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Abstract

The advent of high-capacity pre-trained models has revolutionized problem-solving
in computer vision, shifting the focus from training task-specific models to adapting
pre-trained models. Consequently, effectively adapting large pre-trained models
to downstream tasks in an efficient manner has become a prominent research area.
Existing solutions primarily concentrate on designing lightweight adapters and
their interaction with pre-trained models, with the goal of minimizing the number
of parameters requiring updates. In this study, we propose a novel Adapter Re-
Composing (ARC) strategy that addresses efficient pre-trained model adaptation
from a fresh perspective. Our approach considers the reusability of adaptation
parameters and introduces a parameter-sharing scheme. Specifically, we leverage
symmetric down-/up-projections to construct bottleneck operations, which are
shared across layers. By learning low-dimensional re-scaling coefficients, we can
effectively re-compose layer-adaptive adapters. This parameter-sharing strategy
in adapter design allows us to further reduce the number of new parameters while
maintaining satisfactory performance, thereby offering a promising approach to
compress the adaptation cost. We conduct experiments on 24 downstream image
classification tasks using various Vision Transformer variants to evaluate our
method. The results demonstrate that our approach achieves compelling transfer
learning performance with a reduced parameter count. Our code is available at
https://github.com/David YanAnDe/ARC.

1 Introduction

The utilization of large-scale pre-trained models for various downstream tasks has garnered significant
interest in the computer vision community [[1;2;3;4]. These models continually push the boundaries
of downstream task performance while eliminating the need for task-specific model design and
training. In early attempts, a commonly adopted transfer learning strategy involved directly fine-
tuning a pre-trained model on downstream tasks. However, the full fine-tuning strategy suffers from
two major drawbacks: (1) Updating large-scale parameters is prohibitively expensive and typically
requires a substantial amount of training data to prevent overfitting. (2) As the sizes of state-of-the-art
pre-trained models continue to increase, it becomes impractical and unsustainable to store a distinct
set of model weights for each downstream task.
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In contrast to fine-tuning the entire pre-trained network, recent research has focused on parameter-
efficient model adaptation. The core idea behind this line of work is to keep the majority of pre-trained
parameters frozen and only update or introduce a small fraction of task-specific parameters. Several
methods fall under this umbrella, including prompt tuning [5; 6], visual adapter [[7; 8], and linear
feature modulation [9]. These methods have demonstrated competitive or even superior performance
compared to full fine-tuning while significantly reducing the adaptation cost. They differ in the design
of lightweight adapters and how these adapters interact with the pre-trained parameters. Prompt
tuning methods [} 6] adapt the features of pre-trained Vision Transformers by introducing trainable
task-specific tokens into one or multiple attention layers. Visual adapter [[7; 8] injects a non-linear
lightweight adapter with a bottleneck architecture between layers of the pre-trained model to adjust
the feature distribution. Such non-linear adapters are simplified using linear transformations such as
shifting and scaling [9] to directly modulate the pre-trained features.

In this work, we not only focus on designing lightweight adapters but also emphasize the importance
of adaptation parameter reusability in further compressing the adaptation cost. We adopt a low-rank
design for the adapter using a bottleneck operation but propose a novel approach. Unlike other
methods that place the adapter in different layers and directly learn different parameters for each
adapter to cater to layer-wise variation, we propose sharing the down/up projections in the low-rank
adapter across different layers and simply learning low-dimensional re-scaling coefficients to re-
compose the linear projections into layer-adaptive adapters. The idea of Adapter Re-Composing
(ARC) is motivated by the observation that naturally derived adaptation matrices can exhibit extremely
low-rank characteristics, even when not explicitly designed as such. This implies the possibility of
using a shared “basis” to re-compose the adapters. Furthermore, we design the low-rank adapters
using symmetric down-projection and up-projection matrices, which further reduces the parameter
size. Due to their linear nature and careful positioning design, our adapters can be seamlessly
integrated into the pre-trained network, as in [[7; 95 [10]], without adding extra computation during the
inference phase.

We evaluate our method on various large Vision Transformer models, including ViT-B [1]] and its
variants such as ViT-L [[1], ViT-H [1]], and Swin-B [L1], using 24 downstream image classification
benchmark datasets. The experimental results demonstrate that our method achieves compelling
transfer learning performance while maintaining a smaller parameter size.

The key contributions of this paper are summarized as follows:

* We approach efficient pre-trained model adaptation from a novel perspective by exploring
the reusability of adaptation parameters, which goes beyond existing works that primarily
focus on the lightweight design of adapter structures.

* We introduce the Adapter Re-Composing (ARC) strategy, which shares bottleneck oper-
ation’s down-/up-projections across layers and utilizes lower-dimensional re-composing
coefficients to create layer-adaptive adapters. This approach enables fewer parameters than
prior works.

* Our parameter sharing scheme in the ARC method prevents a linear increase in parameter
size with the number of layers, ensuring better scalability, particularly for larger-scale
models.

» Through extensive experiments on various Vision Transformer variations and numerous
downstream tasks, we show that our method achieves highly competitive transfer learning
performance while maintaining a relatively low level of additional parameter.

2 Related work

In this section, we present a concise review of the existing literature, focusing on two key areas:
(1) Pre-training and fine-tuning, and (2) Parameter-efficient transfer learning.

Pre-training and fine-tuning. Pre-training and fine-tuning, also known as transfer learning [[12}
13114, is a popular approach that utilizes large-scale datasets [15; 16§ 175185 [19] to train models for
adaptation to different downstream tasks. By extracting knowledge from these datasets and encoding
it into parameters, models can be fine-tuned for specific tasks, resulting in improved performance
compared to models without pre-training. The availability of large-scale datasets [17] has led to
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Figure 1: Visual summary of typical parameter-efficient pre-trained model adaptation methods.

significant advancements in performance and convergence speed for downstream tasks. Scaling
up models [20; 21] to handle the growing data volume enhances data utilization and improves the
efficiency and robustness of pre-trained models across various data distributions and noise levels.
Large models [1; 115 22]] also benefit from self-supervised pre-training [2; 23] using unlabeled data,
reducing the cost, duration, and quality issues associated with human annotation. By leveraging this
approach, models can effectively extract knowledge from readily available unlabeled data, further
enhancing their generalization performance in downstream tasks.

Parameter-efficient transfer learning. The exponential increase in model parameters presents a
computational challenge when fine-tuning the entire network on downstream tasks. In the field of NLP,
researchers have explored parameter-efficient transfer learning approaches [[7; 24 255 [26; 27} 28] that
train a subset of the model or add new modules with fewer parameters while achieving comparable or
even superior performance. Inspired by the success of NLP, several notable works [8;29; 130] have
emerged in the computer vision domain. One approach, known as Prompt Tuning [5} 6], addresses
the distribution mismatch between pre-training and downstream tasks by learning task-specific tokens.
Adapter-like methods [8;[7; [29] insert trainable modules, such as MLPs with activation functions and
residual structures, into the network to facilitate transfer learning. LoRA [24] exploits the low-rank
update to a large-scale frozen model and introduces a bypass to the original parameter matrix to
mimic the fine-tuning of the entire model parameters. SSF [9] introduces lightweight scaling and shift
operations to modulate the pre-trained representations. The core concepts of these aforementioned
works are visually summarized in Fig.[T]

As an advancement in visual adaptation, ARC addresses the limitations of Prompt Tuning, which
requires different prompt designs for different downstream tasks. Moreover, ARC introduces the
innovative concept of bottleneck matrix reuse, achieving state-of-the-art performance with minimal
adaptation cost comparing to other rank-decomposition strategies. Additionally, ARC employs a
linear design for the adapters and inherits the benefits of re-parameterization [9; [10; 24]], ensuring
that inference does not introduce any additional computational complexity.

