we create 3-way marginal queries involving two feature columns and one target column. For this
query class, however, we use only numerical columns for the features as opposed to CMs. Since
the possible set of marginals involving numerical features is infinite, we use 200, 000 random 3-way
mixed marginal queries in our experiments.

Class Conditional Linear Thresholds (LT). Next we describe the construction of the class condi-

tional linear threshold queries using definition 4. We generate a set Qlin of m = 200, 000 random
queries, which is populated as follows:

1. Generate a random vector ✓̂ 2 Rd|R| , where the value of each coordinate i 2 R is sampled as
✓̂i ⇠ N (0, 1). Then set ✓ = ✓̂/

p
d.

2. Sample a threshold value ⌧ from the standard normal distribution, i.e., ⌧ ⇠ N (0, 1).
3. Sample a label i 2 L and a target value for the label y 2 Xi.
4. Add the query qi,y,R,✓,⌧ to the set Qlin.

In the experiments that follow, RAP++ is trained both with the CM queries and the class conditional

linear threshold queries. PGM and RAP are trained with the CM queries over their discretized
domain (i.e. we bin the numerical features so that they become categorical, then run the algorithms to
preserve CM queries). We use MM queries mainly for evaluation (see fig. 2).

Experimental Setup. For both RAP and PGM we discretized all numerical features using an
equal-sized binning, and compare the performance for numbers of bins in {10, 20, 30, 50, 100}. For
the results, we choose 30 bins for discretization, as it performs well overall across different tasks and
privacy levels. In the appendix we show more results for different choices of bin size. The other
relevant parameter for both PGM and RAP is the number of epochs of adaptivity, which is fixed to
be d� 1, where d is the number of columns in the data.

Next we describe the relevant parameters used to train RAP++ . Since RAP++ optimizes over two
query classes (CM and LT), the first parameter TCM corresponds to the number of adaptive epochs
for selecting CM queries. The other parameter TLT corresponds to the number of adaptive epochs
for selecting LT queries. To be consistent with PGM and RAP we always choose TCM = d|C| � 1,
where d|C| is the number of categorical columns in the data. Finally, K is the number of queries
selected per epoch as described in algorithm 2.

We fix the parameters of RAP++ to be TLT = 50 and K = 10 since it works well across all
settings in our experiments. Figure 3 shows the effect of different hyperparameter choices for both
RAP++ and PGM . It can be seen that RAP++ achieves better accuracy in less runtime than PGM .
Furthermore, RAP++ is not very sensitive to varying TLT , whereas PGM ’s performance is very
sensitive to the bin-size. For implementation details, see the appendix.
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Figure 2: Summary of average error for Mixed Marginals (MM) on three tasks and aggregated over
five ACS states. Each column represents different task. We only compare against the most competitive
approach PGM . See appendix for other approaches and CM queries. RAP++ consistently achieves
lower error, especially at small ✏ values.

5.2 Main Results

Mixed-Marginals Evaluation. We begin by comparing RAP++ against PGM on how well the
generated synthetic data approximates a set of random MM queries on 25 single-task ACS datasets
(see appendix). We use PGM as our primary baseline because it was the most performant of the
various approaches we tried (DP-MERF , CTGAN , and RAP ). Here we show results on three
tasks only for MM queries in fig. 2 and the remaining tasks, and CM query results are shown in the
appendix. Note that in these experiments, the difference between RAP and RAP++ is in how it treats
numeric valued features and threshold-based queries. In particular, for CM queries, RAP and RAP++
are essentially the same, so it does not make sense to compare RAP and RAP++ in this setting.

The figure shows average errors across all states for each task with respect to ✏. For each
task/state/epsilon setting, we compute the average error over the set of queries (either CM or MM
queries). Then we take another average over states for each task/epsilon. On average, RAP++
performed slightly better at answering CM queries, and significantly improved the average error on
MM queries across all tasks. Note that none of the approaches used MM queries in training, hence
the results indicate better generalization capability of RAP++ .

Figure 3: F1 score vs. Runtime . Comparing RAP++ (blue) and
PGM (orange) for different hyperparameter choices over three ACS
single-task datasets and ✏ = {0.15, 1}. PGM parameter bin-size is
varied by selecting from {10, 20, 50, 100}. RAP++ parameter for the
number of epochs for linear thresholds (TLT ) is varied by selecting
from {10, 30, 50, 70}.

