
A Proof of Theorem 11

Firstly, we give the definition of f -divergence.2

Definition 1 (f -divergence) The f -divergence between two probability density functions (pdf) p and3

q is defined as,4

Df (p∥q) = Eq

[
f

(
p

q

)]
,

where f : [0,∞) → R is a convex function and f(1) = 0.5

As shown in [1], since partition functions for ϕ(x,m; θ) and ϕ(x; θ) are the same, we have the6

following factorization,7

ϕ(x,m; θ) = ϕ(x; θ)p(m | x; θ).
The difference between the two objective becomes,8

LVCNCE(θ, φ)− LCNCE(θ)

=2ExyEq(m;φ)

{
log

[
1 +

ϕ(y; θ)pc(x | y)q(m;φ)

ϕ(x,m; θ)pc(y | x)

]
− log

[
1 +

ϕ(y; θ)pc(x | y)
ϕ(x; θ)pc(y | x)

]}
=2ExyEq(m;φ) log

ϕ(x,m; θ)ϕ(x; θ)pc(y | x) + ϕ(y; θ)pc(x | y)ϕ(x; θ)q(m;φ)

ϕ(x,m; θ)ϕ(x; θ)pc(y | x) + ϕ(y; θ)pc(x | y)ϕ(x,m; θ)

=2ExyEq(m;φ) log
p(m | x; θ)ϕ(x; θ)pc(y | x) + ϕ(y; θ)pc(x | y)q(m;φ)

p(m | x; θ)ϕ(x; θ)pc(y | x) + ϕ(y; θ)pc(x | y)p(m | x; θ)
=2Exy[Dfxy

(p(m | x; θ)∥q(m))],

where9

fxy(u) = log

(
κxy + u−1

κxy + 1

)
,

with κxy = ϕ(x;θ)pc(y|x)
ϕ(y;θ)pc(x|y) . It is straightforward to verify that f(1) = 0. The derivatives of f is10

f ′(u) = − 1

u2κ+ u
, f ′′(u) =

2uκ+ 1

(u2κ+ u)2
.

Since κ and u are positive, f is a convex function. Therefore, f satisfy the requirements of f -11

divergence.12

B Proof of Corollaries 1 and 213

Corollary 1 is a straightforward consequence of Theorem 1. Since the f -divergence becomes zero if14

and only if the two distributions are identical, we have,15

LVCNCE(θ, φ) = LCNCE(θ) ⇐⇒ q(m;φ) = p(m | x; θ).

Moreover, since the f -divergence is positive and Theorem 1, we have16

p(m | x; θ) = argmin
q(m;φ)

LVCNCE(θ, q(m;φ)).

Then, plugging the optimal distribution gives the tight bound, we have,17

min
θ

LCNCE(θ) = min
θ

min
q(m;φ)

LVCNCE(θ, φ).

C Experimental details18

C.1 Simulation study19

Tensors with non-Gaussian distributions For both GPTF and our model, we set batch size to 100020

and run 500 epochs with Adam optimizer. The initial learning rate is 1e−3 and subsequently reduced21

1

by 0.3 at 60%, 75% and 90% of the maximum epochs. Moreover, the rank is set to 3 for both models.22

For GPTF, radial basis function (RBF) kernel with band width 1.0 is used, where 100 inducing points23

is adopted for approximation. For the conditional distribution p(xi | mi) = N (xi | f(mi), σ
2)24

in GPTF, σ is fixed and chosen as the sample standard variance. For our model, we use 5 hidden25

layers of width 64 for both g1, g3 and g4 defined in Section 3. g2 is a summation layer. We use26

ELU activation for non-linearity. For the VCNCE loss, the conditional noise distribution is set as27

pc(y | x) = N (y | x, 0.32) and ν = 10 noise samples are used for each data point.28

Continuous-time tensors The data sizes and optimization parameters are the same with the29

previous simulation. The rank of all models are set to 3. For NONFAT, 100 inducing points are30

used to approximate the kernel function. We run the NONFAT model for 5000 epochs because we31

find that the algorithm converges very slowly. Other hyper-parameters are chosen by their default32

settings. For BCTT, we do not modify their code and settings. For our model, we use 3 hidden layers33

of length 64 with ELU activation. The conditional noise distribution in the VCNCE loss is set to34

pc(y | x) = N (y | x, 1) and ν = 20 noise samples are used for each datum.35

C.2 Tensor completion36

For all datasets, when training our model, we scale the data to [0, 1] based on the training data. For37

testing, we multiply the scale statistic computed by the training data and evaluate the performance on38

the original domain. We do not employ such data normalization for baselines models, because that39

will influence their default settings.40

C.2.1 Sparse tensor completion41

For both Alog and ACC, the batch size is set to 1000. We run 1000 epochs for Alog and 100 epochs42

for ACC due to their different sample numbers. For Alog dataset, we add i.i.d. Gaussian noises43

from N (0, 0.052) during training, while for ACC, the standard variance is set to 0.02. The Adam44

optimizer is used with learning rate chosen from {1e−2, 1e−3, 1e−4}. We also use gradient clip45

with maximum infinity norm of 2.0 for training stability. Moreover, we use learning rate scheduler by46

reducing the initial learning rate by 0.3 at 40%, 60%, and 80% of the total iterations. For both datasets,47

we use 2 hidden layers of length 50 with ELU activation for g1, g3 and g4 for our model. For the48