3 Approach

In this section, we start by providing an introduction to the notations, symbols, and background
related to Vision Transformers, which is followed by the presentation of our proposed Adapter
Re-Composing (ARC) method. ARC focuses on efficient transfer learning for Vision Transformers by
reusing rank-decomposition projections to adaptively compose layer-wise adapters, thereby reducing
the size of learnable parameters. Additionally, we discuss the insights gained from our architecture
design.



3.1 Preliminary

A plain Vision Transformer model contains a patch embedding layer and multiple encoder layers.
Given an input image X € R¥*WXC the patch embedding layer first splits the image into a sequence
of flattened patches Xpagches € RV (P *0), where (H, W) is the resolution of the input image,
(P, P) is the resolution of each patch, C' denotes the number of input channels, and N = H - W/P?
is the number of tokens. Subsequently, the image patches are mapped to a D-dimensional embedding
space through a linear projection W &€ R(P*C)xD A learnable [class] token vector £ € RP is
then prepended to the sequence of Xpatches, and the position embeddings X o5 € RWNADXD ape
added to the sequence. The output of the patch embedding layer can be expressed as follows:

Xemb = [555; Xpatchesw] + XpOSa (1)

where [-; -] denotes concatenation operation. This output is then fed into several consecutive encoder
layers, each consisting of a Multi-Head Attention (MHA) block and a Feed-Forward Network (FFN)
block. LayerNorm (LN) is applied before each block, and residual connections are applied thereafter.
The process of [-th encoder layer is defined as:

X" = MHA(LN(X(=D)) 4 X1,

X = FEN(LN(X®)) 4+ X O @

where X (~1) denotes input tokens in I-th layer, XV indicates intermediate representations produced
by MHA, and the output of [-th layer is X ().

In MHA block, each Attention Head (AH) module utilizes the weight matrices W,(Zl) e R XDS),

(-1 % p® (-1 pO .
ngl) € RP" Py and W e RP'TVXDL for the query, key, and value operations, re-
spectively. These operations enable an exclusive attention mechanism on the normalized feature

representations XD — LN(X(=D):

T
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where D,(Ll) = D is the feature dimensionality of the output representations Xg " for each attention

M
head and M represents the number of attention heads. The MHA block concatenates multiple {Xg)/}
in sequence and generates the outputs through a linear projection W((,l) e RWM-D) <D,

XO" = MHA(X (D) = [AH (XEDy e AH (XD WO, 4)

norm norm norm

The FEN block consists of two linear projections with the GELU activation function in between:

X® = FFN(X{!,) = GELUX Y, W yw)| )

norm norm

where W € R x40 ang W € R4D”xD" denote two linear projection matrices, and
XUl = LN(X ),

3.2 Adapter Re-Composing method

We observe that the majority of existing adaptation methods introduce adapters into various layers and
learn separate parameters for adapting the pre-trained model to specific downstream tasks. Previous
studies [8; 24] have shown the effectiveness of leveraging the low-rank properties of adapters to
fine-tune frozen pre-trained models. Inspired by these findings, we propose a novel approach to
create a unified linear space across different adapters to enhance parameter efficiency and adaptation
performance.

Architecture. The ARC architecture incorporates a bottleneck operation for adapters, which
consists of three key components: a linear down-projection, layer-specific re-scaling coefficients,
and a linear up-projection. This architecture is illustrated in Fig. 2] To facilitate the reusability of
adaptation matrices, we have developed a sharing and re-composing scheme for the ARC method.
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Figure 2: Illustration of the proposed Adapter Re-Composing Method.

This scheme involves sharing linear projections across layers and learning low-dimensional re-scaling
coefficients to re-compose the layer-adaptive adapters. In addition, to enhance parameter compression,
we leverage symmetric down-projection and up-projection in a single bottleneck operation:

Wup = (Wdown)T7 (6)

where Wgoun € RP*P" and W, € RP'*P with D’ < D denote shared down-projection and up-
projection matrices across different layers; D’ represents the hidden dimensionality of the projections.
To accommodate the variations across different layers, we learn re-scaling coefficients to re-compose
the layer-adaptive adaptation matrices. These coefficients are then diagonalized into a diagonal
matrix C() ¢ RP"*D’ specific to each layer /. This diagonal matrix allows for efficient and effective
adjustment of the adaptation parameters at each layer. Formally, given an input X;, € R(IN+DxD
the output of our ARC module is:

Xout = ARC(Xipn) = XinWaownCYOW,, + Xy 7

Unless otherwise specified, we adhere to the default configuration of inserting our ARC modules
sequentially before both the MHA and FEN blocks in the Vision Transformer. The influence of
adapter positions will be discussed in Section[#-3] Therefore, the Vision Transformer incorporating
our ARC modules can be formulated as follows:

X = MHA(ARCppa (LN(X D))y + XD,
X = FFN(ARCppn (LN(X®7))) 4 X107,

Note that ARCypa and ARCgpy are two independent ARC modules, meaning that the projection
matrices of the two modules are not shared between them. During the fine-tuning phase, we
exclusively update the learnable parameters of our newly added ARC modules. This involves freezing
all original parameters of the pre-trained model and solely focusing on updating the parameters of
our ARC.

(®)

Inference. Our ARC employs a completely linear transformation so that we can re-parameterize it
by fusing the module to the original framework of the pre-trained model. Take the ARC module of
FNN as an example, the process can be defined by:

X = GELU(ARCppx(XO)YWH YW, )
where ARCppx (X () can be represented by X" (W 4040 COW,,, + I) according to Eq. (7) with

I € RP*P being an identity matrix. Furthermore, we can construct ng)/ by:

W = (WaounCOW,, + HW. (10)
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(a) The singular value distribution of MHA adapter.
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(b) The singular value distribution of FEN adapter.

Figure 3: Singular value distribution of adaptation matrices without the bottleneck structure. Two
adaptation matrices of both MHA and FFN blocks are fine-tuned on the DTD downstream task. The
X-axis represents the singular values, while the Y-axis represents the count of singular values within
specific ranges. Complete visualization is available in the appendix.

Therefore, we can replace the matrix ng) by ng)

computational overheads.

" in the inference stage, thereby avoiding extra

3.3 Insights of architecture design

In this work, we propose an approach that involves adopting a low-rank design for the adapters and
sharing the bottleneck projections across layers. Our motivation for adopting this approach stems
from the assumption that the layer-wise adapters can be effectively re-composed by re-scaling a
small number of base linear projections. To validate this assumption, we conduct an analysis of the
singular value distribution of adaptation matrices Wy € RP*D learned without the bottleneck
operation, which are anticipated to be full-rank. In Fig.|3| we observe that the singular values exhibit
extreme sparsity and follow a power-law distribution, with the majority of singular values being close
to zero. This indicates that the learned adaptation matrices naturally exhibit low-rank characteristics.
Furthermore, the pronounced sparsity of the singular values suggests that the adaptation matrices can
be effectively reconstructed using a limited number of basis vectors. These findings provide strong
evidence supporting the rationale behind our adaptation parameter-sharing strategy.