ML Evaluation. We also
evaluate the quality of syn-
thetic data for training lin-
ear logistic regression mod-
els. For each dataset, we
use 80 percent of the rows
as a training dataset and the
remainder as a test dataset.
Only the training dataset is
used to generate synthetic
datasets subject to differen-
tial privacy. We then train a
logistic regression model on
the synthetic data and evalu-
ate it on the test data. Since
labels are not balanced in
individual tasks, model per-
formance is measured us-
ing F1 score which is a har-
monic mean of precision

and recall. Also there isn’t a clear definition of the positive class in each task, so we report the macro
F1 score, which is the arithmetic mean of F1 scores per class. As a “gold-standard” baseline, we also
train a model on the original training set directly (i.e. without any differential privacy protections).

The ML evaluation contains both single-task and multitask experiments. Since single-task datasets
only define one column as the target label for prediction, we train one logistic regression for each
single-task dataset. Figure. 4 summarizes our results on single-task datasets and Fig. 5 shows results
on multitask ones. On single-task, RAP++ clearly outperforms every other benchmark in terms of F1
score across all tasks and privacy levels. Due to the space limit, we only show results for three tasks
and on a single state, while the remaining set of experiments can be found in the appendix.
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For multitask experiments, we observe that our algorithm most significantly outperforms PGM in
terms of F1 score on the income task, where numerical features are more important. On the coverage
tasks RAP++ wins when ✏ is small. And finally, PGM does slightly better on the employment
task where numerical columns provide no information.To understand when numerical features are
important, we conducted a simple experiment where we trained a logistic regression model on all
features (including numerical) and compared against a model trained only on categorical features. We
show that numerical features are important for the income task and less important for other tasks. See
appendix for details on this. Our experiments confirm that RAP++ produces synthetic data which
can train more accurate linear models when the numerical features are important for the prediction
task.

Figure 4: ACS Single-task ML: Comparison of synthetic data generation approaches by the F1 score
achieved on linear models trained on synthetic data and F1 score achieved by training on original
dataset(black dotted line). Results averaged across three single-task datasets (ACS-NY state) for
different privacy levels. See Appendix for other states.

Figure 5: ACS Multitask ML: Comparison of synthetic data generation approaches using multitask
datasets by the F1 scores achieved on linear models trained on synthetic data and F1 score achieved
by training on original dataset(black dotted line). See Appendix for other states.

6 Limitations and Conclusions

We propose an algorithm for producing differentially private synthetic data that improves on prior
work in its ability to handle numeric valued columns, handling them natively rather than binning
them. We show that this leads to substantial runtime and accuracy improvements on datasets for
which the numerical columns are numerous and relevant. For machine learning tasks on categorical
data or for data for which the numerical features are not informative, prior methods like PGM can
still sometimes produce more accurate synthetic data, although we still generally outperform in terms
of runtime. Producing synthetic data useful for downstream learning beyond linear classification
largely remains open: In our experiments, more complicated models trained on the synthetic data
generally resulted in performance that was comparable or slightly worse than the performance of
linear models trained on the synthetic data, even when the more complex models outperformed
linear models on the original data. Note that it is not so much that the non-linear methods perform
poorly in an absolute sense, but they fail to realize the performance gains beyond that achievable by
linear models when applied to the private synthetic data. Producing high quality synthetic data that
can enable downstream machine learning that obtains higher accuracy than linear models is a very
interesting question.

10



Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We currently focus on providing
private synthetic data for downstream ML tasks with linear models.

(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
The ACS dataset was released by the US Census Bureau publicly, and we follow the
terms of service of the ACS data in our use. The terms of service can be found here:
https://www.census.gov/data/developers/about/terms-of-service.html

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]
According to the Terms of Service (https://www.census.gov/data/developers/about/terms-
of-service.html) of the ACS data, "The Census Bureau has created these data to
exclude information that would directly identify respondents and characteristics that
may lead to the identification of respondents." and "... users will not use these data,
alone or in combination with any other Census or non-Census data, to identify any
individual person, household, business or other entity; not link or combine these data
with information in any other Census or non-Census dataset in a manner that identifies
an individual person, household, business or other entity; not publish information from
these data files, particularly in combination with any other Census or non-Census data,
in a manner that identifies any individual person, household, business or other entity;
and not use the identity of any person or establishment discovered inadvertently ..." We
follow the Terms of Service in our use of the ACS data.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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