VCNCE loss, we set ν = 20 noise samples with noise variance tuned from {0.32, 0.52, 0.82, 1.02}.49

In practice, we find that the noise variance is influential to the final performance, even we are50

using conditional noises. However, with VCNCE, there is only one hyper-parameter for the noise51

distribution. While for CNCE, one may need to tune both mean and variance of the noise.52

C.2.2 Continuous-time tensor completion53

For Air and Click datasets, we set batch size to 128. We run 400 epochs for Air and 200 epochs54

for Click due to their different data sizes. For Alog dataset, we add i.i.d. Gaussian noises from55

N (0, 0.052) during training, while for ACC, the variance is set as 0.152. To encode the temporal56

information into the energy function, we use the sinusoidal positional encoding, as described in57

Section 3. Other settings are the same with Appendix C.2.1.58

It should be noted that we use the standard definition of root mean square error (RMSE) and mean59

absolute error (MAE), namely,60

RMSE =

√∑N
i=1(xi − x̂i)2

N
, MAE =

∑N
i=1|xi − x̂i|

N
,

where xi is the ground truth and x̂i is the estimate. Therefore, the results are different from those61

presented in [2], where the authors used relative versions of RMSE and MAE,62

RMSE =

√√√√ N∑
i=1

(xi − x̂i)2

x2
i

, MAE =

N∑
i=1

|xi − x̂i|
|xi|

.

We modify the evaluation part of their code1 and report the results.63

1https://github.com/wzhut/NONFAT

2

https://github.com/wzhut/NONFAT

C.3 Ablation study on the objective function64

We conduct an additional ablation study to show the advantage of VCNCE over the variational noise-65

contrastive estimation [VNCE, 1] objective. The main difference between the VNCE and VCNCE is66

that VNCE uses noises from a fixed Gaussian distribution, e.g., y ∼ pn(y) = N (y | µ, σ2), while67

VCNCE uses conditional noises, e.g., y ∼ pc(y | x) = N (y | x, σ2). Hence, these two strategies68

yield different objective functions. The objective function of VNCE is defined as69

LVNCE = ExEq(m|x;φ) log

(
ϕ(x,m; θ)

ϕ(x,m; θ) + νq(m | x;φ)pn(x)

)

+ νEy log

 νpn(y)

νpn(y) + Eq(m|y)

[
ϕ(y,m;θ)
q(m|y)

]
 ,

where pn(·) is the fixed noise distribution. For VNCE, choosing inappropriate noise distributions70

may result in bad performances.71

We test the proposed model on the Air dataset, training on the VCNCE loss and VNCE loss,72

respectively. We set the batch size to 128 and run 400 epochs. Adam optimizer with initial learning73

rate 1e−2 is adopted. The initial learning rate is subsequently reduce by 0.3 at 20%, 50% and 80%74

of the total epochs. For VNCE, we set µ = 0, which is a common practice in relevant literature.75

To show how the noise variance affects the learning process, we test different noise variances, e.g.,76

σ ∈ {0.3, 0.5, 0.7} for both VNCE and VCNCE. Other settings are the same with Appendix C.2.2.77

Fig. 1 depicts the RMSE and MAE on the test data when optimizing VNCE and VCNCE objective78

functions. We test five runs, plot mean values in lines and standard deviations in shadowed areas. It79

is shown that VCNCE gets better and more stable results on both RMSE and MAE.80

0 100 200 300 400
Epoch

0.3

0.5

0.7

RM
SE

0 100 200 300 400
Epoch

0.3

0.5

0.7

RM
SE

0 100 200 300 400
Epoch

0.3

0.5

0.7
RM

SE

0 100 200 300 400
Epoch

0.2

0.3

0.4

0.5

M
AE

VNCE
VCNCE

(a) Noise σ = 0.3

0 100 200 300 400
Epoch

0.2

0.3

0.4

0.5

M
AE

(b) Noise σ = 0.5

0 100 200 300 400
Epoch

0.2

0.3

0.4

0.5

M
AE

(c) Noise σ = 0.7

Figure 1: Learning process of optimizing the VNCE and VCNCE loss. The first row is RMSE and
the second row is MAE.

References81

[1] Benjamin Rhodes and Michael U Gutmann. Variational noise-contrastive estimation. In The82

22nd International Conference on Artificial Intelligence and Statistics, pages 2741–2750. PMLR,83

2019.84

[2] Zheng Wang and Shandian Zhe. Nonparametric factor trajectory learning for dynamic tensor85

decomposition. In International Conference on Machine Learning, pages 23459–23469. PMLR,86

2022.87

3

	Proof of thm:main
	Proof of thm:col1,thm:col2
	Experimental details
	Simulation study
	Tensor completion
	Sparse tensor completion
	Continuous-time tensor completion

	Ablation study on the objective function