4 Experiments

In this section, we present the experimental settings, comparison to existing solutions, and ablation
studies to unveil the key properties of the proposed method.

4.1 Experimental settings

Datasets. We evaluate the effectiveness of our ARC approach on two sets of visual task adaptation
benchmarks, comprising a total of 24 datasets. The list of datasets used for evaluation is provided
below:

FGVC. We conduct experiments with the default settings in the VPT [6] on a collection of five
Fine-Grained Visual Classification (FGVC) datasets, known as FGVC. The FGVC dataset collection
includes CUB-200-2011 [31]], NABirds [32], Oxford Flowers [33]], Stanford Dogs [34], and Stanford
Cars [35]].

VTAB-1k. We also evaluate our ARC method on the VTAB-1k benchmark [36]], which consists of 19
diverse visual classification tasks. These tasks are divided into three groups: the Natural group, which
contains images captured through standard cameras; the Specialized group, which includes images
captured by specialist equipment such as remote sensing and medical imaging; and the Structured
group, which comprises synthesized images from simulated environments, such as object counting
and 3D depth prediction. Each downstream task in the VTAB-1k benchmark consists of 1000 training
examples. Following VPT [6], we set aside 200 samples from the training set as the validation set to



Table 1: Comparison of ARC with baselines and state-of-the-art efficient adaptation methods on five
FGVC datasets. All methods utilize ViT-B/16 pre-trained on ImageNet-21k as the backbone. “SSF*”
denotes the performance reported in the original SSF paper [9]], which incorporates advanced data
augmentations like cutmix [39], mixup [40], and regularization techniques such as label smooth-
ing [41]]. To ensure a fair comparison, we reproduced the SSF method using the code provided
by [9]], while employing the same basic data augmentations as our approach, and we denote SSF’s
reported performance as “SSF*” and ARC’s performance augmented with SSF’s data augmentation
as “ARC*”. The bold font shows the best accuracy of all methods and the underline font shows the
second best accuracy.

Method Dataset CUB-200-2011 | NABirds | Oxford Flowers | Stanford Dogs | Stanford Cars | Mean Params.(M)
Full fine-tuning 87.3 82.7 98.8 89.4 84.5 88.5 85.98
Linear probing 85.3 75.9 97.9 86.2 51.3 79.3 0.18

Adapter |7 87.1 84.3 98.5 89.8 68.6 85.7 0.41
Bias [42! 88.4 84.2 98.8 912 79.4 88.4 0.28
VPT-Shallow [6; 86.7 78.8 98.4 90.7 68.7 84.6 0.25
VPT-Deep [6 88.5 84.2 99.0 90.2 83.6 89.1 0.85
LoRA |24 88.3 85.6 99.2 91.0 83.2 895 0.44
SSF |9 82.7 85.9 98.5 87.7 82.6 87.5 0.39
SSF* [9 89.5 85.7 99.6 89.6 89.2 90.7 0.39
ARC,¢t 884 85.0 994 90.1 82.7 89.1 0.22
ARC 88.5 853 9.3 91.9 85.7 90.1 0.25
ARC* 89.3 85.7 99.7 89.1 89.5 90.7 0.25

select hyperparameters. Subsequently, we train the model on the full training data using the selected
hyperparameters.

Pre-trained backbone. To evaluate the adaptation capacity of the proposed ARC method, we apply
the ARC strategy to two typical types of Vision Transformers: ViT [1]] and Swin Transformers [11].
For ViT, we conduct experiments using three different backbone variants with varying model sizes:
ViT-Base/Large/Huge. All the backbones are pre-trained on the ImageNet-21K [15] dataset.

Baselines and existing methods. In our comparative analysis, we evaluate the performance of the
ARC method against two baselines and several state-of-the-art efficient pre-trained model adaptation
methods. The two baselines we consider are: (1) Full Fine-tuning: This baseline involves updating
all the parameters of the pre-trained model using the training data of the downstream task. (2) Linear
Probing: This baseline focuses on learning a linear classification head on the downstream task while
keeping the remaining parameters of the pre-trained model frozen. In addition to the baselines, we
compare our ARC method with the following state-of-the-art solutions: (1) Adapter [7]]: This method
inserts lightweight adaptation operations, consisting of a down-projection, non-linear activation, and
an up-projection, into the pre-trained model. (2) Bias [37]]: The Bias method fine-tunes only the
bias terms of the pre-trained models while keeping the remaining parameters frozen. (3) LoRA [24]:
This approach introduces trainable low-rank adaptation matrices into each layer of the Transformer
architecture. (4) VPT [6]: The VPT method incorporates extra learnable tokens into the input or
all attention layers of the frozen Transformer. (5) SSF [9]: This method adds linear transformation
parameters, including scaling and shifting, to modulate the pre-trained features. By comparing
the performance of our ARC method with these baselines and state-of-the-art solutions, we aim to
demonstrate its superiority in terms of efficiency and effectiveness in pre-trained model adaptation.

Implementation details. To ensure a fair evaluation of the effectiveness of our proposed ARC
method, we have opted for a simple training setup without too many additional bells and whistles.
Similar to VPT [6], we have used standard data augmentations during the training phase, which
include image normalization using ImageNet means and standard deviation, random resize crop to
224 x 224 with random horizontal flip for FGVC datasets, and resize to 224 x 224 for VTAB-1k. We
have used grid search to select hyper-parameters such as the learning rate, weight decay, and batch
size, using the validation set of each task, as in VPT [[6]. All experiments were conducted using the
PyTorch [38]] framework on an NVIDIA A40 GPU with 48GB of GPU memory. Further details can
be found in the appendix.



Table 2: Comparison of ARC with baselines and state-of-the-art efficient adaptation methods on
VTAB-1k benchmark. All methods utilize ViT-B/16 pre-trained on ImageNet-21k as the backbone.
To ensure a fair comparison, we reproduced the SSF method using the code provided by [9]], while
employing the same basic data augmentations as our approach.
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Adapter 7 74.1 86.1 632 977 87.0 346 50.8 | 705|763 880 731 705|770 |457 374 312 532 303 254 138 22.1 | 324|558 027
Bias [42 728 870 592 975 853 599 514|733 |787 916 729 698 | 783 | 61.5 556 324 559 666 400 157 251 | 441|621 0.14
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SSF [0 580 89.8 705 989 902 90.5 529 | 78.7 [ 867 952 864 754|859 | 682 610 528 807 773 485 276 311|559 |706 024
SSF* [0 69.0 926 751 994 918 902 529 816|874 959 874 755|866 | 759 623 533 80.6 773 549 295 379 590 | 731 024
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ARC 722 90.1 727 99.0 910 919 544 | 81.6 [ 849 957 867 758 | 858 | 80.7 67.1 487 8L6 792 5LO 314 399 | 60.0 | 734 0.13
ARC* 712 909 759 995 921 908 520 818|874 965 87.6 764 | 87.0 | 833 611 546 817 810 57.0 309 413 614|743 0.13

4.2 Experimental comparisons

In this section, we provide a comprehensive comparison of our ARC method with baseline methods
and other state-of-the-art solutions. We evaluate the performance in terms of classification accuracy
on downstream tasks as well as the parameter size. The results are summarized in Table[I]and Table 2]
with all results obtained using the ViT-B/16 backbone. Based on these comparative results, we make
the following observations:

(1) The ARC method demonstrates highly competitive classification accuracy on both sets of visual
adaptation datasets, while maintaining a low parameter size. As shown in Table [I] and Table [2]
under a fair comparison, ARC achieves the best mean accuracy and outperforms the other methods
on the majority of the 24 datasets. This confirms the effectiveness of our proposed pre-trained
model adaptation strategy. Furthermore, thanks to the parameter-sharing strategy in ARC, we are
able to noticeably reduce the parameter size compared to other rank-decomposition based adapters
such as Adapter [[7] and LoRA [24]]. VPT-Shallow [6]] also exhibits parameter efficiency as it only
introduces learnable tokens in the input layer. However, this is achieved at the cost of a significant
performance sacrifice, resulting in considerably inferior performance compared to VPT-deep [6] and
ARC. Another parameter-efficient method, Bias [42], focuses on updating only the bias terms in
the pre-trained network, but it also leads to a significant compromise in classification performance
on downstream tasks. To further decrease the parameter size, we evaluate ARC,y, which omits
the adapters applied to Feed-Forward Network (FFN) blocks and focuses solely on adapting the
Multi-Head Attention (MHA) blocks. This approach achieves nearly a halving of the parameter size
while experiencing only a minimal 1% drop in performance.

(2) In comparison to the efficient adaptation solutions presented in the tables, full fine-tuning yields
comparable or even worse classification accuracy across various downstream tasks, despite updating
a significantly larger number of parameters. This observation further emphasizes the importance and
potential of lightweight adaptation designs. On the other end of the spectrum, linear probing requires
minimal parameters but exhibits noticeable performance degradation.

Experiments on larger-scale ViT backbones. In addition to evaluating the ARC method on
ViT-B/16 backbone, we also conducted experiments on larger-scale ViT backbones to assess its
performance on more computationally demanding models. Specifically, we tested the ARC method on
ViT-Large and ViT-Huge backbones. The results, presented in Table[3aand Table[3b] demonstrate that
the ARC method maintains its competitive classification accuracy even with larger-scale backbones.
It consistently outperforms the baseline methods and achieves comparable or superior performance
compared to other state-of-the-art adaptation methods. Furthermore, the parameter size of the ARC
method remains noticeably smaller than rank-decomposition based adapters like Adapter [7]] and
LoRA [24], as well as VPT-deep [6], showcasing its efficiency in terms of parameter utilization.
These findings suggest that the ARC method is not only effective on smaller-scale ViT backbones



Table 3: Performance comparison on VTAB-1k using ViT-Large and ViT-Huge pre-trained on
ImageNet-21k as backbone. “(-)” denotes the number of tasks in the subgroup. Expanded results are
presented in the appendix.

(a) ViT-Large (b) ViT-Huge
Natural (7) | Specialized (4) | Structed (8) | Mean Total Params. Natural (7) | Specialized (4) | Structed (8) | Mean Total Params.

Full fine-tuning 74.7 83.8 48.1 65.4 303.4 Full fine-tuning 70.9 83.6 46.0 63.1 630.9
Linear probing 70.9 69.1 25.8 51.5 0.05 Linear probing 67.9 79.0 26.1 52.7 0.06
Adapter |7 68.6 73.5 29.0 529 2.38 Adapter |7 68.1 76.4 245 51.5 5.78
Bias |37 70.5 73.8 41.2 58.9 0.32 Bias [42 70.3 78.9 41.7 60.1 0.52
VPT-Shallow [6 78.7 79.9 40.6 62.9 0.15 VPT-Shallow [6 74.8 81.2 43.0 62.8 0.18
VPT-Deep [6 82.5 83.9 541 70.8 0.49 VPT-Deep [6 719 83.3 522 68.2 0.96
LoRA |24 81.4 85.0 57.3 72.0 0.74 LoRA [24 771 835 554 69.3 1.21
ARC 82.3 85.6 57.3 72.5 0.18 ARC 79.1 84.8 53.7 69.6 0.22

Table 4: Performance comparison on VTAB-1k using Swin-Base pre-trained on ImageNet-21k as
backbone. “(-)” denotes the number of tasks in the subgroup. Expanded results are presented in the
appendix.

Natural (7) | Specialized (4) | Structed (8) | Mean Total Params.
Full fine-tuning 79.1 86.2 59.7 724 86.8
Linear probing 73.5 80.8 335 58.2 0.05
MLP-4 [6] 70.6 80.7 31.2 57.7 4.04
Partial [6] 73.1 81.7 35.0 58.9 12.65
Bias [42] 74.2 80.1 424 62.1 0.25
VPT-Shallow [6 79.9 82.5 37.8 62.9 0.05
VPT-Deep [6] 76.8 84.5 534 67.7 0.22
ARC 79.0 86.6 59.9 72.6 0.27

but also scalable to larger models, making it a promising solution for efficient pre-trained model
adaptation across a wide range of backbone sizes.

Experiments on hierarchical Vision Transformers. We extended the ARC method to Swin
Transformer [11], a hierarchical Transformer architecture. To accommodate the varying feature
dimensionalities in Swin Transformer, we introduced a stage-sharing strategy, enabling parameter
sharing within each stage. The results on the VTAB-1k benchmark (Table @) demonstrate the
generalizability of ARC. It achieves competitive transfer learning accuracy and maintains favorable
parameter scale, except for the Natural group where ARC performs relatively weaker. These
findings highlight ARC’s versatility and effectiveness in adapting different transformer architectures,
showecasing its potential for practical applications in visual adaptation.

4.3 Ablation studies

In order to gain deeper insights into the ARC method, we performed ablation studies to explore
its additional properties. The experiments were conducted on the VTAB-1k benchmark using the
pre-trained ViT-B/16 model. The results of these ablation studies are presented in Table 3]

Bottleneck dimensionality. In our ARC method, we adopt the low-rank design for the adapters but
with the added feature of sharing the down-/up-projection matrices across layers and learning low-
dimensional re-scaling coefficients to re-compose adaptation matrices. In this section, we investigate
the impact of the bottleneck dimensionality on adaptation performance. The results are presented in
Table [5a] We find that a dimensionality of 50 achieves the best balance between transfer learning
performance and parameter efficiency. Further reduction to a 10-dimensional space leads to fewer
parameters but at the cost of performance degradation. Conversely, higher-dimensional hidden spaces
result in inferior performance. These findings validate the effectiveness of our low-rank design, with
50 linear projections providing sufficient flexibility for composing layer-adaptive adapters.

Adapter positioning. By default, our adapters are positioned before the MHA and FFN modules,
allowing the adaptation operations to be seamlessly integrated into the pre-trained network during
inference without additional inference cost. In this section, we investigate the impact of adapter



Table 5: Ablation experiments on VTAB-1k benchmark using ViT-B/16 backbone. The table shows
average accuracy (“Acc.”) and parameter count (“Params.”) for all downtream datasets.

(a) Bottleneck dimension. (b) ARC location. (c) Para. sharing strategy. (d) Insert selection.
Bott. dim | Acc. | Params. Location Acc. | Params,
Before MAA 722 0.08 Strategy Acc. | Params. Layer ind. Form Acc. | Params.
10 72.4 0.07 After MHA 69.1 0.08 non-intra + non-inter | 73.4 0.98 1~6 sequential | 71.5 0.126
50 734 0.13 Before FEN 71.1 0.08 intra + inter* 729 | 010 7~12 | sequential | 67.9 | 0.126
100 73.1 021 After FEN 69.0 0.08 intra + inter 734 0.13 1~12 sequential | 73.4 0.133
200 1 '4 0.36 Before MHA & FEN | 73.4 0.13 non-intra + inter 734 0.21 1~12 parallel | 70.4 0.133
71. . After MHA & FEN | 71.4 0.13

position on pre-trained model adaptation performance using different positioning strategies. The
results are presented in Table [5b] Interestingly, placing the adapters after the MHA and/or FEN
modules leads to performance degradation, despite this strategy being commonly adopted in previous
works such as[7; 29]. Moreover, using only one type of adapter for either MHA or FFN results in
inferior performance compared to using both types of adapters. This suggests that employing both
types of adapters allows for more comprehensive adaptation of the pre-trained model to the target
task without significantly increasing the parameter count.

Sharing v.s non-sharing adaptation parameters. In ARC, we adopt a parameter-sharing strategy
to effectively reduce the number of adaptation parameters. This strategy encompasses two aspects:
intra-layer sharing and inter-layer sharing. Through symmetric down-projection and up-projection
matrices, we achieve intra-layer sharing, while inter-layer sharing involves sharing projection matrices
across different layers. In this section, we investigate the impact of adaptation parameter sharing by
conducting experiments with non-sharing or partial sharing designs. “intra + inter*” denotes sharing
the bottleneck structure between MHA and FFN. The results presented in Table [5c|demonstrate that
using non-symmetric projection matrices or layer-independent adaptation parameters does not result
in performance gains but leads to a noticeable increase in parameters. This validates the effectiveness
of our parameter-sharing design.

Adapter insertion. We examine the performance of inserting the proposed adapters in a subset
of layers using sequential or parallel insertion strategies. The results in Table [5d] show that the
performance of ARC improves as more layers are inserted. Furthermore, we observe that inserting
adapters in the first six layers yields better results compared to inserting them in the last six layers.
Additionally, we explore a parallel insertion setting inspired by [24], but the impact is not significantly
pronounced. Another notable aspect is that our parameter sharing scheme in the ARC method
prevents a linear increase in parameter size with the number of layers, ensuring better scalability,
particularly for larger-scale models.

5 Limitation

The adaptation parameter sharing scheme in the ARC method is built on the assumption that layers
have the same dimensionality. This assumption is crucial as it enables the sharing of down-/up-
projection matrices involved in the bottleneck operation across layers, leading to parameter efficiency.
However, it is worth exploring strategies to extend this scheme and accommodate dimensionality
variation. This research direction holds promise for addressing scenarios where dimensionality varies
and further enhancing the flexibility and applicability of the ARC method.

6 Conclusions

Our paper introduced the Adapter Re-Composing (ARC) method, which leverages the reusability of
adaptation parameters to efficiently adapt pre-trained models. By sharing down-/up-projections in low-
rank adapters across layers and learning layer-specific re-scaling coefficients to re-composing layer-
adaptive adapters, ARC balances transfer learning performance and adaptation overheads. Extensive
experiments demonstrate the compelling performance of our approach with a reduced parameter size.
ARC offers a promising solution for efficient pre-trained model adaptation, showcasing the potential
of reusing adaptation parameters for competitive results.
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Efficient Adaptation of Large Vision Transformer via Adapter
Re-Composing

Supplementary Materials

In the supplementary materials involving our work, we demonstrate detailed dataset settings, sup-
plemental insights and analysis, extra experimental details, supplemental experiments, and broader
impacts, including:

* [A]|Detailed descriptions for datasets and implementation

* [B|Insights of architecture design

* [C|Parameter size analysis

* [D|Experimental details on larger-scale and hierarchical ViT backbones
* [E|Experimental details on ablation studies

¢ [ Expanded experiments with self-supervised pre-training

* [G|Broader impacts

Due to the limitation that the file “Supplementary Materials.zip” larger than 100MB can-
not be uploaded on OpenReview, the supplementary materials only upload the code for
the project. Please refer to the anonymous link https://drive.google.com/file/d/
1Zb1HbYF1JrOu0GeTLI4uII6GHt3CV3I2/view to obtain the complete code, datasets, and models.
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A Detailed descriptions for datasets and implementation

We describe the details of visual adaptation classification tasks in Table[6|(FGVC) and [7] (VTAB-1k),
including the class number and the train/val/test sets.

Table 6: Dataset statistics for FGVC. “*” denotes the train/val split of datasets following the dataset
setting of VPT models [6]].

Dataset Description Classes | Train size | Val size | Test size
CUB-200-2011 [31] | Fine-grained bird species recognition 200 5,394* 600%* 5,794
NABirds [32] Fine-grained bird species recognition 555 21,536* 2,393%* 24,633
Oxford Flowers [33] | Fine-grained flower species recognition | 102 1,020 1,020 6,149
Stanford Dogs [34] Fine-grained dog species recognition 120 10,800%* 1,200* 8,580
Stanford Cars [35] Fine-grained car classificatio 196 7,329% 815%* 8,041

Table 7: Dataset statistics for VTAB-1k [36].

Dataset Description | Classes | Train size | Val size | Test size
CIFAR-100 100 10,000
Caltech101 102 6,084
DTD 47 1,880
Flowers102 Natural 102 | 800/1,000 200 6,149
Pets 37 3,669
SVHN 10 26,032
Sun397 397 21,750
Patch Camelyon 2 32,768
EuroSAT o 10 5,400
Resiscds Specialized 45 800/1,000 200 6.300
Retinopathy 5 42,670
Clevr/count 8 15,000
Clevr/distance 6 15,000
DMLab 6 22,735
KITTI/distance 4 711
dSprites/location Structured 16 | 80071000 2001 53928
dSprites/orientation 16 73,728
SmalINORB/azimuth 18 12,150
SmalINORB/elevation 9 12,150

Table[§| summarizes the detailed configurations we used for experiments. As mentioned in Section[4.1]
we utilize grid search to select hyper-parameters such as learning rate, weight decay, batch size, and
adapter dropout, using the validation set of each task. Note that we also apply dropout to the middle
features produced by our ARC method, which we term as "adapter dropout". Specifically, during the
ARC process, we randomly drop partial features before up-projection.

B Insights of architecture design

Similar to Fig. (3] we present more visualization results of singular value distribution of adaptation
matrices Wy € RP*P learned without the bottleneck operation. As shown in Fig. 4| the singular
value distribution of adaptation matrices learned on DTD downstream task exhibits a power-law
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Table 8: The implementation details of configurations such as optimizer and hyper-parameters. We
select the best hyper-parameters for each download task via using grid search.

Optimizer AdamW
Learning Rate {0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001}
Weight Decay {0.05, 0.01, 0.005, 0.001, 0}
Batch Size {256, 128, 32}
Adapter Dropout {0.8, 0.5, 0.1, 0}
Learning Rate Schedule Cosine Decay
Training Epochs 100
Warmup Epochs 10

distribution across various layers in the downstream tasks. This finding provides further support for
our research motivation.
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(a) Singular value distribution of MHA adapter. (b) Singular value distribution of FFN adapter.

Figure 4: Singular value distribution of adaptation matrices without the bottleneck structure. Two
adaptation matrices of both MHA and FFN blocks are fine-tuned on the DTD downstream task. The
X-axis represents the singular values, while the Y-axis represents the count of singular values within
specific ranges.

C Parameter size analysis

To showcase the parameter-efficiency of our ARC method, we compare its parameter size with other
popular lightweight adaptation methods (Table[9), including Adapter (7], VPT [6], LoRA [24], and
SSF [9]. Adapter [7]] adds two linear projections to each encoder layer during fine-tuning, resulting in
the introduction of 2 - D - D’ - L learnable parameters, where D’ denotes the hidden dimensionality
of the linear projections. Furthermore, due to the presence of non-linear activations in Adapter, the
additional parameters contribute to supernumerary overhead during the inference phase. VPT [6]
incorporates m prompts into input space, leading to an increase of m - D parameters for VPT-Shallow
and m - D - L parameters for VPT-Deep. In contrast to Adapter, both LoRA [24] and SSF [9] employ
linear adaptation methods without incorporating non-linear functions. This design choice allows
them to leverage re-parameterization benefits, thereby mitigating additional computations during
inference. Specifically, the adaptation matrix of LoRA, which consists of a down-projection and an
up-projection, introduces 2 - w - D - D’ - L learnable parameters, where w denotes the number of
attention matrices undergoing adaptation. SSF inserts linear scaling and shifting coefficients after

16



o operations, resulting in an addition of 2 - 0 - D - L extra parameters. The proposed ARC method
offers additional parameter compression by sharing symmetric projection matrices across different
layers. This approach introduces only D - D’ parameters. Additionally, we learn low-dimensional
re-scaling coefficients and bias terms for each layer, resulting in a total of (D’ + D) - L additional
parameters. Overall, the number of parameters in our default ARCis 2- ((D-D')+ (D' + D) - L).

Table 9: Comparison of the additional parameter size in both fine-tuning and inference stages with
other lightweight adaptation methods.

Method
s eoC 1 Adapter VPT-Shallow [6] | VPT-Deep [6] | LoRA SSF [9] ARC
age
Fine-Tuning 2.D- DL m-D m-DL |2wDD-L|20DL|2 (D D+(D+D) L)
Inference 2-D-D'-L m- D m-D-L 0 0 0

We also compare the parameter size with lightweight adaptation methods on backbones of different
scales, as shown in Fig.[5] Our ARCs demonstrate parameter efficiency across various model sizes,
comparable to VPT-Shallow [6]]. However, the unique advantage of our approach lies in its ability
to effectively balance lower overheads and maintain competitive performance. Furthermore, the
parameter count of our ARC remains stable even as the model scale increases, showcasing the
scalability of our method with minimal additional resource consumption.

ViT-Base
m ViT-Large

I Vit-Huge
— | [ | - —_— —

Adapter VPT-Shallow VPT-Deep LoRA SSF ARCatt ARC

O P N W~ 01O

Figure 5: The parameter size comparison of lightweight adaptation methods on ViT Backbones of
Different Scales. The X-axis represents different adaptation methods, while the Y-axis represents the
parameter size in Million (M).
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Figure 6: The parameter size comparison with lightweight adaptation methods with a different
number of inserted layers. The X-axis represents different adaptation methods, while the Y-axis
represents the parameter size in Million (M).

Thanks to our adaptation parameter sharing strategy, the ARC method avoids a linear increase in the
number of learnable parameters as the number of layers grows. We employ ViT-B as the backbone
and integrate adapters into different layers. As shown in Fig[f] in contrast to other adaptation
methods, both our ARCs and VPT-Shallow[6] effectively manage parameter growth as the number of
inserted layers increases, but only our methods achieve promising performance without significant
cost escalation. This highlights the scalability and effectiveness advantages of our ARCs.
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D Experimental details on larger-scale and hierarchical ViT backbones

Table[T0} [TT)and [I2]respectively display the comprehensive results of the comparison conducted in
Section4.2]among ViT-Large, ViT-Huge, and Swin-Base models.

Table 10: This table is extended from Table|3a|in Section4.2|and describes the detailed experimental
results of the performance comparison on VTAB-1k using ViT-Large pre-trained on ImageNet-21k as
the backbone.

Natural Specialized Structured

Dataset

CIFAR-100
Caltech101
Flowers102
Pets.

SVNH
Sun397
Mean
Camelyon
EuroSAT
Resisc45
Retinopathy
Mean
Clevr-Dist
DMLab
KITTI-Dist
dSpr-Loc
dSpr-Ori
sNORB-Azim|
sNORB-Ele
Mean

Mean Total
Params.(M)

Method
Full fine-tuning 68.6 843 586 963 865 875 414 | 747|826 959 824 742 (838|554 550 422 742 568 430 285 29.7 | 48.1 | 654 3034
Linear probing 722 864 636 974 858 38.1 525|709 |769 873 666 454 |69.1 | 282 280 347 540 106 142 146 219|258 | 515 005
Adapter [7] 753 842 545 974 843 313 529 |68.6 | 758 851 634 695 |735| 354 341 308 47.1 304 234 108 198|290 | 529 238
Bias 71.0 824 513 963 832 595 499|705 |729 879 631 713 |738|51.2 507 335 548 659 373 137 222 |412|589 032
VPT-Shallow {6 | 80.6 882 67.1 980 859 784 53.0| 787|797 935 734 731|799 |41.5 525 323 642 483 353 21.6 288|406 | 629 0.15
VPT-Deep [6] 84.1 889 708 988 90.0 89.0 559 | 825|825 96.6 826 739|839 | 637 607 46.1 757 837 474 189 369 | 541|708 049

LoRA 758 89.8 73.6 99.1 908 832 575|814 | 8.0 950 834 755|850 781 605 467 816 767 513 280 354|573 |720 074
ARCay¢ 756 899 722 990 904 89.0 575|819 | 861 950 854 76.0 | 856 | 750 60.1 480 809 770 513 272 356|569 (722 0.3
ARC 762 89.6 734 99.1 903 909 565 | 823|850 957 859 758|856 | 786 621 467 767 759 53.0 302 352 |573|725 0.8

Table 11: This table is extended from Table|3b|in Section 4.2{and describes the detailed experimental
results of the performance comparison on VTAB-1k using ViT-Huge pre-trained on ImageNet-21k as
the backbone.

Natural Specialized Structured
2 o E E 2 § < = <
s 2 z s = ]

2 3 ] z S| =% 2 % g s & 5 2 =< 2 2 £ =% ]

£ £ & £ , 2 %2|5|%F % z £|5|:t £ 2 £ L L E E|s|s5 =&

Dataset | = = = & 2 £ g S| & ] t § /8|2 &2 2 §5 & & 2 2 g ] g

©C °© a B & @& & |20 & ® & |20 0 & ¥ 3 =2 2 %2 | 2| =2 &£

Method

Full fine-tuning 587 865 550 965 797 875 325|709 |81 955 819 738|836 |476 539 378 699 538 48.6 302 258 63.1 6309
Linear probing 643 836 652 962 835 398 430|679 |780 905 739 734|790 |256 245 348 590 95 156 174 228 527  0.06
Adapter [7] 69.4 844 627 972 842 33.6 453 | 68.1 | 773 866 708 7I.1 |764|286 275 292 552 100 152 119 186 515 578
Bias 65.7 843 599 96.6 806 60.1 449 703|797 928 715 716 | 789|523 504 312 577 659 397 167 202 60.1  0.52
VPT-Shallow {6] 706 847 648 964 851 756 462 | 748|799 937 777 736 |812|403 609 349 633 613 389 198 249 628 0.18
VPT-Deep 6] 769 872 668 975 848 855 465|779 | 816 963 825 728|833 |504 612 439 766 795 50.1 247 315 682 0.96
LoRA 63.0 894 681 980 87.0 852 487 |77.1 | 822 943 831 742|835 ]| 68.6 650 448 764 70.8 488 304 383 693 1.21
ARCast 655 89.1 699 980 875 89.1 488 | 783 | 834 945 845 744|842 | 732 666 456 762 783 512 321 376 708 0.17
ARC 676 902 69.5 984 879 90.8 49.6 | 79.1 | 845 949 851 746 | 848 | 752 667 462 764 442 511 322 377 69.6 022

Table 12: This table is extended from Table and describes the detailed experimental
results of the performance comparison on VTAB-1k using Swin-Base pre-trained on ImageNet-21k
as the backbone.

Natural Specialized Structured

Dataset

CIFAR-100
Caltech101
Flowers102
Pets.

SVNH
Sun397
Mean
Camelyon
EuroSAT
Resisc45
Retinopathy
Clevr-Count
DMLab
KITTI-Dist
dSpr-Loc
dSpr-Ori
SNORB-Azim|
sNORB-Ele
Mean

Mean Total
Params.(M)

Method
Full fine-tuning 722 880 714 983 895 894 451 (79.1|866 969 877 736|862 | 757 598 546 786 794 53.6 346 409 | 597 | 724 869
Linear probing 614 902 748 955 902 469 558|735 |815 90.1 821 694|808 |39.1 359 40.1 650 203 260 143 276 | 335|582 0.05

MLP-4 [6] 549 874 714 995 89.1 397 525|706 | 805 909 768 744|807 | 609 388 402 665 94 211 145 288|312 | 577 404
Partial (6] 603 889 726 987 893 505 515|731 |828 917 80.1 723|817 | 343 355 432 77.1 158 262 19.1 284|350 | 589 12,65
Bias 73.1 86.8 657 977 815 564 523 | 742|804 916 76.1 725 |80.1 | 473 485 347 663 576 362 172 31.6 | 424|621 025

VPT-Shallow {6 | 780 913 772 994 904 684 543|799 | 80.1 939 83.0 727 |825|408 439 341 632 284 445 215 263 378|629 005
VPT-Deep 6] 79.6 90.8 78.0 99.5 914 465 517|768 | 849 962 850 720|845 | 67.6 594 50.1 741 744 506 257 257|534 677 022
ARCay¢ 672 897 747 995 89.7 885 527 (803|881 959 857 772|867 |765 585 521 828 894 564 275 351|598 |73.0 0.16
ARC 625 90.0 719 992 878 907 511|790 | 89.1 958 845 770 |86.6 | 754 574 534 831 917 552 31.6 31.8 599|726 027

E Experimental details on ablation studies
Table[T3] [T4] [15]and [I6]display the complete results of the ablation studies in Section[#.3]
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Table 13: This table is extended from Table|5a|in Section and describes the detailed experimental
content of the performance comparison among different bottleneck dimensionality.

Natural Specialized Structured

s = o z H z 5oz ER-l

- - E 2w i g ¢ . & ¢ =z I & : 3

2 £ 4 5 z % 3 2 S 8 £ X 3 ¢ g = R |

<« 2 4 = ) = £l 2 2 £ = & & - = o & 3 & = )

E = B8 i z Z 2 g g £ 2 = 3 H 3 = 2 & o 9 g g £

Dataset | = ] = 2 ° > 3 S & ] g ] S 2 2 z s 5 & > > S & 5

. 3 o O a = & » @ = | o 2 - - = [3) ) a 2 3 5 % A = = &

Dimension

10 722 884 712 987 911 894 547|809 |847 956 860 758|856 | 80.1 659 488 805 755 483 302 386 | 585|724 0.07
50 722 901 727 99.0 91.0 91.9 544 | 81.6 | 849 957 867 758 | 858 | 80.7 67.1 487 816 792 51.0 314 399 |60.0 | 734 0.13
100 713 900 730 990 907 918 551 | 816|851 963 86.1 754|857 |808 672 490 793 748 50.1 340 39.1 593|731 021
200 705 893 729 991 898 919 549 | 812|849 953 840 757|850 |80.0 678 489 768 508 513 344 39.1 | 56.1 | 714 036

Table 14: This table is extended from Table|5b|in Section and describes the detailed experimental

content of the performance comparison among different adapter positioning.
Natural Specialized Structured

2 o £z £ 2 E £} 3 S

g = g g ] 2 oz z ., . % = E =

Z % 5 : 0% £ S 2 g 3z 3 &8 2 2 £ 3

= £ 2 § , Z ®|s5|®F ¢ 2z E|g|: & & E L L 2 Z|s5|:s &

Dataset | & % & &£ £ &£ 5|2 |&%§ 3 % %§ 2|2 &2 = £ & & 2 Z|&|& E

) S O A B & & @ |=|© | 2 =0 © & ¥ =2 = % Z | = = &

Location

Before MHA 70.1 905 705 988 90.8 886 53.6| 804 |846 955 866 755|856 |79.0 656 48.6 813 751 487 29.1 39.6 | 584|722 0.08
After MHA 67.0 889 69.8 988 90.8 822 523|785 |841 946 851 754|848 774 60.1 443 77.1 612 457 23.0 356|530 | 69.1 0.08
Before FFN 708 894 710 99.0 899 869 539 |80.1 |855 947 849 756|852 773 63.6 465 775 703 484 276 373|560 | 711 0.08
After FEN 66.7 882 69.6 986 902 825 529|784 |836 948 853 755|848 779 631 441 767 579 470 226 339|529 |69.0 0.08
Before MHA & FFN | 722 90.1 727 99.0 910 919 544 | 81.6 | 849 957 867 758|858 | 807 67.1 487 816 792 510 314 399 | 60.0 | 734 0.13
After MHA & FFN | 70.5 89.9 713 99.0 914 869 535|804 |847 949 864 76.0 | 855|803 628 468 809 669 496 284 364|565 |714 013

Table 15: This table is extended from Table[5c|in Section and describes the detailed experimental

content of the performance comparison among different parameter sharing strategy.
Natural Specialized Structured

= - = o

S = ] Z E " 2 5 2 = 9

s g g £ = . 3 2z 2 ¢ £ < = £ 2

z 5 g 5 z % 3 £ S 8 £ = 3 o© & = =2

= g a g = 2 g S 2 £ g = = = = o = & & g F g

past | E 5 £ 2 g £ 2| 3|E E §% S| 3|z 32 £ E & & 2 S|3|38 &

C O a B & & &|=2|0 & &£ &£ |=2|0C 0O & ¥ % 8 % %|=2|=2Z2 &

Strategy

non-intra + non-inter | 70.1 911 715 99.2 90.6 919 54.6 | 813 | 848 955 864 754|855 |8L1 66.1 501 786 803 51.5 358 406 | 60.5 | 73.4 0.98
intra + inter*® 729 898 721 988 91.0 90.7 546 | 814|858 955 863 756|858 |803 665 488 796 77.0 507 309 39.0|59.1 | 729 0.10
intra + inter 722 90.1 727 990 91.0 919 544 | 816|849 957 867 758 | 858|807 67.1 487 816 792 510 314 399|600 | 734 0.13
non-intra + inter 729 895 729 988 906 902 558 | 815|862 955 862 759|860 |8L1 671 483 810 785 50.6 315 419 | 60.0 | 734 021

Table 16: This table is extended from Table [5d|in Section and describes the detailed experimental

content of the performance comparison among different adapter insertion.
Natural Specialized Structured

2 ] 2 =

- a z g - 2 5 2 = 5

g = g s & . 3 : oz 2 ¢ £ I & I =

& % & 5 s 3 I g T 8 £ 2 3 ¢ g g =g
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Layer Form

1 ~ 6 & sequential 69.0 88.1 702 984 90.0 898 523|797 841 945 854 755|849 |802 673 464 788 744 48.1 29.1 37.6 |57.7 | 715 0.126
7 ~ 12 & sequential 579 882 684 983 892 703 521 | 749|822 943 843 764 | 843|770 581 454 753 740 427 210 349 | 536|679 0.126
1 ~ 12 & sequential 722 90.1 727 990 910 919 544 | 81.6 | 849 957 867 758|858 807 67.1 487 81.6 792 510 314 399 | 60.0 | 73.4 0.133
1 ~ 12 & parallel 707 909 715 989 911 86.1 53.8|804|835 951 856 754|849 766 641 459 769 620 460 253 372|543 |704 0.133

F Expanded experiments with self-supervised pre-training

In addition to the models pre-trained with supervised objectives in Section
experiments with self-supervised pre-training approaches: MAE [2] and Moco V3 [23]. Specifically,

We utilize MAE [2] and Moco V3 [23] self-supervised pre-trained ViT-B as the backbone and
evaluate the performance of our ARC on VTAB-1k. The results of MAE and Moco V3 self-
supervised models are presented in Table [I7]and Table[T8] respectively. We observe that our ARC
still exhibits competitive performance on two self-supervised ViTs. In addition, our ARC method
outperforms other adaptation methods: Adapter[7] and LoRA [24] on the majority of downstream
tasks. Surprisingly, the ARC,; with smaller learnable parameters even surpasses the ARC across
different self-supervised pre-trained models. A possible explanation could be that ARC, contains
fewer parameters, which allows it to effectively prevent overfitting.

we also conduct
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Table 17: Performance comparison on VTAB-1k using MAE self-supervised pre-trained ViT-Base as
backbone.

Natural Specialized Structured

e = a z E g P z g

R E 5 = . % R A g ¢ £ B g 2

Z 3 g z 5 : 3 % & 2 5 2 3 S g % S B
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Dataset | = ] IN 2 z > E} & = E g ) = 2 2 2 = @ @ Z Z & & ]

S O a B & @& & | o 2 2 = S ° a ¥ 3 = A A = = &

Method

Full fine tuning | 24.6 842 569 727 744 866 158593 | 818 940 723 70.6 | 79.7 | 670 598 452 753 725 475 302 330 | 53.8 | 613 8580
Linear 87 415 206 192 113 223 86 | 189|765 686 166 532|537 |336 325 230 SLI 130 99 85 179|237 [282 0.04
Bias [37 224 826 497 662 677 69.0 243 [546[787 914 600 726 | 757 | 659 510 350 69.1 708 37.6 215 307 | 477|561 0.14
Adapter {7 351 850 565 66.6 713 450 248|549 (769 87.1 635 733|752 |438 495 312 617 593 233 136 29.6 | 39.0 [ 525 076
VPT-Shallow [6] | 219 762 547 580 413 161 151|400 | 740 69.5 589 727 | 68.8 | 403 447 279 60.5 118 110 124 163 | 28.1 | 412 0.04
VPT-Deep [6 82 552 580 393 452 194 219 | 353|779 910 454 736|720 | 390 409 306 539 210 121 110 149 | 279 | 399 0.6
LoRA 24 318 884 599 817 853 903 237|659 | 842 925 762 754 | 821|859 641 494 828 839 518 346 413 | 617|675 030
ARCae 348 893 620 859 844 911 248|674 |858 935 813 756 | 841|840 635 512 830 891 540 342 43.0 [ 627 | 69.0 0.09
ARC 313 893 612 859 831 916 244 | 667 | 860 940 804 748 | 838 | 858 64.6 50.5 828 828 535 363 397 | 62.0 [ 683 0.13

Table 18: Performance comparison on VTAB-1k using Moco V3 self-supervised pre-trained ViT-Base
as backbone.

Natural Specialized Structured

s o =] s 2 S ) - =

s g E 5 g w3 2 Z 2 ¢ ¢ 1 ® -]
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Method

Full fine tuning 576 91.0 646 91.5 799 898 29.1 | 72.0 | 851 964 83.1 743 | 847 | 551 569 447 779 638 490 315 369 | 52.0 | 66.2 85.69
Linear 629 851 688 87.0 858 418 409 | 675|803 93.6 779 726 | 81.1 | 423 348 364 592 10.1 227 126 247 | 303 | 547 0.04
Bias (37 655 892 629 889 805 827 405|729 |809 952 777 708 |8l1| 714 594 398 774 702 490 175 428 | 534|664 0.14
Adapter [7 730 882 693 90.7 874 699 409 | 742 | 824 934 805 743 | 827|556 56.1 391 739 60.5 402 190 37.1 | 47.7 | 648 098
VPT-Shallow [6 683 868 69.7 90.0 597 569 399|673 | 817 947 789 738 | 823|343 568 40.6 49.1 404 318 13.1 344 |37.6 579 0.05
VPT-Deep [6: 70.1 883 659 884 856 578 357|703 |831 939 812 740 | 830|485 558 372 646 523 265 194 348|424 612 0.05
LoRA [24 588 90.8 66.0 91.8 88.1 87.6 40.6 | 748 | 864 953 834 755|851 |83.0 646 513 819 832 475 324 473|614 | 713 030
ARCyy 593 909 677 93.6 892 90.5 403|759 | 87.1 948 854 755|857 |84.0 649 525 831 882 534 330 462|632 726 0.09
ARC 60.0 91.3 679 928 893 914 409|762 | 875 956 86.1 756|862 | 830 642 502 80.6 850 530 346 474 | 623|724 0.13

G Broader impacts

Efficient usability. Unlike previous approaches, our method incorporates a parameter sharing
scheme across different layers of the model, resulting in a significant reduction in the number of
parameters that need to be fine-tuned. This approach allows us to maintain competitive performance
while achieving parameter efficiency. By maximizing the utilization of large-scale pre-trained models,
our ARC methods offer enhanced usability and practicality in various applications.

Environmental-friendly consumption. In addition to the reduction in computational overheads,
another significant benefit of our method is the positive impact on carbon emissions reduction and
environmental protection. By optimizing the computational efficiency of the model, we minimize
the energy consumption required during the training and deployment of the model. This reduction
in energy consumption leads to a decrease in carbon emissions, contributing to environmental
sustainability. Our method not only delivers improved performance and efficiency but also aligns
with the larger goal of mitigating the environmental impact of Al technologies.

Ethical Considerations. Our model focuses on utilizing the representation and generalization
capacity obtained from large-scale pre-trained datasets and models. However, it is crucial to acknowl-
edge that if the pre-training datasets contain bias or illegal information, there is a risk of inheriting
such issues into our model.

In order to address this concern, it becomes imperative to explore research directions that aim
to identify and prevent privacy leakage and correct model bias. This involves developing robust
mechanisms to detect and mitigate bias in training data, as well as implementing privacy-preserving
techniques to safeguard sensitive information.
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